SlideShare a Scribd company logo
1 of 19
NUMBERWARE
FAHRIZA RIFQI SULTHONI
INDUKSI MATEMATIKA
 Cara / Teknik membuktikan kebenaran dari suatu pernyataan
 Metode pembuktian untuk pernyataan perihal bilangan bulat
 Induksi matematika merupakan teknik pembuktian yang baku
di dalam matematika.
 Melalui induksi matematik kita dapat mengurangi langkah-
langkah pembuktian bahwa semua bilangan bulat termasuk
ke dalam suatu himpunan kebenaran dengan hanya sejumlah
langkah terbatas.
 Serta berfungsi untuk mengecek hasil proses yang terjadi
secara berulang-ulang sesuai dengan pola tertentu
 Contoh:
p(n): “Jumlah bilangan bulat positif dari 1 sampai n adalah n(n
+ 1)/2”.
Buktikan p(n) benar!
PRINSIP KERJA INDUKSI
 Misalkan p(n) adalah pernyataan mengenai
bilangan bulat positif.
 Kita ingin membuktikan bahwa p(n) benar untuk
semua bilangan bulat positif n.
 Untuk membuktikan pernyataan ini, kita hanya
perlu menunjukkan bahwa:
1. p(n0) benar, dan
2. jika p(n) benar, maka p(n + 1) juga benar, untuk
setiap n  1,
PRINSIP KERJA INDUKSI
 Langkah 1 dinamakan basis induksi, sedangkan
langkah 2 dinamakan langkah induksi.
 Langkah basis induksi berisi asumsi (andaian) yang
menyatakan bahwa p(n) benar. Asumsi tersebut
dinamakan hipotesis induksi.
 Hipotesis induksi digunakan untuk mendukung langkah
induksi.
 Bila kita sudah menunjukkan kedua langkah tersebut
benar maka kita sudah membuktikan bahwa p(n) benar
untuk semua bilangan bulat positif n.
 Induksi matematik berlaku seperti efek domino.
CONTOH SOAL
1. Buktikan “Jumlah bilangan bulat positif dari 1
sampai n adalah n(n + 1)/2” !
 Langkah I : Buktikan bahwa P(1) benar
P(1) = 1(1 + 1)/2 = 1 ………. Terbukti
 Langkah II : Buktikan bahwa jika P(n) benar, maka
P(n+1) juga benar
P(n+1) = 1 + 2 + 3 + … + n + (n+1)
(n+1)((n+1) +1)/2 = P(n) + (n+1)
(n+1)(n+2)/2 = n(n+1)/2 + 2(n+1)/2
(n+1)(n+2)/2 = (n+2)(n+1)/2 ……. Terbukti
CONTOH (2)
Buktikan bahwa jumlah n buah bilangan ganjil positif
pertama adalah n2!
 Langkah 1 (Basis induksi):
Untuk n = 1, jumlah satu buah bilangan ganjil positif
pertama adalah n2 = 12 = 1. Ini benar karena jumlah
satu buah bilangan ganjil positif pertama memang
1.
 Langkah 2 (Langkah Induksi):
Andaikan p(n) benar, yaitu pernyataan 1 + 3 + 5 + … + (2n – 1)
= n2 adalah benar (hipotesis induksi)
catatlah bahwa bilangan ganjil positif ke-n adalah (2n – 1).
Kita harus memperlihatkan bahwa p(n +1) juga benar, yaitu
1 + 3 + 5 + … + (2n – 1) + (2n + 1) = (n + 1)2
1 + 3 + 5 + … + (2n – 1) + (2n + 1) = [1 + 3 + 5 + … + (2n – 1)] +
(2n + 1)
= n2 + (2n + 1)
= n2 + 2n + 1
= (n + 1)2 ……………..Terbukti
SOLUSI CONTOH (3)
Buktikan
P(n) = 12 + 22 + 32 + … + n2 = n(n+1)(2n+1)/6 untuk n > 1
 Langkah 1 :

 P(1) = 1(1+1)(2 x 1 + 1) / 6 = 1 ……. (Terbukti)

 Langkah2:
 Andaikan benar untuk n = k, maka P(k) = k(k+1)(2k + 1)/6
 Akan dibuktikan bahwa P(k+1) = (k+1)(k+1+1)(2(k+1)+1)/6
 = (k+1)(k+2)(2k+3)/6

