SlideShare a Scribd company logo
1 of 48
Download to read offline
Geospatial Machine Learning
for Urban Development
Ilke Demir
Facebook
MLConf – The Machine Learning Conference
Understanding the World
Exploring the World
Understanding the World
urban safety
socioeconomic data &
voting patterns
poverty
mapping
disaster mapping
Open Datasets
o DeepGlobe: https://deepglobe.org
o Road extraction
o Building detection
o Land cover classification
o SpaceNet: https://spacenetchallenge.github.io/
o Road network extraction
o Building detection
o Earth observation challenge: http://eochallenge.bemyapp.com/
o Water resource extraction
o Change detection
o Data fusion contest: http://www.grss-ieee.org/data-fusion-contest/
o Land cover land use classification from various sensor data
o Functional map of the world: https://www.iarpa.gov/challenges/fmow.html
o Labeling the world into land use categories
Case Study: DeepGlobe
o Public datasets and benchmarks for scalable and reliable approaches
o Satellite imagery is powerful as it is more structured than everyday images
DeepGlobe focuses on machine learning and computer vision approaches on
satellite images and brings together researchers with different perspectives by;
o Publishing public datasets and baselines
o Creating public challenges to benchmark different approaches
o Organizing a workshop to sparkle new collaborations and ideas
DeepGlobe Tracks
Road Extraction Challenge:
- Maps, accessibility, and connectivity
- Economic and developmental inclusion
- Crisis response
DeepGlobe Tracks
Building Detection Challenge:
- Population dynamics and demographics
- Disaster recovery and damage coordination
- Urban development
DeepGlobe Tracks
Land Cover Classification Challenge:
- Sustainable development
- Automation in agriculture
- Urban planning and growth
DeepGlobe Challenges
1. Road Extraction Challenge
- DigitalGlobe Vivid+
- 50 cm/pixel
- Pixel-wise manual annotation
- 2 classes
- Thailand, Indonesia, India
- 8570 images of 2220km2
- 70%/15%/15% split
- ~4% positive pixels
- Diverse road networks
- 345 participants
- 2150 submissions
- 84 results in the leaderboard
DeepGlobe Challenges
2. Building Detection Challenge
- SpaceNet Buildings v2
- 31cm single-band panchromatic
- 1.24m 8 band multi-spectral
- Manual annotation of polygons
- 2 classes
- Las Vegas, Paris, Shanghai, Khartoum
- 24586 images of 9623 km2
- 60%/20%/20% split
- 302701 buildings
- 296 participants
- 576 submissions
- 25 results in the leaderboard
DeepGlobe Challenges
3. Land Cover Classification Challenge
- DigitalGlobe Vivid+
- 50 cm/pixel
- Pixel-wise manual annotation
- 7 classes
- Thailand, India, Indonesia
- 1146 images of 1717 km2
- 70%/15%/15% split
- 20m minimum granularity area
- 311 participants
- 1155 submissions
- 28 results in the leaderboard
DeepGlobe Results and Baselines
Roads
DeepLab variation
Only data augmentation by rotation
IoU score 0.545
DeepGlobe Results and Baselines
Roads
DeepLab variation
Only data augmentation by rotation
IoU score 0.545
Buildings
Ensemble 3 U-Net models
Boost by OpenStreetMap data
F1 score 0.693
DeepGlobe Results and Baselines
Roads
DeepLab variation
Only data augmentation by rotation
IoU score 0.545
Buildings
Ensemble 3 U-Net models
Boost by OpenStreetMap data
F1 score 0.693
Lands
DeepLab variation
Data augmentation by rotations and class weights
IoU score of 0.433
DeepGlobe Winners
Roads Buildings Land
D-LinkNet: LinkNet with
Pretrained Encoder and Dilated
Convolution for High Resolution
Satellite Imagery Road Extraction
Lichen
Zhou,
BUPT
Building Detection
from Satellite Imagery
using Ensemble of
Size-specific Detectors
Ryuhei
Hamaguc
hi,
Pasco
Dense Fusion
Classmate Network
for Land Cover
Classification
Chao Tian,
Harbin
Institute of
Technology
1. Semantic Binary Segmentation using Convolutional Networks
without Decoders
Shubhra Aich*; William van der Kamp; Ian Stavness, University of
Saskatchewan
2. Stacked U-Nets with Multi-Output for Road Extraction
Tao Sun*; Zehui Chen; Wenxiang Yang; Yin Wang, Tongji University
3. D-LinkNet: LinkNet with Pretrained Encoder and Dilated
Convolution for High Resolution Satellite Imagery Road Extraction
Lichen Zhou*; Chuang Zhang; Ming Wu, Beijing University of Posts
and Telecommunications
4. Fully Convolutional Network for Automatic Road Extraction from
Satellite Imagery
Alexander Buslaev*, Mapbox; Selim Seferbekov, Veeva Systems;
Vladimir Iglovikov, Lyft Inc; Alexey Shvets Massachusetts Institute of
Technology
5. Road Detection with EOSResUNet and Post Vectorizing Algorithm
Oleksandr Filin*; Serhii Panchenko; Anton Zapara, EOS Data Analytics
6. Residual Inception Skip Network for Binary Segmentation
Jigar Doshi*, CrowdAI
7. Roadmap Generation using a Multi-Stage Ensemble of Neural
Networks with Smoothing-Based Optimization
Dragos Costea*; Alina Marcu; Emil Slusanschi; Marius Leordeanu,
University Politehnica of Bucharest
8. Rotated Rectangles for Symbolized Building Footprint Extraction
Matthew Dickenson*; Lionel Gueguen, Uber
9. Building Detection from Satellite Imagery Using Composite Loss
Function
Sergey Golovanov*; Rauf Kurbanov; Aleksey Artamonov; Alex
Davydow; Sergey Nikolenko, Neuromation
10. Building Detection from Satellite Imagery using Ensemble of Size-
specific Detectors
Ryuhei Hamaguchi*; Shuhei Hikosaka, Pasco Corporation
11. TernausNetV2: Fully Convolutional Network for Instance
Segmentation
Vladimir Iglovikov*, Lyft Inc; Selim Seferbekov, Veeva Systems;
Alexander Buslaev, Mapbox; Alexey Shvets Massachusetts Institute of
Technology
12. Semantic Segmentation based Building Extraction Method using
Multi-source GIS Map Datasets and Satellite Imagery
Weijia Li*; Conghui He; Jiarui Fang; Haohuan Fu, Tsinghua University
13. CNNs Fusion for Building Detection in Aerial Images for the
Building Detection Challenge
Remi Delassus*, Qucit - LaBRI; Romain Giot, Univ. Bordeaux
14. Building Extraction from Satellite Images Using Mask R-CNN with
Building Boundary Regularization
Kang Zhao*; Jungwon Kang; Jaewook Jung; Gunho Sohn, York
University
15. Deep Aggregation Net for Land Cover Classification
Tzu-Sheng Kuo*; Keng-Sen Tseng; Jia-Wei Yan; Yen-Cheng Liu; Yu-
Chiang Frank Wang, National Taiwan University
16. Stacked U-Nets for Ground Material Segmentation in Remote
Sensing Imagery
Arthita Ghosh*; Max Ehrlich; Sohil Shah; Larry Davis; Rama
Chellappa, University of Maryland
17. Land Cover Classification from Satellite Imagery With U-Net and
Lovasz-Softmax Loss
Alexander Rakhlin*; Alex Davydow; Sergey Nikolenko, Neuromation
18. Dense Fusion Classmate Network for Land Cover Classification
Chao Tian*, Harbin Institute of Technology; Cong Li; Jianping Shi,
Sensetime 19. NU-Net: Deep Residual Wide Field of View
Convolutional Neural Network for Semantic Segmentation
Mohamed Samy; Karim Amer*; Kareem Eissa; Mahmoud Shaker;
Mohamed ElHelw, Nile University;
20. Feature Pyramid Network for Multi-Class Land Segmentation
Selim Seferbekov*, Veeva Systems; Vladimir Iglovikov, Lyft Inc;
Alexander Buslaev, Mapbox; Alexey Shvets Massachusetts Institute of
Technology
21. Uncertainty Gated Network for Land Cover Segmentation
Guillem Pascual*; Santi Seguí; Jordi Vitria, Universitat de Barcelona
22. Land Cover Classification With Superpixels and Jaccard Index
Post-Optimization
Alex Davydow*; Sergey Nikolenko, Neuromation
Changing the World
urban planning simulations generative models
Proceduralization
Generalized Proceduralization
Shape Understanding
Point clouds:
Arch
Physical objects:
