SlideShare a Scribd company logo
1 of 26
Sequential Logic Digital Logic and  Software Principles © University of Wales Newport 2009 This work is licensed under a  Creative Commons Attribution 2.0 License .
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Sequential Logic
So far the logic circuits we have examined have been what is called  COMBINATIONAL . This means that the output functions generated are directly related to the value of the inputs at that moment in time. Combinational Logic Circuit Inputs Outputs The function relating each output to the inputs will be a Boolean Expression. Sequential Logic
In SEQUENTIAL logic systems the outputs of a logic circuit will not only be dependent upon the state of the inputs but also upon the previous state of the outputs. Combinational Logic Circuit Inputs Outputs Delay The state of the outputs can no longer be determined by simply examining the inputs. The simplest example of this is the cross-coupled NAND gate configuration below. Sequential Logic
Using the logic circuit complete the truth table: 0 0 0 0 0 0 1 1 1 1 1 1 ? 1 1 1 0 0 1 ? The problem arises with the final entry into the table: If we assume F1 is a 0 then F2 becomes a 1, which keeps F1 at 0, which is logically O.K.  If we assume F1 is a 1 then F2 becomes a 0, which keeps F1 at 1, which also is logically O.K. Sequential Logic A B F1 F2 A B F1 F2 0 0 0 1 1 0 1 1
The states of F1 and F2 with A = B = 1 will be dependent upon something other than the state of the inputs. Consider the following sequence of events: A B F1 F2 1 1  X  X (X unknown) 0    1   1   0 1    1  1   0 1 0     0   1 1 1     0  1 Sequential Logic
It appears that the A = B = 1 state has become state which can be determined by the previous states of A and B. If A goes low then high then F1 turns on and F2 turns off. Whilst if B goes low then high F1 turns off and F2 turns on. If we now think of this simple circuit as a storage unit which can store a single binary state (0 or 1) then we can think of F1 as the output (  ) and F2 as the complementary output (  ). The A input becomes a set or turn on input (active low) and B becomes a reset or turn off input (once again active low). With both inputs at 1 the output remains at its previous state and with both inputs at 0 (set and reset simultaneously) the output is meaningless (unallowable).
We can now re-label the circuit which we will call a bistable or flip-flop. The truth table can be written as:  0 0 Not allowed 0 1 1 1 0 0 1 1 Storage state
The unit described is called an R S Bistable. (Reset Set) This unit forms the basis of storage elements within electronic memories. If this forms a design unit within a sequential system then it needs to have the ability to be synchronised with other parts of the circuit. What we mean by this is that we can determine the moment in time when output changes will occur. If one of the two inputs change then with the present set-up the output will change immediately. This will often be undesirable as we wish system units to all change their outputs at a given moment in time, determined by us. Sequential Logic
To allow this to happen we use a synchronising input to all units called the clock  Ck . It is incorporated into the bistable in the following way: When using clocked logic elements we use a convention to specify the state of inputs prior to the clock and after the clock. Before we use  and after the clock we use  Sequential Logic
The truth table therefore looks like: Note that due to the inversion through the NAND gates on the inputs the set and reset inputs are now active high not active low. The only time now that the inputs are effective is when the clock is at logic 1: When Ck = 0 both NAND outputs are 1 and this is the storage state for the original bistable. When Ck = 1 then the NAND outputs are the inversion of the S and R values. This is called a Clocked R S Bistable 0 0 0 1 0 1 0 1 1 1 Indeterminate
Sometimes synchronisation has to be at a very well defined moment in time. The time when Ck is high may be too long to be sure of correct synchronisation. To ensure synchronisation is exact we must not use a level trigger but an edge trigger. See below: Ck Level triggered Edge triggered The arrows indicate the  duration or the instant of the clock. Sequential Logic Positive Edge or Rising Edge Negative Edge or Falling Edge
This can be achieved by using what is called a Master Slave Bistable. See below:   Master   Slave The operation is as follows: When Ck is at 0, the Master bistable is disabled  (locked)  and its outputs and  are fixed at their value. The Slave will be enabled  (unlocked)  and its outputs  and will simply reflect the values on its  and  inputs which are the outputs of the Master. 0 1