 Bukti:
 P(k+1) = p(k) + (k+1)2
 = k(k+1)(2k + 1)/6 + (k2 + 2k + 1)
 = (2k3 + 3k2 + k)/6 + 6 (k2 + 2k + 1) / 6
 = (2k3 + 3k2 + k + 6 (k2 + 2k + 1)) / 6
 = (2k3 + 9k2 + 13k + 1) /6
 = (k+1)(k+2)(2k+3)/6 …………. Terbukti

. Gunakan induksi matematik untuk membuktikan bahwa jumlah n
buah bilangan ganjil positif pertama adalah n2
.
Penyelesaian:
(i) Basis induksi: Untuk n = 1, jumlah satu buah bilangan ganjil
positif pertama adalah 12
= 1. Ini benar karena jumlah satu buah
bilangan ganjil positif pertama adalah 1.
Contoh Soal (4)
(ii) Langkah induksi: Andaikan p(n) benar, yaitu pernyataan
1 + 3 + 5 + … + (2n – 1) = n2
adalah benar (hipotesis induksi) [catatlah bahwa bilangan ganjil
positif ke-n adalah (2n – 1)]. Kita harus memperlihatkan bahwa
p(n +1) juga benar, yaitu
1 + 3 + 5 + … + (2n – 1) + (2n + 1) = (n + 1)2
juga benar. Hal ini dapat kita tunjukkan sebagai berikut:
1 + 3 + 5 + … + (2n – 1) + (2n + 1) = [1 + 3 + 5 + … +
(2n – 1)] + (2n + 1)
= n2
+ (2n + 1)
= n2
+ 2n + 1
= (n + 1)2
Karena langkah basis dan langkah induksi keduanya telah
diperlihatkan benar, maka jumlah n buah bilangan ganjil positif
pertama adalah n2
.
PRINSIP INDUKSI YANG DIRAMPATKAN
Misalkan p(n) adalah pernyataan perihal bilangan bulat
dan kita ingin membuktikan bahwa p(n) benar untuk
semua bilangan bulat n  n0. Untuk membuktikan ini,
kita hanya perlu menunjukkan bahwa:
1. p(n0) benar, dan
2. jika p(n) benar maka p(n+1) juga benar,
untuk semua bilangan bulat n  n0,
. Untuk semua bilangan bulat tidak-negatif n, buktikan dengan
induksi matematik bahwa 20
+ 21
+ 22
+ … + 2n
= 2n+1
- 1
Penyelesaian:
(i) Basis induksi. Untuk n = 0 (bilangan bulat tidak negatif
pertama), kita peroleh: 20
= 20+1
– 1.
Ini jelas benar, sebab 20
= 1 = 20+1
– 1
= 21
– 1
= 2 – 1
= 1
Contoh Soal (1)
(ii) Langkah induksi. Andaikan bahwa p(n) benar, yaitu
20
+ 21
+ 22
+ … + 2n
= 2n+1
- 1
adalah benar (hipotesis induksi). Kita harus menunjukkan bahwa
p(n +1) juga benar, yaitu
20
+ 21
+ 22
+ … + 2n
+ 2n+1
= 2(n+1) + 1
- 1
juga benar. Ini kita tunjukkan sebagai berikut:
20
+ 21
+ 22
+ … + 2n
+ 2n+1
= (20
+ 21
+ 22
+ … + 2n
) + 2n+1
= (2n+1
– 1) + 2n+1
(hipotesis induksi)
= (2n+1
+ 2n+1
) – 1
= (2 . 2n+1
) – 1
= 2n+2
- 1
= 2(n+1) + 1
– 1
Karena langkah 1 dan 2 keduanya telah diperlihatkan benar, maka untuk
semua bilangan bulat tidak-negatif n, terbukti bahwa 20
+ 21
+ 22
+ … +
2n
= 2n+1
– 1 
APLIKASI INDUKSI MATEMATIK UNTUK MEMBUKTIKAN KEBENARAN
PROGRAM
function Exp2(N:integer, M: integer )
{menghitung N2M }
Algoritma:
R  1
k  2*M
While (k > 0)
R  R * N
k  k – 1
end
return R
{ Computes : R = N2M
Loop invariant : R x Nk = N2M
}
Buktikan algoritma di atas benar dengan induksi matematika
(semua variabel menggambarkan bilangan bulat non negatif)
Misal Rn dan Kn adalah nilai berturut-turut dari R dan K,
setelah melewati loop while sebanyak n kali, n ≥ 0.
Misalkan p(n) adalah pernyataan: Rn x NKn = N2M , n ≥ 0.
Akan ditunjukkan bahwa p(n) benar dengan induksi
matematika
(i) Basis:
Untuk n = 0, maka R0 = 1, K0 = 2M adalah nilai variabel
sebelum melewati loop. Maka pernyataan p(0): R0 x NK0
= N2M
1 x N2M = N2M
adalah benar
(ii) Langkah Induksi
Asumsikan bahwa p(n) adalah benar untuk suatu n ≥ 0 setelah
melewati loop n kali. Sehingga pernyataan p(n) dapat ditulis : Rn x NKn
= N2M .. Harus ditunjukkan bahwa untuk satu tambahan loop, maka
Rn+1 x NK
n+1 = N2M
Hal ini ditunjukkan sebagai berikut: Setelah satu tambahan melewati
loop,
Rn+1 = Rn x N dan Kn+1 = Kn – 1 maka
Rn+1 x NK
n+1 = (Rn x N) x NKn – 1 (dari hipotesis)
= (Rn x N) x NK
n x N-1
= Rn x NK
n
= N2M
Jadi, Rn+1 x NK
n+1 = N2M
Sehingga p(n+1) menjadi benar. Karena itu, dengan prinsip dari
induksi matematika, p(n) adalah benar untuk setiap n ≥ 0
TERIMA KASIH...!