Urban spaces: Satellite Images: Architectural models:
Point clouds:
Satellite images:
Urban spaces: Architecture:
Generative Modeling
Case Study: Street Addresses
• 75% of the world lives
without adequate addressing.
What3Words
• 4 billion people are ‘invisible’.
United Nations
• Haiti earthquake: 48 hours
reaction time, 6 months
complete road vectors.
OpenStreetMap
Geocoding Solutions
“issuer.lollipop.ripe”
“ItsADream”
“37.482825, -122.145661”
“75682SB3084”
“parrot.casino.failed”
“SweetPotato”
“102.22556, -12.166981”
“7098HGT3083”
• f(lat, lon) = “address”
• Hashes, random words, manual tags
• No spatial relation cue
• No city/state/country
• No accessibility
• No geometry
A B Humans need streets!
Traditional Addressing Systems
London postal code system:
Radial regions based on orientation and distance
South Korea streets:
Meter markers
Japan block system:
Hard to decipher
Dubai addressing:
Uses districts
Berlin numbering:
Zigzag house pattern
Our Generative Scheme
• 5 alphanumeric fields
• Hierarchical and linear descriptors
• To close the gap between physical
addresses and automated geocoding
Road naming scheme:
- distance from the center
- orientation in odd parity
Region naming scheme:
- orientation wrt downtown
- distance from downtown
House numbering scheme:
- meter markers on the road
- block letters from the road
“I7 Hacker Way, Menlo Park, CA, US”
Pipeline: Satellite Images
ç
• Irregular urban structure
• Illumination/weather/country
• Different road types
Pipeline: Road Predictions
• Binary road masks
• 19K*19K, 0.5m/pixel
• SegNet
Pipeline: Road Network
• Orientation based median filtering
• Road segments by orientation
bucketing
NF
NH
NE
Pipeline: Regions
• Road graph: Node=intersection,
edge=road, weight=length
• Partition for max inter, min intra
connectivity, using normalized min-cut.
Pipeline: Naming
• Orientation bucketing into N, S, W, E
• Trace regions based on distance to CA
• Orientation bucketing into major axes
• Trace roads based on order
Pipeline: Address Cells
• 5 meter marker along the road
• Odd/even based on RHR
• Distance field of roads: block offset
Results: Unmapped Developing Country
• Improve coverage up to 80%
• Processed more than 200 districts (and increasing!)
• Regions follow natural boundaries
• Road network is being discovered in non-urban settings
Results: Unmapped Developing Country
• Improve coverage up to 80%
• Processed more than 200 districts (and increasing!)
• Regions follow natural boundaries
• Road network is being discovered in non-urban settings
Results
• Improve coverage up to 80%
• Processed more than 200 districts (and increasing!)
• Regions follow natural boundaries
• Road network is being discovered in non-urban settings
• Changing the world!
News & Ads!
o Geospatial Modeling and Visualization, Special Issue in Big Earth Data Journal
http://bit.ly/BigEarthData
o SUMO Challenge: Understanding indoor scenes from 360 RGBD data
https://sumochallenge.org/
o Challenges and opportunities for deep learning in remote sensing,
Special session in Living Planet Symposium 2019
https://lps19.esa.int/
o EarthVision 2019! (coming soon…)
o DeepGlobe v2! (coming some day…)
Thanks… and your turn!
Generative Street Addresses
Code: https://github.com/facebookresearch/street-addresses
Paper: https://research.fb.com/publications/robocodes
DeepGlobe Benchmark
Papers: http://bit.ly/deepglobe_papers
Website: http://deepglobe.org
Dataset: http://bit.ly/deepglobe
Ilke Demir
e-mail: idemir@fb.com
Twitter: @ilkedemir
Additional Slides 36
Evaluation Metrics
Roads
Pixel-wise mean IoU
Buildings
Average F1 score
Lands
Pixel-wise mean IoU
Design Choices
Linear: similar addresses stored in a linear fashion
Hierarchical: top-down structure for spatial encapsulation
Compressible: 5x4 max (chars x words)
Universal: independent of local language
Inquirable: useful for geometric, proximity-based, and type-ahead queries
Extendible: dynamically modifiable for new places
Robust: flexible for overestimation and noise
StructuralDesignParameters
forefficientcomputerimplementation
Linear: closer addresses are given related names
Hierarchical: top-down subdivision of the world
Memorable: short and alphanumeric, easily convertible
Intuitive: with a sense of direction and distance
Topological: consistent with road topology
Inclusive: with local names (city, state)
Physical: consistent with natural boundaries
SemanticDesignParameters
foruserfriendliness
Machine
Needs
Human
Needs
39Geometric Shape Processing: Satellite Images
[*] I. Demir et al., 2018. “Generative Street Addresses from Satellite Imagery”.
International Journal on Geo-Information (IJGI).
Output Maps and Tools
• .osm maps with roads (meter marking and offsetting on the fly)
• ID-tool of MapBox for on-demand inverse/forward geocoding
• rtree extension for efficient spatial querying
• Experimental mobile app for self navigation
• 21.7% decrease in arrival time using Robocodes
Results: Evaluation with Ground Truth
• System learns 90.51% of roads
• Approximately 80% on average
• Better in urban environments
• Ground truth prepared as if
training data
Results: Mapped US City
• More than 95% of the roads are found (compared to OSM).
• Traditional addresses are more established, however
• Robocodes are contextually and spatially easier to remember.
Results: Comparison
Automated geocoding:
A: parrot.casino.failed
B: issuer.lollipop.ripe
- Have irrelevant words
based on lat/lon.
Robocodes:
715D.NE127.Dhule.MhIn
716C.NE127.Dhule.MhIn
- Have hierarchical and
linear addresses.
Landmark based:
Green Park
Green Park
- Have roads but no
addresses or labels.
OSM:
lat/lon
lat/lon
- Have neither road
geometry, nor labels.
Limitations & Future Work
• Robotic meter marking and offsetting:
• (i) use smart parcel subdivision,
• (ii) adapt to population density.
• Imperfect training data: sample more countries.
• Metric to evaluate regions: supervised learning of
land annotations.
Inaccessible Areas
• To extend our format to cover areas that are not accessible by
streets, we explored different implementations to cover such
areas, which are 26*5 m away from any street.
• Geocoding as a function (excluding the version field):
f (info, lat, lon) = x.y.z.t
• For places with roads, info={road network, city, country}
f (R, C) = x.y.city.country
• Extreme case: only reliable information is latitude/longitude!
45
f(C,lat,lon) = hash(round(lat,3)) + dir(lat) .
hash(round(lon,3)) +dir(lon) . C
L-A-T-dir.L-O-N-dir.name.area
Inaccessible Areas: Blackholes!
• Linear hashing:
• 26 letters + 10 digits
• 100m x 100 m granularity
• Last letter is the hemisphere
• Range: 359.999, longitude: 7PRZ W
• Hierarchical hashing:
• Enlarge the grid from to 1 km x 1 km
• Using two floating points = three letters
• Within each cell, re-hash it to a 36 x 36 grid = one letter
• New resolution: 30m, represented by five letters
46
f(C,lat,lon) = hash(round(lat,2)) + hash(lat - round(lat,2)) + dir(lat) .
hash(round(lon,2)) + hash(lon - round(lon,2)) + dir(lon) . C
LlatLlatHlatDlat .LlonLlonHlonDlon . name . Ocean /Continent /etc
Completion & Reconstruction 47
• Voxelize building proxy from
footprint
• Find roofs with photo-
consistency in aerial images
• Apply graph-cuts:
•Building
•Building-ground
•Ground
[*] I. Garcia-Dorado I. Demir, D. Aliaga.
2013. “Automatic Urban Modeling Using
Volumetric Reconstruction with Surface
Graph-cuts”. Computers & Graphics.
Website: http://deepglobe.org
Papers: http://bit.ly/deepglobe_papers
Dataset: http://bit.ly/deepglobe
Hashtags: #DeepGlobe