As the Ck input changes to 1 the Slave becomes disabled locking the output values. The Master becomes enabled ( unlocked ) and the and inputs can now have their effect on the Master’s output. Nothing happens on the Slave output as it is locked. As the Ck input changes from 1 to 0 the Master outputs become locked and the Slave becomes unlocked. The Slave now reflects the Masters output. 1 0 Sequential Logic
This is therefore a falling edge triggered master slave R S bistable. The symbol for this is the same as the level triggered variety. Sequential Logic
Other types of bistable D-type bistable (Data) If these are connected in parallel, they can be used to produce a register see below: Sequential Logic
When the clock Ck input is pulsed, whatever number that is on inputs D3 to D0 will be transferred onto the outputs Q3 to Q0. This can form the basis of a register connected to a data bus. The values on the data bus (D inputs) can change and the only time they are referenced is when the clock operates. Many of these registers are found within microprocessor central processing units to hold information. The actual size (number of bits) will depend upon the size of the information being stored. In our case it is a simple 4 bit register.  D3 D2 D1 D0 Q3 Q2 Q1 Q0 Ck
If instead of being connected in parallel they are serially connected then we form what is called a shift register. See below. Information appearing on the input will be moved one place to the right each time a clock pulse occurs e.g. if the sequence 1 then 0 then 1 then 1 is placed on the input then the following occurs as the clock changes Sequential Logic QA QD QC QB Ck Input
First pulse Second pulse Third pulse Fourth pulse 1 1 1 0 The Serial information (information coming in bit by bit) is now available on the Q outputs in parallel. Sequential Logic Clock pulse Input QA QB QC QD X X X X 1 X X 0 1 1 X 0 1 1 1 0 1 X X X
T-type bistable (Toggle) Each time a clock pulse occurs the values of  and  change state. This is a toggling operation. Such a bistable can be used to produce a halving of an input frequency. See below: Input Output Input Output
Note that the change in output occurs on the falling edge of the clock input. A row of these can be used to   2,   4,   8,   16, etc. Sequential Logic
An important development of the R. S. bistable is the J. K. bistable. This has the following logic circuit: Fill in the Truth Table below 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 The same Always 0 Always 1 Opposite 0 0 0 } 0 0 1 0 1 0 } 0 1 1 1 0 0 } 1 0 1 1 1 0 } 1 1 1
From the table we can say that the truth table for a  J. K. bistable is: The symbol adopted is as follows: Note that the symbol has two extra inputs which are the Preset input and the Clear input. They have the same effect as the J and K but they are asynchronous inputs – this means that they do not require the operation of the clock input for them to operate. Also they tend to be active low inputs which mean that to make them operate we need to apply a logic ‘0’. When not in use they are connected to logic ‘1’. 0 0 0 1 1 0 1 1
Example using a Shift Register  QA QD QC QB Ck Sequential Logic
Clock pulse QA QB QC QD EXNOR O/P Number 0 0 0 0 0 1 st 2 nd 3 rd 4 th 5 th 6 th 7 th 8 th 9 th 10 th 11 th 12 th 13 th 14 th 15 th
This resource was created by the University of Wales Newport and released as an open educational resource through the Open Engineering Resources project of the HE Academy Engineering Subject Centre. The Open Engineering Resources project was funded by HEFCE and part of the JISC/HE Academy UKOER programme. © 2009 University of Wales Newport This work is licensed under a  Creative Commons Attribution 2.0 License . The JISC logo is licensed under the terms of the Creative Commons Attribution-Non-Commercial-No Derivative Works 2.0 UK: England & Wales Licence.  All reproductions must comply with the terms of that licence. The HEA logo is owned by the Higher Education Academy Limited may be freely distributed and copied for educational purposes only, provided that appropriate acknowledgement is given to the Higher Education Academy as the copyright holder and original publisher. The name and logo of University of Wales Newport is a trade mark and all rights in it are reserved.  The name and logo should not be reproduced without the express authorisation of the University. Sequential Logic