More Related Content

What's hot

Tugas (induksi matematika)
Tugas (induksi matematika)Tugas (induksi matematika)
Tugas (induksi matematika)Anneedha Lvfee
 
Materi induksi
Materi induksiMateri induksi
Materi induksideEliz
 
Matemaika Diskrit - 04 induksi matematik - 03
Matemaika Diskrit - 04 induksi matematik - 03Matemaika Diskrit - 04 induksi matematik - 03
Matemaika Diskrit - 04 induksi matematik - 03KuliahKita
 
Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)1724143052
 
Matematika Diskrit - 04 induksi matematik - 02
Matematika Diskrit - 04 induksi matematik - 02Matematika Diskrit - 04 induksi matematik - 02
Matematika Diskrit - 04 induksi matematik - 02KuliahKita
 
Matematika Diskrit - 04 induksi matematik - 01
Matematika Diskrit - 04 induksi matematik - 01Matematika Diskrit - 04 induksi matematik - 01
Matematika Diskrit - 04 induksi matematik - 01KuliahKita
 
Kuliah 4 induksi matematika
Kuliah 4   induksi matematikaKuliah 4   induksi matematika
Kuliah 4 induksi matematikaEnosLolang
 
Notasi jumlah dan sigma
Notasi  jumlah dan sigmaNotasi  jumlah dan sigma
Notasi jumlah dan sigmaSiti_Aisyah
 
Induksi matematika
Induksi matematikaInduksi matematika
Induksi matematikaSt mafricha
 

What's hot (19)

Tugas (induksi matematika)
Tugas (induksi matematika)Tugas (induksi matematika)
Tugas (induksi matematika)
 
Induksi matematika
Induksi matematikaInduksi matematika
Induksi matematika
 
Induksi matematik
Induksi matematikInduksi matematik
Induksi matematik
 
Induksi matematika
Induksi matematikaInduksi matematika
Induksi matematika
 
Materi induksi
Materi induksiMateri induksi
Materi induksi
 
Matemaika Diskrit - 04 induksi matematik - 03
Matemaika Diskrit - 04 induksi matematik - 03Matemaika Diskrit - 04 induksi matematik - 03
Matemaika Diskrit - 04 induksi matematik - 03
 
Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)
 
Matematika Diskrit - 04 induksi matematik - 02
Matematika Diskrit - 04 induksi matematik - 02Matematika Diskrit - 04 induksi matematik - 02
Matematika Diskrit - 04 induksi matematik - 02
 
Matematika Diskrit - 04 induksi matematik - 01
Matematika Diskrit - 04 induksi matematik - 01Matematika Diskrit - 04 induksi matematik - 01
Matematika Diskrit - 04 induksi matematik - 01
 
induksi matematik
   induksi matematik   induksi matematik
induksi matematik
 
induksi matematika
induksi matematikainduksi matematika
induksi matematika
 
Kuliah 4 induksi matematika
Kuliah 4   induksi matematikaKuliah 4   induksi matematika
Kuliah 4 induksi matematika
 