More Related Content

What's hot

Spatial analysis and Analysis Tools
Spatial analysis and Analysis ToolsSpatial analysis and Analysis Tools
Spatial analysis and Analysis ToolsSwapnil Shrivastav
 
GIS for Transportation Infrastructure Management
GIS for Transportation Infrastructure ManagementGIS for Transportation Infrastructure Management
GIS for Transportation Infrastructure ManagementEsri
 
Smart Cities and Big Data - Research Presentation
Smart Cities and Big Data - Research PresentationSmart Cities and Big Data - Research Presentation
Smart Cities and Big Data - Research Presentationannegalang
 
Satellite Image Classification with Deep Learning Survey
Satellite Image Classification with Deep Learning SurveySatellite Image Classification with Deep Learning Survey
Satellite Image Classification with Deep Learning Surveyijtsrd
 
ARTIFICIAL INTELLIGENCE in Urban Planning​.pptx
ARTIFICIAL INTELLIGENCE in Urban Planning​.pptxARTIFICIAL INTELLIGENCE in Urban Planning​.pptx
ARTIFICIAL INTELLIGENCE in Urban Planning​.pptxNgoc Tuyen
 
GIS: Geographic Information Systems
GIS: Geographic Information SystemsGIS: Geographic Information Systems
GIS: Geographic Information Systemsaalaa gaffar
 
Machine Learning and the Smart City
Machine Learning and the Smart CityMachine Learning and the Smart City
Machine Learning and the Smart CityErika Fille Legara
 
Spatial Data Science with R
Spatial Data Science with RSpatial Data Science with R
Spatial Data Science with Ramsantac
 
Commercially use GIS & REMOTE SENSING Software
Commercially use GIS & REMOTE SENSING SoftwareCommercially use GIS & REMOTE SENSING Software
Commercially use GIS & REMOTE SENSING Softwareanuj4849
 
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRY
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRYLIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRY
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRYAbhiram Kanigolla
 
Taking a Geographic Approach to Machine Learning - Esri Ireland 'Do One Thing...
Taking a Geographic Approach to Machine Learning - Esri Ireland 'Do One Thing...Taking a Geographic Approach to Machine Learning - Esri Ireland 'Do One Thing...
Taking a Geographic Approach to Machine Learning - Esri Ireland 'Do One Thing...Esri Ireland
 
Deep Learning’s Application in Radar Signal Data II
Deep Learning’s Application in Radar Signal Data IIDeep Learning’s Application in Radar Signal Data II
Deep Learning’s Application in Radar Signal Data IIYu Huang
 
MIS 08 Geographical Information System
MIS 08  Geographical Information SystemMIS 08  Geographical Information System
MIS 08 Geographical Information SystemTushar B Kute
 
Real Time Vehicle Monitoring Using Raspberry Pi
Real Time Vehicle Monitoring Using Raspberry Pi Real Time Vehicle Monitoring Using Raspberry Pi
Real Time Vehicle Monitoring Using Raspberry Pi Albin George
 
Top 16 Applications of Computer Vision in Video Surveillance and Security.pdf
Top 16 Applications of Computer Vision in Video Surveillance and Security.pdfTop 16 Applications of Computer Vision in Video Surveillance and Security.pdf
Top 16 Applications of Computer Vision in Video Surveillance and Security.pdfSabhanayagham Thirugnanasambandam
 
R programming language in spatial analysis
R programming language in spatial analysisR programming language in spatial analysis
R programming language in spatial analysisAbhiram Kanigolla
 
A multi-scale Urban Analysis Using Remote Sensing and GIS
A multi-scale Urban Analysis Using Remote Sensing and GISA multi-scale Urban Analysis Using Remote Sensing and GIS
A multi-scale Urban Analysis Using Remote Sensing and GISWaqas Tariq
 
Gis training ppt
Gis training pptGis training ppt
Gis training pptglobalp7
 
Drone flight data processing
Drone flight data processingDrone flight data processing
Drone flight data processingDany Laksono
 

What's hot (20)

Spatial analysis and Analysis Tools
Spatial analysis and Analysis ToolsSpatial analysis and Analysis Tools
Spatial analysis and Analysis Tools
 
GIS for Transportation Infrastructure Management
GIS for Transportation Infrastructure ManagementGIS for Transportation Infrastructure Management
GIS for Transportation Infrastructure Management
 
Smart Cities and Big Data - Research Presentation
Smart Cities and Big Data - Research PresentationSmart Cities and Big Data - Research Presentation
Smart Cities and Big Data - Research Presentation
 
Satellite Image Classification with Deep Learning Survey
Satellite Image Classification with Deep Learning SurveySatellite Image Classification with Deep Learning Survey
Satellite Image Classification with Deep Learning Survey
 