More Related Content

What's hot

Finite state machines
Finite state machinesFinite state machines
Finite state machinesdennis gookyi
 
Electric transducer
Electric transducerElectric transducer
Electric transducerUday Korat
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-functionSaifullah Memon
 
Register in Digital Logic
Register in Digital LogicRegister in Digital Logic
Register in Digital LogicISMT College
 
Verilog VHDL code Decoder and Encoder
Verilog VHDL code Decoder and EncoderVerilog VHDL code Decoder and Encoder
Verilog VHDL code Decoder and EncoderBharti Airtel Ltd.
 
08 logic simplification
08 logic simplification08 logic simplification
08 logic simplificationarunachalamr16
 
Number_Systems_and_Boolean_Algebra.ppt
Number_Systems_and_Boolean_Algebra.pptNumber_Systems_and_Boolean_Algebra.ppt
Number_Systems_and_Boolean_Algebra.pptVEERA BOOPATHY E
 
Sequential circuits in Digital Electronics
Sequential circuits in Digital ElectronicsSequential circuits in Digital Electronics
Sequential circuits in Digital ElectronicsVinoth Loganathan
 
sensors and transducers Module 1 n 2
sensors and transducers Module 1 n 2sensors and transducers Module 1 n 2
sensors and transducers Module 1 n 2Anchal bassi
 
Microprocessor & microcontroller
Microprocessor & microcontroller Microprocessor & microcontroller
Microprocessor & microcontroller Nitesh Kumar
 
SOP POS, Minterm and Maxterm
SOP POS, Minterm and MaxtermSOP POS, Minterm and Maxterm
SOP POS, Minterm and MaxtermSelf-employed
 
Sequential circuits in digital logic design
Sequential circuits in digital logic designSequential circuits in digital logic design
Sequential circuits in digital logic designNallapati Anindra
 

What's hot (20)

Finite state machines
Finite state machinesFinite state machines
Finite state machines
 
Electric transducer
Electric transducerElectric transducer
Electric transducer
 
Shift Registers
Shift RegistersShift Registers
Shift Registers
 
Latches and flip flops
Latches and flip flopsLatches and flip flops
Latches and flip flops
 
Logic gates
Logic gatesLogic gates
Logic gates
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-function
 
Register in Digital Logic
Register in Digital LogicRegister in Digital Logic
Register in Digital Logic
 
Combinational circuit
Combinational circuitCombinational circuit
Combinational circuit
 
Verilog VHDL code Decoder and Encoder
Verilog VHDL code Decoder and EncoderVerilog VHDL code Decoder and Encoder
Verilog VHDL code Decoder and Encoder
 
08 logic simplification
08 logic simplification08 logic simplification
08 logic simplification
 
Number_Systems_and_Boolean_Algebra.ppt
Number_Systems_and_Boolean_Algebra.pptNumber_Systems_and_Boolean_Algebra.ppt
Number_Systems_and_Boolean_Algebra.ppt
 
Sequential circuits in Digital Electronics
Sequential circuits in Digital ElectronicsSequential circuits in Digital Electronics
Sequential circuits in Digital Electronics
 
Ring counter
Ring counterRing counter
Ring counter
 
Digital Logic circuit
Digital Logic circuitDigital Logic circuit
Digital Logic circuit
 
sensors and transducers Module 1 n 2
sensors and transducers Module 1 n 2sensors and transducers Module 1 n 2
sensors and transducers Module 1 n 2
 
Microprocessor & microcontroller
Microprocessor & microcontroller Microprocessor & microcontroller
Microprocessor & microcontroller
 
Combinational circuit
Combinational circuitCombinational circuit
Combinational circuit
 
SOP POS, Minterm and Maxterm
SOP POS, Minterm and MaxtermSOP POS, Minterm and Maxterm
SOP POS, Minterm and Maxterm
 
Flipflop
FlipflopFlipflop
Flipflop
 
Sequential circuits in digital logic design
Sequential circuits in digital logic designSequential circuits in digital logic design
Sequential circuits in digital logic design
 

Viewers also liked

Viewers also liked (20)

Sequential Logic Circuits
Sequential Logic CircuitsSequential Logic Circuits
Sequential Logic Circuits
 
Sequential Logic Circuit
Sequential Logic CircuitSequential Logic Circuit
Sequential Logic Circuit
 
Combinational Logic Circuit
Combinational Logic CircuitCombinational Logic Circuit
Combinational Logic Circuit
 
Counters
CountersCounters
Counters
 
Moodle security
Moodle securityMoodle security
Moodle security
 
Asynchronous Counter
Asynchronous Counter Asynchronous Counter
Asynchronous Counter
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
 