Soal induksi
Soal induksiSoal induksi
Soal induksi
 
11841986
1184198611841986
11841986
 
Notasi jumlah dan sigma
Notasi  jumlah dan sigmaNotasi  jumlah dan sigma
Notasi jumlah dan sigma
 
Ppt
PptPpt
Ppt
 
Ppt
PptPpt
Ppt
 
Induksi matematika
Induksi matematikaInduksi matematika
Induksi matematika
 
Pernyataan berkuantor
Pernyataan berkuantor Pernyataan berkuantor
Pernyataan berkuantor
 

Similar to MEMBUKTIKAN ALGORITMA DENGAN INDUKSI

Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)1724143052
 
Induksi Matematik.ppt
Induksi Matematik.pptInduksi Matematik.ppt
Induksi Matematik.pptAriyaIda
 
Induksi Matematik beserta contoh soal dan penyelesaiannya
Induksi Matematik beserta contoh soal dan penyelesaiannyaInduksi Matematik beserta contoh soal dan penyelesaiannya
Induksi Matematik beserta contoh soal dan penyelesaiannyahestinoviyana1
 
Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.ovalainita
 
Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.ovalainita
 
Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.ovalainita
 
Tugas uas bahasa indonesia
Tugas uas bahasa indonesiaTugas uas bahasa indonesia
Tugas uas bahasa indonesiaovalainita
 
Tugas uas bahasa indonesia
Tugas uas bahasa indonesiaTugas uas bahasa indonesia
Tugas uas bahasa indonesiaovalainita
 
Ppt pembukktian mat veni
Ppt pembukktian  mat veniPpt pembukktian  mat veni
Ppt pembukktian mat veniNoveni Hartadi
 
Metode pembuktian matematika
Metode pembuktian matematikaMetode pembuktian matematika
Metode pembuktian matematikaDidik Sadianto
 

Similar to MEMBUKTIKAN ALGORITMA DENGAN INDUKSI (15)

Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)
 
Induksi Matematik.ppt
Induksi Matematik.pptInduksi Matematik.ppt
Induksi Matematik.ppt
 
Induksi Matematik beserta contoh soal dan penyelesaiannya
Induksi Matematik beserta contoh soal dan penyelesaiannyaInduksi Matematik beserta contoh soal dan penyelesaiannya
Induksi Matematik beserta contoh soal dan penyelesaiannya
 
Induksi mtk
Induksi mtkInduksi mtk
Induksi mtk
 
Ppt induksi matematika
Ppt induksi matematikaPpt induksi matematika
Ppt induksi matematika
 
Pembuktian dalam matematika
Pembuktian dalam matematikaPembuktian dalam matematika
Pembuktian dalam matematika
 
Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.
 
Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.
 
Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.
 
Tugas uas bahasa indonesia
Tugas uas bahasa indonesiaTugas uas bahasa indonesia
Tugas uas bahasa indonesia
 
Tugas uas bahasa indonesia
Tugas uas bahasa indonesiaTugas uas bahasa indonesia
Tugas uas bahasa indonesia
 
Ppt pembukktian mat veni
Ppt pembukktian  mat veniPpt pembukktian  mat veni
Ppt pembukktian mat veni
 
Induksi Matematika 1 (1).pptx
Induksi Matematika 1 (1).pptxInduksi Matematika 1 (1).pptx
Induksi Matematika 1 (1).pptx
 
Induksi Matematika
Induksi MatematikaInduksi Matematika
Induksi Matematika
 
Metode pembuktian matematika
Metode pembuktian matematikaMetode pembuktian matematika
Metode pembuktian matematika
 

Recently uploaded

Bab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdfBab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdfbibizaenab
 
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdf
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdfREFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdf
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdfirwanabidin08
 
CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7IwanSumantri7
 
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptx
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptxKontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptx
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptxssuser50800a
 
Modul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase CModul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase CAbdiera
 
Hiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaa
HiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaaHiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaa
Hiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaafarmasipejatentimur
 