ARTIFICIAL INTELLIGENCE in Urban Planning​.pptx
ARTIFICIAL INTELLIGENCE in Urban Planning​.pptxARTIFICIAL INTELLIGENCE in Urban Planning​.pptx
ARTIFICIAL INTELLIGENCE in Urban Planning​.pptx
 
GIS: Geographic Information Systems
GIS: Geographic Information SystemsGIS: Geographic Information Systems
GIS: Geographic Information Systems
 
Machine Learning and the Smart City
Machine Learning and the Smart CityMachine Learning and the Smart City
Machine Learning and the Smart City
 
Spatial Data Science with R
Spatial Data Science with RSpatial Data Science with R
Spatial Data Science with R
 
Commercially use GIS & REMOTE SENSING Software
Commercially use GIS & REMOTE SENSING SoftwareCommercially use GIS & REMOTE SENSING Software
Commercially use GIS & REMOTE SENSING Software
 
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRY
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRYLIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRY
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRY
 
Taking a Geographic Approach to Machine Learning - Esri Ireland 'Do One Thing...
Taking a Geographic Approach to Machine Learning - Esri Ireland 'Do One Thing...Taking a Geographic Approach to Machine Learning - Esri Ireland 'Do One Thing...
Taking a Geographic Approach to Machine Learning - Esri Ireland 'Do One Thing...
 
Deep Learning’s Application in Radar Signal Data II
Deep Learning’s Application in Radar Signal Data IIDeep Learning’s Application in Radar Signal Data II
Deep Learning’s Application in Radar Signal Data II
 
MIS 08 Geographical Information System
MIS 08  Geographical Information SystemMIS 08  Geographical Information System
MIS 08 Geographical Information System
 
Real Time Vehicle Monitoring Using Raspberry Pi
Real Time Vehicle Monitoring Using Raspberry Pi Real Time Vehicle Monitoring Using Raspberry Pi
Real Time Vehicle Monitoring Using Raspberry Pi
 
Top 16 Applications of Computer Vision in Video Surveillance and Security.pdf
Top 16 Applications of Computer Vision in Video Surveillance and Security.pdfTop 16 Applications of Computer Vision in Video Surveillance and Security.pdf
Top 16 Applications of Computer Vision in Video Surveillance and Security.pdf
 
R programming language in spatial analysis
R programming language in spatial analysisR programming language in spatial analysis
R programming language in spatial analysis
 
presentation 2
presentation 2presentation 2
presentation 2
 
A multi-scale Urban Analysis Using Remote Sensing and GIS
A multi-scale Urban Analysis Using Remote Sensing and GISA multi-scale Urban Analysis Using Remote Sensing and GIS
A multi-scale Urban Analysis Using Remote Sensing and GIS
 
Gis training ppt
Gis training pptGis training ppt
Gis training ppt
 
Drone flight data processing
Drone flight data processingDrone flight data processing
Drone flight data processing
 

Similar to Geospatial machine learning for urban development

Techniques and Challenges in Autonomous Driving
Techniques and Challenges in Autonomous DrivingTechniques and Challenges in Autonomous Driving
Techniques and Challenges in Autonomous DrivingYu Huang
 
Building Extraction from Satellite Images
Building Extraction from Satellite ImagesBuilding Extraction from Satellite Images
Building Extraction from Satellite ImagesIOSR Journals
 
Lane and Object Detection for Autonomous Vehicle using Advanced Computer Vision
Lane and Object Detection for Autonomous Vehicle using Advanced Computer VisionLane and Object Detection for Autonomous Vehicle using Advanced Computer Vision
Lane and Object Detection for Autonomous Vehicle using Advanced Computer VisionYogeshIJTSRD
 
A computer vision-based lane detection technique using gradient threshold and...
A computer vision-based lane detection technique using gradient threshold and...A computer vision-based lane detection technique using gradient threshold and...
A computer vision-based lane detection technique using gradient threshold and...IJECEIAES
 
[20240318_LabSeminar_Huy]GSTNet: Global Spatial-Temporal Network for Traffic ...
[20240318_LabSeminar_Huy]GSTNet: Global Spatial-Temporal Network for Traffic ...[20240318_LabSeminar_Huy]GSTNet: Global Spatial-Temporal Network for Traffic ...
[20240318_LabSeminar_Huy]GSTNet: Global Spatial-Temporal Network for Traffic ...thanhdowork
 
CrowdMap: Accurate Reconstruction of Indoor Floor Plan from Crowdsourced Sens...
CrowdMap: Accurate Reconstruction of Indoor Floor Plan from Crowdsourced Sens...CrowdMap: Accurate Reconstruction of Indoor Floor Plan from Crowdsourced Sens...
CrowdMap: Accurate Reconstruction of Indoor Floor Plan from Crowdsourced Sens...Si Chen
 
Graph Centric Analysis of Road Network Patterns for CBD’s of Metropolitan Cit...
Graph Centric Analysis of Road Network Patterns for CBD’s of Metropolitan Cit...Graph Centric Analysis of Road Network Patterns for CBD’s of Metropolitan Cit...
Graph Centric Analysis of Road Network Patterns for CBD’s of Metropolitan Cit...Punit Sharnagat
 
Thesis_Khan_2073209.pptx
Thesis_Khan_2073209.pptxThesis_Khan_2073209.pptx
Thesis_Khan_2073209.pptxAlmasrurKhan2
 
Urbanization Detection Using LiDAR-Based Remote Sensing.pdf
Urbanization Detection Using LiDAR-Based Remote Sensing.pdfUrbanization Detection Using LiDAR-Based Remote Sensing.pdf
Urbanization Detection Using LiDAR-Based Remote Sensing.pdfEngrMuhammadimranGha1
 
Unsupervised Building Extraction from High Resolution Satellite Images Irresp...
Unsupervised Building Extraction from High Resolution Satellite Images Irresp...Unsupervised Building Extraction from High Resolution Satellite Images Irresp...
Unsupervised Building Extraction from High Resolution Satellite Images Irresp...CSCJournals
 
IRJET- Road Recognition from Remote Sensing Imagery using Machine Learning
IRJET- Road Recognition from Remote Sensing Imagery using Machine LearningIRJET- Road Recognition from Remote Sensing Imagery using Machine Learning
IRJET- Road Recognition from Remote Sensing Imagery using Machine LearningIRJET Journal
 
[20240408_LabSeminar_Huy]PivotalSTGNN.pptx
[20240408_LabSeminar_Huy]PivotalSTGNN.pptx[20240408_LabSeminar_Huy]PivotalSTGNN.pptx
[20240408_LabSeminar_Huy]PivotalSTGNN.pptxthanhdowork
 
Representation Learning on Complex Graphs
Representation Learning on Complex GraphsRepresentation Learning on Complex Graphs
Representation Learning on Complex GraphseXascale Infolab
 
It presentation[1][1]final
It presentation[1][1]finalIt presentation[1][1]final
It presentation[1][1]final000Shirley000
 