Lec 1 Ds
Lec 1 DsLec 1 Ds
Lec 1 Ds
 
Diode
DiodeDiode
Diode
 
ARM CPU
ARM CPUARM CPU
ARM CPU
 
Analog and Digital I/O
Analog and Digital I/OAnalog and Digital I/O
Analog and Digital I/O
 
Group 7 combinational logic
Group 7 combinational logicGroup 7 combinational logic
Group 7 combinational logic
 
Lecture 5 Synchronous Sequential Logic
Lecture 5 Synchronous Sequential LogicLecture 5 Synchronous Sequential Logic
Lecture 5 Synchronous Sequential Logic
 
3.142 contest - What is Project2Pi?
3.142 contest - What is Project2Pi?3.142 contest - What is Project2Pi?
3.142 contest - What is Project2Pi?
 
CPU and Software
CPU and SoftwareCPU and Software
CPU and Software
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Role of CPU
Role of CPURole of CPU
Role of CPU
 
Serial Communication
Serial CommunicationSerial Communication
Serial Communication
 
CPU Architecture - Advanced
CPU Architecture - AdvancedCPU Architecture - Advanced
CPU Architecture - Advanced
 
Introduction to Electronic Circuit
Introduction to Electronic CircuitIntroduction to Electronic Circuit
Introduction to Electronic Circuit
 

Similar to Sequential Logic

Components logic gates
Components   logic gatesComponents   logic gates
Components logic gatessld1950
 
counter using 4 master slave flip-flops
counter using 4 master slave flip-flops counter using 4 master slave flip-flops
counter using 4 master slave flip-flops ZunAib Ali
 
Bt0064 logic design1
Bt0064 logic design1Bt0064 logic design1
Bt0064 logic design1Techglyphs
 
Lab 9 D-Flip Flops: Shift Register and Sequence Counter
Lab 9 D-Flip Flops: Shift Register and Sequence CounterLab 9 D-Flip Flops: Shift Register and Sequence Counter
Lab 9 D-Flip Flops: Shift Register and Sequence CounterKatrina Little
 
Digital_Electronics_Module_4_Sequential_Circuits v0.6.pptx
Digital_Electronics_Module_4_Sequential_Circuits v0.6.pptxDigital_Electronics_Module_4_Sequential_Circuits v0.6.pptx
Digital_Electronics_Module_4_Sequential_Circuits v0.6.pptxUtsavDas21
 
Admission in india 2015
Admission in india 2015Admission in india 2015
Admission in india 2015Edhole.com
 
SEQUENTIAL CIRCUITS -Module 5 (1).pptx
SEQUENTIAL CIRCUITS -Module 5 (1).pptxSEQUENTIAL CIRCUITS -Module 5 (1).pptx
SEQUENTIAL CIRCUITS -Module 5 (1).pptxThanmayiKumar
 
04 Unit IV DTE.pptx
04 Unit IV DTE.pptx04 Unit IV DTE.pptx
04 Unit IV DTE.pptxHarsheye
 
Admission in india 2015
Admission in india 2015Admission in india 2015
Admission in india 2015Edhole.com
 
ELN Presentation Add more information to your upload.pptx
ELN Presentation Add more information to your upload.pptxELN Presentation Add more information to your upload.pptx
ELN Presentation Add more information to your upload.pptxMohammedAdnankhan4
 
Sequential and combinational alu
Sequential and combinational alu Sequential and combinational alu
Sequential and combinational alu Piyush Rochwani
 
Sequential Circuit
Sequential CircuitSequential Circuit
Sequential CircuitHeman Pathak
 
Design and implementation of synchronous 4 bit up counter using 180 nm cmos p...
Design and implementation of synchronous 4 bit up counter using 180 nm cmos p...Design and implementation of synchronous 4 bit up counter using 180 nm cmos p...
Design and implementation of synchronous 4 bit up counter using 180 nm cmos p...eSAT Publishing House
 
15CS32 ADE Module 4
15CS32 ADE Module 415CS32 ADE Module 4
15CS32 ADE Module 4RLJIT
 
Dee2034 chapter 4 flip flop for students part
Dee2034 chapter 4 flip flop  for students partDee2034 chapter 4 flip flop  for students part
Dee2034 chapter 4 flip flop for students partSITI SABARIAH SALIHIN
 