1.3.a.3. Mulai dari Diri - Modul 1.3 Refleksi 1 Imajinasiku tentang Murid di ...
1.3.a.3. Mulai dari Diri - Modul 1.3 Refleksi 1 Imajinasiku tentang Murid di ...1.3.a.3. Mulai dari Diri - Modul 1.3 Refleksi 1 Imajinasiku tentang Murid di ...
1.3.a.3. Mulai dari Diri - Modul 1.3 Refleksi 1 Imajinasiku tentang Murid di ...MetalinaSimanjuntak1
 
Diskusi PPT Sistem Pakar Sesi Ke-4 Simple Naïve Bayesian Classifier .pdf
Diskusi PPT Sistem Pakar Sesi Ke-4 Simple Naïve Bayesian Classifier .pdfDiskusi PPT Sistem Pakar Sesi Ke-4 Simple Naïve Bayesian Classifier .pdf
Diskusi PPT Sistem Pakar Sesi Ke-4 Simple Naïve Bayesian Classifier .pdfHendroGunawan8
 
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKAMODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKAAndiCoc
 
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..ikayogakinasih12
 
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptxRefleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptxIrfanAudah1
 
Modul Projek - Batik Ecoprint - Fase B.pdf
Modul Projek  - Batik Ecoprint - Fase B.pdfModul Projek  - Batik Ecoprint - Fase B.pdf
Modul Projek - Batik Ecoprint - Fase B.pdfanitanurhidayah51
 
Dasar-Dasar Sakramen dalam gereja katolik
Dasar-Dasar Sakramen dalam gereja katolikDasar-Dasar Sakramen dalam gereja katolik
Dasar-Dasar Sakramen dalam gereja katolikThomasAntonWibowo
 
PEMANASAN GLOBAL - MATERI KELAS X MA.pptx
PEMANASAN GLOBAL - MATERI KELAS X MA.pptxPEMANASAN GLOBAL - MATERI KELAS X MA.pptx
PEMANASAN GLOBAL - MATERI KELAS X MA.pptxsukmakarim1998
 
MODUL P5 KEWIRAUSAHAAN SMAN 2 SLAWI 2023.pptx
MODUL P5 KEWIRAUSAHAAN SMAN 2 SLAWI 2023.pptxMODUL P5 KEWIRAUSAHAAN SMAN 2 SLAWI 2023.pptx
MODUL P5 KEWIRAUSAHAAN SMAN 2 SLAWI 2023.pptxSlasiWidasmara1
 
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptx
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptxSesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptx
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptxSovyOktavianti
 
PPT PERUBAHAN LINGKUNGAN MATA PELAJARAN BIOLOGI KELAS X.pptx
PPT PERUBAHAN LINGKUNGAN MATA PELAJARAN BIOLOGI KELAS X.pptxPPT PERUBAHAN LINGKUNGAN MATA PELAJARAN BIOLOGI KELAS X.pptx
PPT PERUBAHAN LINGKUNGAN MATA PELAJARAN BIOLOGI KELAS X.pptxdpp11tya
 
Membuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docxMembuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docxNurindahSetyawati1
 
Paparan Refleksi Lokakarya program sekolah penggerak.pptx
Paparan Refleksi Lokakarya program sekolah penggerak.pptxPaparan Refleksi Lokakarya program sekolah penggerak.pptx
Paparan Refleksi Lokakarya program sekolah penggerak.pptxIgitNuryana13
 
Pendidikan-Bahasa-Indonesia-di-SD MODUL 3 .pptx
Pendidikan-Bahasa-Indonesia-di-SD MODUL 3 .pptxPendidikan-Bahasa-Indonesia-di-SD MODUL 3 .pptx
Pendidikan-Bahasa-Indonesia-di-SD MODUL 3 .pptxdeskaputriani1
 

Recently uploaded (20)

Bab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdfBab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdf
 
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdf
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdfREFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdf
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdf
 
CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7
 
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptx
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptxKontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptx
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptx
 
Modul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase CModul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase C
 
Hiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaa
HiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaaHiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaa
Hiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
1.3.a.3. Mulai dari Diri - Modul 1.3 Refleksi 1 Imajinasiku tentang Murid di ...
1.3.a.3. Mulai dari Diri - Modul 1.3 Refleksi 1 Imajinasiku tentang Murid di ...1.3.a.3. Mulai dari Diri - Modul 1.3 Refleksi 1 Imajinasiku tentang Murid di ...
1.3.a.3. Mulai dari Diri - Modul 1.3 Refleksi 1 Imajinasiku tentang Murid di ...
 