Cyberinfrastructure to Support Ocean Observatories
Cyberinfrastructure to Support Ocean ObservatoriesCyberinfrastructure to Support Ocean Observatories
Cyberinfrastructure to Support Ocean ObservatoriesLarry Smarr
 
Smart path mobile_sensing_for_smart_cities-kk-pratik
Smart path mobile_sensing_for_smart_cities-kk-pratikSmart path mobile_sensing_for_smart_cities-kk-pratik
Smart path mobile_sensing_for_smart_cities-kk-pratikK.K. Tripathi
 
20191107 deeplearningapproachesfornetworks
20191107 deeplearningapproachesfornetworks20191107 deeplearningapproachesfornetworks
20191107 deeplearningapproachesfornetworkstm1966
 
Automatic Road Extraction from Airborne LiDAR : A Review
Automatic Road Extraction from Airborne LiDAR : A ReviewAutomatic Road Extraction from Airborne LiDAR : A Review
Automatic Road Extraction from Airborne LiDAR : A ReviewIJERA Editor
 

Similar to Geospatial machine learning for urban development (20)

Techniques and Challenges in Autonomous Driving
Techniques and Challenges in Autonomous DrivingTechniques and Challenges in Autonomous Driving
Techniques and Challenges in Autonomous Driving
 
Building Extraction from Satellite Images
Building Extraction from Satellite ImagesBuilding Extraction from Satellite Images
Building Extraction from Satellite Images
 
CV HR2022.pdf
CV HR2022.pdfCV HR2022.pdf
CV HR2022.pdf
 
Lane and Object Detection for Autonomous Vehicle using Advanced Computer Vision
Lane and Object Detection for Autonomous Vehicle using Advanced Computer VisionLane and Object Detection for Autonomous Vehicle using Advanced Computer Vision
Lane and Object Detection for Autonomous Vehicle using Advanced Computer Vision
 
A computer vision-based lane detection technique using gradient threshold and...
A computer vision-based lane detection technique using gradient threshold and...A computer vision-based lane detection technique using gradient threshold and...
A computer vision-based lane detection technique using gradient threshold and...
 
[20240318_LabSeminar_Huy]GSTNet: Global Spatial-Temporal Network for Traffic ...
[20240318_LabSeminar_Huy]GSTNet: Global Spatial-Temporal Network for Traffic ...[20240318_LabSeminar_Huy]GSTNet: Global Spatial-Temporal Network for Traffic ...
[20240318_LabSeminar_Huy]GSTNet: Global Spatial-Temporal Network for Traffic ...
 
CrowdMap: Accurate Reconstruction of Indoor Floor Plan from Crowdsourced Sens...
CrowdMap: Accurate Reconstruction of Indoor Floor Plan from Crowdsourced Sens...CrowdMap: Accurate Reconstruction of Indoor Floor Plan from Crowdsourced Sens...
CrowdMap: Accurate Reconstruction of Indoor Floor Plan from Crowdsourced Sens...
 
Graph Centric Analysis of Road Network Patterns for CBD’s of Metropolitan Cit...
Graph Centric Analysis of Road Network Patterns for CBD’s of Metropolitan Cit...Graph Centric Analysis of Road Network Patterns for CBD’s of Metropolitan Cit...
Graph Centric Analysis of Road Network Patterns for CBD’s of Metropolitan Cit...
 
Thesis_Khan_2073209.pptx
Thesis_Khan_2073209.pptxThesis_Khan_2073209.pptx
Thesis_Khan_2073209.pptx
 
Urbanization Detection Using LiDAR-Based Remote Sensing.pdf
Urbanization Detection Using LiDAR-Based Remote Sensing.pdfUrbanization Detection Using LiDAR-Based Remote Sensing.pdf
Urbanization Detection Using LiDAR-Based Remote Sensing.pdf
 
Unsupervised Building Extraction from High Resolution Satellite Images Irresp...
Unsupervised Building Extraction from High Resolution Satellite Images Irresp...Unsupervised Building Extraction from High Resolution Satellite Images Irresp...
Unsupervised Building Extraction from High Resolution Satellite Images Irresp...
 
IRJET- Road Recognition from Remote Sensing Imagery using Machine Learning
IRJET- Road Recognition from Remote Sensing Imagery using Machine LearningIRJET- Road Recognition from Remote Sensing Imagery using Machine Learning
IRJET- Road Recognition from Remote Sensing Imagery using Machine Learning
 
[20240408_LabSeminar_Huy]PivotalSTGNN.pptx
[20240408_LabSeminar_Huy]PivotalSTGNN.pptx[20240408_LabSeminar_Huy]PivotalSTGNN.pptx
[20240408_LabSeminar_Huy]PivotalSTGNN.pptx
 
Representation Learning on Complex Graphs
Representation Learning on Complex GraphsRepresentation Learning on Complex Graphs
Representation Learning on Complex Graphs
 
It presentation[1][1]final
It presentation[1][1]finalIt presentation[1][1]final
It presentation[1][1]final
 
Cyberinfrastructure to Support Ocean Observatories
Cyberinfrastructure to Support Ocean ObservatoriesCyberinfrastructure to Support Ocean Observatories
Cyberinfrastructure to Support Ocean Observatories
 
Smart path mobile_sensing_for_smart_cities-kk-pratik
Smart path mobile_sensing_for_smart_cities-kk-pratikSmart path mobile_sensing_for_smart_cities-kk-pratik
Smart path mobile_sensing_for_smart_cities-kk-pratik
 
20191107 deeplearningapproachesfornetworks
20191107 deeplearningapproachesfornetworks20191107 deeplearningapproachesfornetworks
20191107 deeplearningapproachesfornetworks
 
coseners-2013
coseners-2013coseners-2013
coseners-2013
 
Automatic Road Extraction from Airborne LiDAR : A Review
Automatic Road Extraction from Airborne LiDAR : A ReviewAutomatic Road Extraction from Airborne LiDAR : A Review
Automatic Road Extraction from Airborne LiDAR : A Review
 

More from MLconf

Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...
Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...
Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...MLconf
 
Ted Willke - The Brain’s Guide to Dealing with Context in Language Understanding
Ted Willke - The Brain’s Guide to Dealing with Context in Language UnderstandingTed Willke - The Brain’s Guide to Dealing with Context in Language Understanding
Ted Willke - The Brain’s Guide to Dealing with Context in Language UnderstandingMLconf
 
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...MLconf
 
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold Rush
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold RushIgor Markov - Quantum Computing: a Treasure Hunt, not a Gold Rush
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold RushMLconf
 
Josh Wills - Data Labeling as Religious Experience
Josh Wills - Data Labeling as Religious ExperienceJosh Wills - Data Labeling as Religious Experience
Josh Wills - Data Labeling as Religious ExperienceMLconf
 
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...MLconf
 
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...MLconf
 
Meghana Ravikumar - Optimized Image Classification on the Cheap
Meghana Ravikumar - Optimized Image Classification on the CheapMeghana Ravikumar - Optimized Image Classification on the Cheap
Meghana Ravikumar - Optimized Image Classification on the CheapMLconf
 