SCAN CHAINS TESTING FOR LATCHES TO REDUCE AREA AND THE POWER CONSUMPTION
SCAN CHAINS TESTING FOR LATCHES TO REDUCE AREA AND THE POWER CONSUMPTIONSCAN CHAINS TESTING FOR LATCHES TO REDUCE AREA AND THE POWER CONSUMPTION
SCAN CHAINS TESTING FOR LATCHES TO REDUCE AREA AND THE POWER CONSUMPTIONcscpconf
 

Similar to Sequential Logic (20)

Flip & flop by Zaheer Abbas Aghani
Flip & flop by Zaheer Abbas AghaniFlip & flop by Zaheer Abbas Aghani
Flip & flop by Zaheer Abbas Aghani
 
Components logic gates
Components   logic gatesComponents   logic gates
Components logic gates
 
counter using 4 master slave flip-flops
counter using 4 master slave flip-flops counter using 4 master slave flip-flops
counter using 4 master slave flip-flops
 
Bt0064 logic design1
Bt0064 logic design1Bt0064 logic design1
Bt0064 logic design1
 
Lab 9 D-Flip Flops: Shift Register and Sequence Counter
Lab 9 D-Flip Flops: Shift Register and Sequence CounterLab 9 D-Flip Flops: Shift Register and Sequence Counter
Lab 9 D-Flip Flops: Shift Register and Sequence Counter
 
Digital_Electronics_Module_4_Sequential_Circuits v0.6.pptx
Digital_Electronics_Module_4_Sequential_Circuits v0.6.pptxDigital_Electronics_Module_4_Sequential_Circuits v0.6.pptx
Digital_Electronics_Module_4_Sequential_Circuits v0.6.pptx
 
Admission in india 2015
Admission in india 2015Admission in india 2015
Admission in india 2015
 
SEQUENTIAL CIRCUITS -Module 5 (1).pptx
SEQUENTIAL CIRCUITS -Module 5 (1).pptxSEQUENTIAL CIRCUITS -Module 5 (1).pptx
SEQUENTIAL CIRCUITS -Module 5 (1).pptx
 
Coa presentation2
Coa presentation2Coa presentation2
Coa presentation2
 
04 Unit IV DTE.pptx
04 Unit IV DTE.pptx04 Unit IV DTE.pptx
04 Unit IV DTE.pptx
 
B T0064
B T0064B T0064
B T0064
 
Bt0064
Bt0064Bt0064
Bt0064
 
Admission in india 2015
Admission in india 2015Admission in india 2015
Admission in india 2015
 
ELN Presentation Add more information to your upload.pptx
ELN Presentation Add more information to your upload.pptxELN Presentation Add more information to your upload.pptx
ELN Presentation Add more information to your upload.pptx
 
Sequential and combinational alu
Sequential and combinational alu Sequential and combinational alu
Sequential and combinational alu
 
Sequential Circuit
Sequential CircuitSequential Circuit
Sequential Circuit
 
Design and implementation of synchronous 4 bit up counter using 180 nm cmos p...
Design and implementation of synchronous 4 bit up counter using 180 nm cmos p...Design and implementation of synchronous 4 bit up counter using 180 nm cmos p...
Design and implementation of synchronous 4 bit up counter using 180 nm cmos p...
 
15CS32 ADE Module 4
15CS32 ADE Module 415CS32 ADE Module 4
15CS32 ADE Module 4
 
Dee2034 chapter 4 flip flop for students part
Dee2034 chapter 4 flip flop  for students partDee2034 chapter 4 flip flop  for students part
Dee2034 chapter 4 flip flop for students part
 
SCAN CHAINS TESTING FOR LATCHES TO REDUCE AREA AND THE POWER CONSUMPTION
SCAN CHAINS TESTING FOR LATCHES TO REDUCE AREA AND THE POWER CONSUMPTIONSCAN CHAINS TESTING FOR LATCHES TO REDUCE AREA AND THE POWER CONSUMPTION
SCAN CHAINS TESTING FOR LATCHES TO REDUCE AREA AND THE POWER CONSUMPTION
 

More from School of Design Engineering Fashion & Technology (DEFT), University of Wales, Newport