Diskusi PPT Sistem Pakar Sesi Ke-4 Simple Naïve Bayesian Classifier .pdf
Diskusi PPT Sistem Pakar Sesi Ke-4 Simple Naïve Bayesian Classifier .pdfDiskusi PPT Sistem Pakar Sesi Ke-4 Simple Naïve Bayesian Classifier .pdf
Diskusi PPT Sistem Pakar Sesi Ke-4 Simple Naïve Bayesian Classifier .pdf
 
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKAMODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA
 
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
 
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptxRefleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
 
Modul Projek - Batik Ecoprint - Fase B.pdf
Modul Projek  - Batik Ecoprint - Fase B.pdfModul Projek  - Batik Ecoprint - Fase B.pdf
Modul Projek - Batik Ecoprint - Fase B.pdf
 
Dasar-Dasar Sakramen dalam gereja katolik
Dasar-Dasar Sakramen dalam gereja katolikDasar-Dasar Sakramen dalam gereja katolik
Dasar-Dasar Sakramen dalam gereja katolik
 
PEMANASAN GLOBAL - MATERI KELAS X MA.pptx
PEMANASAN GLOBAL - MATERI KELAS X MA.pptxPEMANASAN GLOBAL - MATERI KELAS X MA.pptx
PEMANASAN GLOBAL - MATERI KELAS X MA.pptx
 
MODUL P5 KEWIRAUSAHAAN SMAN 2 SLAWI 2023.pptx
MODUL P5 KEWIRAUSAHAAN SMAN 2 SLAWI 2023.pptxMODUL P5 KEWIRAUSAHAAN SMAN 2 SLAWI 2023.pptx
MODUL P5 KEWIRAUSAHAAN SMAN 2 SLAWI 2023.pptx
 
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptx
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptxSesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptx
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptx
 
PPT PERUBAHAN LINGKUNGAN MATA PELAJARAN BIOLOGI KELAS X.pptx
PPT PERUBAHAN LINGKUNGAN MATA PELAJARAN BIOLOGI KELAS X.pptxPPT PERUBAHAN LINGKUNGAN MATA PELAJARAN BIOLOGI KELAS X.pptx
PPT PERUBAHAN LINGKUNGAN MATA PELAJARAN BIOLOGI KELAS X.pptx
 
Membuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docxMembuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docx
 
Paparan Refleksi Lokakarya program sekolah penggerak.pptx
Paparan Refleksi Lokakarya program sekolah penggerak.pptxPaparan Refleksi Lokakarya program sekolah penggerak.pptx
Paparan Refleksi Lokakarya program sekolah penggerak.pptx
 
Pendidikan-Bahasa-Indonesia-di-SD MODUL 3 .pptx
Pendidikan-Bahasa-Indonesia-di-SD MODUL 3 .pptxPendidikan-Bahasa-Indonesia-di-SD MODUL 3 .pptx
Pendidikan-Bahasa-Indonesia-di-SD MODUL 3 .pptx
 