Noam Finkelstein - The Importance of Modeling Data Collection
Noam Finkelstein - The Importance of Modeling Data CollectionNoam Finkelstein - The Importance of Modeling Data Collection
Noam Finkelstein - The Importance of Modeling Data CollectionMLconf
 
June Andrews - The Uncanny Valley of ML
June Andrews - The Uncanny Valley of MLJune Andrews - The Uncanny Valley of ML
June Andrews - The Uncanny Valley of MLMLconf
 
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection Tasks
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection TasksSneha Rajana - Deep Learning Architectures for Semantic Relation Detection Tasks
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection TasksMLconf
 
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...MLconf
 
Vito Ostuni - The Voice: New Challenges in a Zero UI World
Vito Ostuni - The Voice: New Challenges in a Zero UI WorldVito Ostuni - The Voice: New Challenges in a Zero UI World
Vito Ostuni - The Voice: New Challenges in a Zero UI WorldMLconf
 
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...MLconf
 
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...MLconf
 
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...MLconf
 
Neel Sundaresan - Teaching a machine to code
Neel Sundaresan - Teaching a machine to codeNeel Sundaresan - Teaching a machine to code
Neel Sundaresan - Teaching a machine to codeMLconf
 
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...MLconf
 
Soumith Chintala - Increasing the Impact of AI Through Better Software
Soumith Chintala - Increasing the Impact of AI Through Better SoftwareSoumith Chintala - Increasing the Impact of AI Through Better Software
Soumith Chintala - Increasing the Impact of AI Through Better SoftwareMLconf
 
Roy Lowrance - Predicting Bond Prices: Regime Changes
Roy Lowrance - Predicting Bond Prices: Regime ChangesRoy Lowrance - Predicting Bond Prices: Regime Changes
Roy Lowrance - Predicting Bond Prices: Regime ChangesMLconf
 

More from MLconf (20)

Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...
Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...
Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...
 
Ted Willke - The Brain’s Guide to Dealing with Context in Language Understanding
Ted Willke - The Brain’s Guide to Dealing with Context in Language UnderstandingTed Willke - The Brain’s Guide to Dealing with Context in Language Understanding
Ted Willke - The Brain’s Guide to Dealing with Context in Language Understanding
 
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...
 
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold Rush
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold RushIgor Markov - Quantum Computing: a Treasure Hunt, not a Gold Rush
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold Rush
 
Josh Wills - Data Labeling as Religious Experience
Josh Wills - Data Labeling as Religious ExperienceJosh Wills - Data Labeling as Religious Experience
Josh Wills - Data Labeling as Religious Experience
 
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...
 
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...
 
Meghana Ravikumar - Optimized Image Classification on the Cheap
Meghana Ravikumar - Optimized Image Classification on the CheapMeghana Ravikumar - Optimized Image Classification on the Cheap
Meghana Ravikumar - Optimized Image Classification on the Cheap
 
Noam Finkelstein - The Importance of Modeling Data Collection
Noam Finkelstein - The Importance of Modeling Data CollectionNoam Finkelstein - The Importance of Modeling Data Collection
Noam Finkelstein - The Importance of Modeling Data Collection
 
June Andrews - The Uncanny Valley of ML
June Andrews - The Uncanny Valley of MLJune Andrews - The Uncanny Valley of ML
June Andrews - The Uncanny Valley of ML
 
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection Tasks
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection TasksSneha Rajana - Deep Learning Architectures for Semantic Relation Detection Tasks
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection Tasks
 
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...
 
Vito Ostuni - The Voice: New Challenges in a Zero UI World
Vito Ostuni - The Voice: New Challenges in a Zero UI WorldVito Ostuni - The Voice: New Challenges in a Zero UI World
Vito Ostuni - The Voice: New Challenges in a Zero UI World
 
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...
 
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...
 
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...
 
Neel Sundaresan - Teaching a machine to code
Neel Sundaresan - Teaching a machine to codeNeel Sundaresan - Teaching a machine to code
Neel Sundaresan - Teaching a machine to code
 
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
 
Soumith Chintala - Increasing the Impact of AI Through Better Software
Soumith Chintala - Increasing the Impact of AI Through Better SoftwareSoumith Chintala - Increasing the Impact of AI Through Better Software
Soumith Chintala - Increasing the Impact of AI Through Better Software
 
Roy Lowrance - Predicting Bond Prices: Regime Changes
Roy Lowrance - Predicting Bond Prices: Regime ChangesRoy Lowrance - Predicting Bond Prices: Regime Changes
Roy Lowrance - Predicting Bond Prices: Regime Changes
 

Recently uploaded

Simplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxSimplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxMarkSteadman7
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAnitaRaj43
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentationyogeshlabana357357
 
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...SOFTTECHHUB
 
ChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityVictorSzoltysek
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...caitlingebhard1
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxjbellis
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfalexjohnson7307
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Navigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi DaparthiNavigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi DaparthiRaviKumarDaparthi
 
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...FIDO Alliance
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxFIDO Alliance
 
Microsoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireMicrosoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireExakis Nelite
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!Memoori
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightSafe Software
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctBrainSell Technologies
 
Microsoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdfMicrosoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdfOverkill Security
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024Lorenzo Miniero
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform EngineeringMarcus Vechiato
 

Recently uploaded (20)

Simplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxSimplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptx
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentation
 
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...
The Ultimate Prompt Engineering Guide for Generative AI: Get the Most Out of ...
 
ChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps Productivity
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptx
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdf
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Navigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi DaparthiNavigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi Daparthi
 
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptx
 
Microsoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireMicrosoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - Questionnaire
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and Insight
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage Intacct
 
Microsoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdfMicrosoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdf
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 