MEMBUKTIKAN ALGORITMA DENGAN INDUKSI

  • 2. INDUKSI MATEMATIKA  Cara / Teknik membuktikan kebenaran dari suatu pernyataan  Metode pembuktian untuk pernyataan perihal bilangan bulat  Induksi matematika merupakan teknik pembuktian yang baku di dalam matematika.  Melalui induksi matematik kita dapat mengurangi langkah- langkah pembuktian bahwa semua bilangan bulat termasuk ke dalam suatu himpunan kebenaran dengan hanya sejumlah langkah terbatas.  Serta berfungsi untuk mengecek hasil proses yang terjadi secara berulang-ulang sesuai dengan pola tertentu  Contoh: p(n): “Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2”. Buktikan p(n) benar!
  • 3. PRINSIP KERJA INDUKSI  Misalkan p(n) adalah pernyataan mengenai bilangan bulat positif.  Kita ingin membuktikan bahwa p(n) benar untuk semua bilangan bulat positif n.  Untuk membuktikan pernyataan ini, kita hanya perlu menunjukkan bahwa: 1. p(n0) benar, dan 2. jika p(n) benar, maka p(n + 1) juga benar, untuk setiap n  1,
  • 4. PRINSIP KERJA INDUKSI  Langkah 1 dinamakan basis induksi, sedangkan langkah 2 dinamakan langkah induksi.  Langkah basis induksi berisi asumsi (andaian) yang menyatakan bahwa p(n) benar. Asumsi tersebut dinamakan hipotesis induksi.  Hipotesis induksi digunakan untuk mendukung langkah induksi.  Bila kita sudah menunjukkan kedua langkah tersebut benar maka kita sudah membuktikan bahwa p(n) benar untuk semua bilangan bulat positif n.
  • 5.  Induksi matematik berlaku seperti efek domino.
  • 6. CONTOH SOAL 1. Buktikan “Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2” !  Langkah I : Buktikan bahwa P(1) benar P(1) = 1(1 + 1)/2 = 1 ………. Terbukti  Langkah II : Buktikan bahwa jika P(n) benar, maka P(n+1) juga benar P(n+1) = 1 + 2 + 3 + … + n + (n+1) (n+1)((n+1) +1)/2 = P(n) + (n+1) (n+1)(n+2)/2 = n(n+1)/2 + 2(n+1)/2 (n+1)(n+2)/2 = (n+2)(n+1)/2 ……. Terbukti
  • 7. CONTOH (2) Buktikan bahwa jumlah n buah bilangan ganjil positif pertama adalah n2!  Langkah 1 (Basis induksi): Untuk n = 1, jumlah satu buah bilangan ganjil positif pertama adalah n2 = 12 = 1. Ini benar karena jumlah satu buah bilangan ganjil positif pertama memang 1.
  • 8.  Langkah 2 (Langkah Induksi): Andaikan p(n) benar, yaitu pernyataan 1 + 3 + 5 + … + (2n – 1) = n2 adalah benar (hipotesis induksi) catatlah bahwa bilangan ganjil positif ke-n adalah (2n – 1). Kita harus memperlihatkan bahwa p(n +1) juga benar, yaitu 1 + 3 + 5 + … + (2n – 1) + (2n + 1) = (n + 1)2 1 + 3 + 5 + … + (2n – 1) + (2n + 1) = [1 + 3 + 5 + … + (2n – 1)] + (2n + 1) = n2 + (2n + 1) = n2 + 2n + 1 = (n + 1)2 ……………..Terbukti
  • 9. SOLUSI CONTOH (3) Buktikan P(n) = 12 + 22 + 32 + … + n2 = n(n+1)(2n+1)/6 untuk n > 1  Langkah 1 :   P(1) = 1(1+1)(2 x 1 + 1) / 6 = 1 ……. (Terbukti)   Langkah2:  Andaikan benar untuk n = k, maka P(k) = k(k+1)(2k + 1)/6  Akan dibuktikan bahwa P(k+1) = (k+1)(k+1+1)(2(k+1)+1)/6  = (k+1)(k+2)(2k+3)/6   Bukti:  P(k+1) = p(k) + (k+1)2  = k(k+1)(2k + 1)/6 + (k2 + 2k + 1)  = (2k3 + 3k2 + k)/6 + 6 (k2 + 2k + 1) / 6  = (2k3 + 3k2 + k + 6 (k2 + 2k + 1)) / 6  = (2k3 + 9k2 + 13k + 1) /6  = (k+1)(k+2)(2k+3)/6 …………. Terbukti 
  • 10. . Gunakan induksi matematik untuk membuktikan bahwa jumlah n buah bilangan ganjil positif pertama adalah n2 . Penyelesaian: (i) Basis induksi: Untuk n = 1, jumlah satu buah bilangan ganjil positif pertama adalah 12 = 1. Ini benar karena jumlah satu buah bilangan ganjil positif pertama adalah 1. Contoh Soal (4)
  • 11. (ii) Langkah induksi: Andaikan p(n) benar, yaitu pernyataan 1 + 3 + 5 + … + (2n – 1) = n2 adalah benar (hipotesis induksi) [catatlah bahwa bilangan ganjil positif ke-n adalah (2n – 1)]. Kita harus memperlihatkan bahwa p(n +1) juga benar, yaitu 1 + 3 + 5 + … + (2n – 1) + (2n + 1) = (n + 1)2 juga benar. Hal ini dapat kita tunjukkan sebagai berikut: 1 + 3 + 5 + … + (2n – 1) + (2n + 1) = [1 + 3 + 5 + … + (2n – 1)] + (2n + 1) = n2 + (2n + 1) = n2 + 2n + 1 = (n + 1)2 Karena langkah basis dan langkah induksi keduanya telah diperlihatkan benar, maka jumlah n buah bilangan ganjil positif pertama adalah n2 .
  • 12. PRINSIP INDUKSI YANG DIRAMPATKAN Misalkan p(n) adalah pernyataan perihal bilangan bulat dan kita ingin membuktikan bahwa p(n) benar untuk semua bilangan bulat n  n0. Untuk membuktikan ini, kita hanya perlu menunjukkan bahwa: 1. p(n0) benar, dan 2. jika p(n) benar maka p(n+1) juga benar, untuk semua bilangan bulat n  n0,
  • 13. . Untuk semua bilangan bulat tidak-negatif n, buktikan dengan induksi matematik bahwa 20 + 21 + 22 + … + 2n = 2n+1 - 1 Penyelesaian: (i) Basis induksi. Untuk n = 0 (bilangan bulat tidak negatif pertama), kita peroleh: 20 = 20+1 – 1. Ini jelas benar, sebab 20 = 1 = 20+1 – 1 = 21 – 1 = 2 – 1 = 1 Contoh Soal (1)
  • 14. (ii) Langkah induksi. Andaikan bahwa p(n) benar, yaitu 20 + 21 + 22 + … + 2n = 2n+1 - 1 adalah benar (hipotesis induksi). Kita harus menunjukkan bahwa p(n +1) juga benar, yaitu 20 + 21 + 22 + … + 2n + 2n+1 = 2(n+1) + 1 - 1 juga benar. Ini kita tunjukkan sebagai berikut: 20 + 21 + 22 + … + 2n + 2n+1 = (20 + 21 + 22 + … + 2n ) + 2n+1 = (2n+1 – 1) + 2n+1 (hipotesis induksi) = (2n+1 + 2n+1 ) – 1 = (2 . 2n+1 ) – 1 = 2n+2 - 1 = 2(n+1) + 1 – 1 Karena langkah 1 dan 2 keduanya telah diperlihatkan benar, maka untuk semua bilangan bulat tidak-negatif n, terbukti bahwa 20 + 21 + 22 + … + 2n = 2n+1 – 1 
  • 15. APLIKASI INDUKSI MATEMATIK UNTUK MEMBUKTIKAN KEBENARAN PROGRAM
  • 16. function Exp2(N:integer, M: integer ) {menghitung N2M } Algoritma: R  1 k  2*M While (k > 0) R  R * N k  k – 1 end return R { Computes : R = N2M Loop invariant : R x Nk = N2M } Buktikan algoritma di atas benar dengan induksi matematika (semua variabel menggambarkan bilangan bulat non negatif)
  • 17. Misal Rn dan Kn adalah nilai berturut-turut dari R dan K, setelah melewati loop while sebanyak n kali, n ≥ 0. Misalkan p(n) adalah pernyataan: Rn x NKn = N2M , n ≥ 0. Akan ditunjukkan bahwa p(n) benar dengan induksi matematika (i) Basis: Untuk n = 0, maka R0 = 1, K0 = 2M adalah nilai variabel sebelum melewati loop. Maka pernyataan p(0): R0 x NK0 = N2M 1 x N2M = N2M adalah benar
  • 18. (ii) Langkah Induksi Asumsikan bahwa p(n) adalah benar untuk suatu n ≥ 0 setelah melewati loop n kali. Sehingga pernyataan p(n) dapat ditulis : Rn x NKn = N2M .. Harus ditunjukkan bahwa untuk satu tambahan loop, maka Rn+1 x NK n+1 = N2M Hal ini ditunjukkan sebagai berikut: Setelah satu tambahan melewati loop, Rn+1 = Rn x N dan Kn+1 = Kn – 1 maka Rn+1 x NK n+1 = (Rn x N) x NKn – 1 (dari hipotesis) = (Rn x N) x NK n x N-1 = Rn x NK n = N2M Jadi, Rn+1 x NK n+1 = N2M Sehingga p(n+1) menjadi benar. Karena itu, dengan prinsip dari induksi matematika, p(n) adalah benar untuk setiap n ≥ 0