Geospatial machine learning for urban development

  • 1. Geospatial Machine Learning for Urban Development Ilke Demir Facebook MLConf – The Machine Learning Conference
  • 4. Understanding the World urban safety socioeconomic data & voting patterns poverty mapping disaster mapping
  • 5. Open Datasets o DeepGlobe: https://deepglobe.org o Road extraction o Building detection o Land cover classification o SpaceNet: https://spacenetchallenge.github.io/ o Road network extraction o Building detection o Earth observation challenge: http://eochallenge.bemyapp.com/ o Water resource extraction o Change detection o Data fusion contest: http://www.grss-ieee.org/data-fusion-contest/ o Land cover land use classification from various sensor data o Functional map of the world: https://www.iarpa.gov/challenges/fmow.html o Labeling the world into land use categories
  • 6. Case Study: DeepGlobe o Public datasets and benchmarks for scalable and reliable approaches o Satellite imagery is powerful as it is more structured than everyday images DeepGlobe focuses on machine learning and computer vision approaches on satellite images and brings together researchers with different perspectives by; o Publishing public datasets and baselines o Creating public challenges to benchmark different approaches o Organizing a workshop to sparkle new collaborations and ideas
  • 7. DeepGlobe Tracks Road Extraction Challenge: - Maps, accessibility, and connectivity - Economic and developmental inclusion - Crisis response
  • 8. DeepGlobe Tracks Building Detection Challenge: - Population dynamics and demographics - Disaster recovery and damage coordination - Urban development
  • 9. DeepGlobe Tracks Land Cover Classification Challenge: - Sustainable development - Automation in agriculture - Urban planning and growth
  • 10. DeepGlobe Challenges 1. Road Extraction Challenge - DigitalGlobe Vivid+ - 50 cm/pixel - Pixel-wise manual annotation - 2 classes - Thailand, Indonesia, India - 8570 images of 2220km2 - 70%/15%/15% split - ~4% positive pixels - Diverse road networks - 345 participants - 2150 submissions - 84 results in the leaderboard
  • 11. DeepGlobe Challenges 2. Building Detection Challenge - SpaceNet Buildings v2 - 31cm single-band panchromatic - 1.24m 8 band multi-spectral - Manual annotation of polygons - 2 classes - Las Vegas, Paris, Shanghai, Khartoum - 24586 images of 9623 km2 - 60%/20%/20% split - 302701 buildings - 296 participants - 576 submissions - 25 results in the leaderboard
  • 12. DeepGlobe Challenges 3. Land Cover Classification Challenge - DigitalGlobe Vivid+ - 50 cm/pixel - Pixel-wise manual annotation - 7 classes - Thailand, India, Indonesia - 1146 images of 1717 km2 - 70%/15%/15% split - 20m minimum granularity area - 311 participants - 1155 submissions - 28 results in the leaderboard
  • 13. DeepGlobe Results and Baselines Roads DeepLab variation Only data augmentation by rotation IoU score 0.545
  • 14. DeepGlobe Results and Baselines Roads DeepLab variation Only data augmentation by rotation IoU score 0.545 Buildings Ensemble 3 U-Net models Boost by OpenStreetMap data F1 score 0.693
  • 15. DeepGlobe Results and Baselines Roads DeepLab variation Only data augmentation by rotation IoU score 0.545 Buildings Ensemble 3 U-Net models Boost by OpenStreetMap data F1 score 0.693 Lands DeepLab variation Data augmentation by rotations and class weights IoU score of 0.433
  • 16. DeepGlobe Winners Roads Buildings Land D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction Lichen Zhou, BUPT Building Detection from Satellite Imagery using Ensemble of Size-specific Detectors Ryuhei Hamaguc hi, Pasco Dense Fusion Classmate Network for Land Cover Classification Chao Tian, Harbin Institute of Technology 1. Semantic Binary Segmentation using Convolutional Networks without Decoders Shubhra Aich*; William van der Kamp; Ian Stavness, University of Saskatchewan 2. Stacked U-Nets with Multi-Output for Road Extraction Tao Sun*; Zehui Chen; Wenxiang Yang; Yin Wang, Tongji University 3. D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction Lichen Zhou*; Chuang Zhang; Ming Wu, Beijing University of Posts and Telecommunications 4. Fully Convolutional Network for Automatic Road Extraction from Satellite Imagery Alexander Buslaev*, Mapbox; Selim Seferbekov, Veeva Systems; Vladimir Iglovikov, Lyft Inc; Alexey Shvets Massachusetts Institute of Technology 5. Road Detection with EOSResUNet and Post Vectorizing Algorithm Oleksandr Filin*; Serhii Panchenko; Anton Zapara, EOS Data Analytics 6. Residual Inception Skip Network for Binary Segmentation Jigar Doshi*, CrowdAI 7. Roadmap Generation using a Multi-Stage Ensemble of Neural Networks with Smoothing-Based Optimization Dragos Costea*; Alina Marcu; Emil Slusanschi; Marius Leordeanu, University Politehnica of Bucharest 8. Rotated Rectangles for Symbolized Building Footprint Extraction Matthew Dickenson*; Lionel Gueguen, Uber 9. Building Detection from Satellite Imagery Using Composite Loss Function Sergey Golovanov*; Rauf Kurbanov; Aleksey Artamonov; Alex Davydow; Sergey Nikolenko, Neuromation 10. Building Detection from Satellite Imagery using Ensemble of Size- specific Detectors Ryuhei Hamaguchi*; Shuhei Hikosaka, Pasco Corporation 11. TernausNetV2: Fully Convolutional Network for Instance Segmentation Vladimir Iglovikov*, Lyft Inc; Selim Seferbekov, Veeva Systems; Alexander Buslaev, Mapbox; Alexey Shvets Massachusetts Institute of Technology 12. Semantic Segmentation based Building Extraction Method using Multi-source GIS Map Datasets and Satellite Imagery Weijia Li*; Conghui He; Jiarui Fang; Haohuan Fu, Tsinghua University 13. CNNs Fusion for Building Detection in Aerial Images for the Building Detection Challenge Remi Delassus*, Qucit - LaBRI; Romain Giot, Univ. Bordeaux 14. Building Extraction from Satellite Images Using Mask R-CNN with Building Boundary Regularization Kang Zhao*; Jungwon Kang; Jaewook Jung; Gunho Sohn, York University 15. Deep Aggregation Net for Land Cover Classification Tzu-Sheng Kuo*; Keng-Sen Tseng; Jia-Wei Yan; Yen-Cheng Liu; Yu- Chiang Frank Wang, National Taiwan University 16. Stacked U-Nets for Ground Material Segmentation in Remote Sensing Imagery Arthita Ghosh*; Max Ehrlich; Sohil Shah; Larry Davis; Rama Chellappa, University of Maryland 17. Land Cover Classification from Satellite Imagery With U-Net and Lovasz-Softmax Loss Alexander Rakhlin*; Alex Davydow; Sergey Nikolenko, Neuromation 18. Dense Fusion Classmate Network for Land Cover Classification Chao Tian*, Harbin Institute of Technology; Cong Li; Jianping Shi, Sensetime 19. NU-Net: Deep Residual Wide Field of View Convolutional Neural Network for Semantic Segmentation Mohamed Samy; Karim Amer*; Kareem Eissa; Mahmoud Shaker; Mohamed ElHelw, Nile University; 20. Feature Pyramid Network for Multi-Class Land Segmentation Selim Seferbekov*, Veeva Systems; Vladimir Iglovikov, Lyft Inc; Alexander Buslaev, Mapbox; Alexey Shvets Massachusetts Institute of Technology 21. Uncertainty Gated Network for Land Cover Segmentation Guillem Pascual*; Santi Seguí; Jordi Vitria, Universitat de Barcelona 22. Land Cover Classification With Superpixels and Jaccard Index Post-Optimization Alex Davydow*; Sergey Nikolenko, Neuromation
  • 17. Changing the World urban planning simulations generative models
  • 19. Shape Understanding Point clouds: Arch Physical objects: Urban spaces: Satellite Images: Architectural models:
  • 20. Point clouds: Satellite images: Urban spaces: Architecture: Generative Modeling
  • 21. Case Study: Street Addresses • 75% of the world lives without adequate addressing. What3Words • 4 billion people are ‘invisible’. United Nations • Haiti earthquake: 48 hours reaction time, 6 months complete road vectors. OpenStreetMap
  • 22. Geocoding Solutions “issuer.lollipop.ripe” “ItsADream” “37.482825, -122.145661” “75682SB3084” “parrot.casino.failed” “SweetPotato” “102.22556, -12.166981” “7098HGT3083” • f(lat, lon) = “address” • Hashes, random words, manual tags • No spatial relation cue • No city/state/country • No accessibility • No geometry A B Humans need streets!
  • 23. Traditional Addressing Systems London postal code system: Radial regions based on orientation and distance South Korea streets: Meter markers Japan block system: Hard to decipher Dubai addressing: Uses districts Berlin numbering: Zigzag house pattern
  • 24. Our Generative Scheme • 5 alphanumeric fields • Hierarchical and linear descriptors • To close the gap between physical addresses and automated geocoding Road naming scheme: - distance from the center - orientation in odd parity Region naming scheme: - orientation wrt downtown - distance from downtown House numbering scheme: - meter markers on the road - block letters from the road “I7 Hacker Way, Menlo Park, CA, US”
  • 25. Pipeline: Satellite Images ç • Irregular urban structure • Illumination/weather/country • Different road types
  • 26. Pipeline: Road Predictions • Binary road masks • 19K*19K, 0.5m/pixel • SegNet
  • 27. Pipeline: Road Network • Orientation based median filtering • Road segments by orientation bucketing
  • 28. NF NH NE Pipeline: Regions • Road graph: Node=intersection, edge=road, weight=length • Partition for max inter, min intra connectivity, using normalized min-cut.
  • 29. Pipeline: Naming • Orientation bucketing into N, S, W, E • Trace regions based on distance to CA • Orientation bucketing into major axes • Trace roads based on order
  • 30. Pipeline: Address Cells • 5 meter marker along the road • Odd/even based on RHR • Distance field of roads: block offset
  • 31. Results: Unmapped Developing Country • Improve coverage up to 80% • Processed more than 200 districts (and increasing!) • Regions follow natural boundaries • Road network is being discovered in non-urban settings
  • 32. Results: Unmapped Developing Country • Improve coverage up to 80% • Processed more than 200 districts (and increasing!) • Regions follow natural boundaries • Road network is being discovered in non-urban settings
  • 33. Results • Improve coverage up to 80% • Processed more than 200 districts (and increasing!) • Regions follow natural boundaries • Road network is being discovered in non-urban settings • Changing the world!
  • 34. News & Ads! o Geospatial Modeling and Visualization, Special Issue in Big Earth Data Journal http://bit.ly/BigEarthData o SUMO Challenge: Understanding indoor scenes from 360 RGBD data https://sumochallenge.org/ o Challenges and opportunities for deep learning in remote sensing, Special session in Living Planet Symposium 2019 https://lps19.esa.int/ o EarthVision 2019! (coming soon…) o DeepGlobe v2! (coming some day…)
  • 35. Thanks… and your turn! Generative Street Addresses Code: https://github.com/facebookresearch/street-addresses Paper: https://research.fb.com/publications/robocodes DeepGlobe Benchmark Papers: http://bit.ly/deepglobe_papers Website: http://deepglobe.org Dataset: http://bit.ly/deepglobe Ilke Demir e-mail: idemir@fb.com Twitter: @ilkedemir
  • 37. Evaluation Metrics Roads Pixel-wise mean IoU Buildings Average F1 score Lands Pixel-wise mean IoU
  • 38. Design Choices Linear: similar addresses stored in a linear fashion Hierarchical: top-down structure for spatial encapsulation Compressible: 5x4 max (chars x words) Universal: independent of local language Inquirable: useful for geometric, proximity-based, and type-ahead queries Extendible: dynamically modifiable for new places Robust: flexible for overestimation and noise StructuralDesignParameters forefficientcomputerimplementation Linear: closer addresses are given related names Hierarchical: top-down subdivision of the world Memorable: short and alphanumeric, easily convertible Intuitive: with a sense of direction and distance Topological: consistent with road topology Inclusive: with local names (city, state) Physical: consistent with natural boundaries SemanticDesignParameters foruserfriendliness Machine Needs Human Needs
  • 39. 39Geometric Shape Processing: Satellite Images [*] I. Demir et al., 2018. “Generative Street Addresses from Satellite Imagery”. International Journal on Geo-Information (IJGI).
  • 40. Output Maps and Tools • .osm maps with roads (meter marking and offsetting on the fly) • ID-tool of MapBox for on-demand inverse/forward geocoding • rtree extension for efficient spatial querying • Experimental mobile app for self navigation • 21.7% decrease in arrival time using Robocodes
  • 41. Results: Evaluation with Ground Truth • System learns 90.51% of roads • Approximately 80% on average • Better in urban environments • Ground truth prepared as if training data
  • 42. Results: Mapped US City • More than 95% of the roads are found (compared to OSM). • Traditional addresses are more established, however • Robocodes are contextually and spatially easier to remember.
  • 43. Results: Comparison Automated geocoding: A: parrot.casino.failed B: issuer.lollipop.ripe - Have irrelevant words based on lat/lon. Robocodes: 715D.NE127.Dhule.MhIn 716C.NE127.Dhule.MhIn - Have hierarchical and linear addresses. Landmark based: Green Park Green Park - Have roads but no addresses or labels. OSM: lat/lon lat/lon - Have neither road geometry, nor labels.
  • 44. Limitations & Future Work • Robotic meter marking and offsetting: • (i) use smart parcel subdivision, • (ii) adapt to population density. • Imperfect training data: sample more countries. • Metric to evaluate regions: supervised learning of land annotations.
  • 45. Inaccessible Areas • To extend our format to cover areas that are not accessible by streets, we explored different implementations to cover such areas, which are 26*5 m away from any street. • Geocoding as a function (excluding the version field): f (info, lat, lon) = x.y.z.t • For places with roads, info={road network, city, country} f (R, C) = x.y.city.country • Extreme case: only reliable information is latitude/longitude! 45
  • 46. f(C,lat,lon) = hash(round(lat,3)) + dir(lat) . hash(round(lon,3)) +dir(lon) . C L-A-T-dir.L-O-N-dir.name.area Inaccessible Areas: Blackholes! • Linear hashing: • 26 letters + 10 digits • 100m x 100 m granularity • Last letter is the hemisphere • Range: 359.999, longitude: 7PRZ W • Hierarchical hashing: • Enlarge the grid from to 1 km x 1 km • Using two floating points = three letters • Within each cell, re-hash it to a 36 x 36 grid = one letter • New resolution: 30m, represented by five letters 46 f(C,lat,lon) = hash(round(lat,2)) + hash(lat - round(lat,2)) + dir(lat) . hash(round(lon,2)) + hash(lon - round(lon,2)) + dir(lon) . C LlatLlatHlatDlat .LlonLlonHlonDlon . name . Ocean /Continent /etc
  • 47. Completion & Reconstruction 47 • Voxelize building proxy from footprint • Find roofs with photo- consistency in aerial images • Apply graph-cuts: •Building •Building-ground •Ground [*] I. Garcia-Dorado I. Demir, D. Aliaga. 2013. “Automatic Urban Modeling Using Volumetric Reconstruction with Surface Graph-cuts”. Computers & Graphics.