More from School of Design Engineering Fashion & Technology (DEFT), University of Wales, Newport (14)

Introduction to fourier analysis
Introduction to fourier analysisIntroduction to fourier analysis
Introduction to fourier analysis
 
Semiconductor theory
Semiconductor theorySemiconductor theory
Semiconductor theory
 
Number codes
Number codesNumber codes
Number codes
 
Decoders student
Decoders studentDecoders student
Decoders student
 
Number codes students
Number codes studentsNumber codes students
Number codes students
 
Logic gates
Logic gatesLogic gates
Logic gates
 
Design considerations
Design considerationsDesign considerations
Design considerations
 
Number bases
Number basesNumber bases
Number bases
 
Logic Equation Simplification
Logic Equation SimplificationLogic Equation Simplification
Logic Equation Simplification
 
Stabilised Power Supplies
Stabilised Power SuppliesStabilised Power Supplies
Stabilised Power Supplies
 
Amplifier Compensation
Amplifier CompensationAmplifier Compensation
Amplifier Compensation
 
Counter And Sequencer Design- Student
Counter And Sequencer Design- StudentCounter And Sequencer Design- Student
Counter And Sequencer Design- Student
 
Chapter 6 Probability
Chapter 6  ProbabilityChapter 6  Probability
Chapter 6 Probability
 
Chapter 4 Integration
Chapter 4  IntegrationChapter 4  Integration
Chapter 4 Integration
 

Recently uploaded

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 

Recently uploaded (20)

Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 

Sequential Logic

  • 1. Sequential Logic Digital Logic and Software Principles © University of Wales Newport 2009 This work is licensed under a Creative Commons Attribution 2.0 License .
  • 2.
  • 3. So far the logic circuits we have examined have been what is called COMBINATIONAL . This means that the output functions generated are directly related to the value of the inputs at that moment in time. Combinational Logic Circuit Inputs Outputs The function relating each output to the inputs will be a Boolean Expression. Sequential Logic
  • 4. In SEQUENTIAL logic systems the outputs of a logic circuit will not only be dependent upon the state of the inputs but also upon the previous state of the outputs. Combinational Logic Circuit Inputs Outputs Delay The state of the outputs can no longer be determined by simply examining the inputs. The simplest example of this is the cross-coupled NAND gate configuration below. Sequential Logic
  • 5. Using the logic circuit complete the truth table: 0 0 0 0 0 0 1 1 1 1 1 1 ? 1 1 1 0 0 1 ? The problem arises with the final entry into the table: If we assume F1 is a 0 then F2 becomes a 1, which keeps F1 at 0, which is logically O.K. If we assume F1 is a 1 then F2 becomes a 0, which keeps F1 at 1, which also is logically O.K. Sequential Logic A B F1 F2 A B F1 F2 0 0 0 1 1 0 1 1
  • 6. The states of F1 and F2 with A = B = 1 will be dependent upon something other than the state of the inputs. Consider the following sequence of events: A B F1 F2 1 1 X X (X unknown) 0  1 1 0 1  1 1 0 1 0  0 1 1 1  0 1 Sequential Logic
  • 7. It appears that the A = B = 1 state has become state which can be determined by the previous states of A and B. If A goes low then high then F1 turns on and F2 turns off. Whilst if B goes low then high F1 turns off and F2 turns on. If we now think of this simple circuit as a storage unit which can store a single binary state (0 or 1) then we can think of F1 as the output ( ) and F2 as the complementary output ( ). The A input becomes a set or turn on input (active low) and B becomes a reset or turn off input (once again active low). With both inputs at 1 the output remains at its previous state and with both inputs at 0 (set and reset simultaneously) the output is meaningless (unallowable).
  • 8. We can now re-label the circuit which we will call a bistable or flip-flop. The truth table can be written as: 0 0 Not allowed 0 1 1 1 0 0 1 1 Storage state
  • 9. The unit described is called an R S Bistable. (Reset Set) This unit forms the basis of storage elements within electronic memories. If this forms a design unit within a sequential system then it needs to have the ability to be synchronised with other parts of the circuit. What we mean by this is that we can determine the moment in time when output changes will occur. If one of the two inputs change then with the present set-up the output will change immediately. This will often be undesirable as we wish system units to all change their outputs at a given moment in time, determined by us. Sequential Logic
  • 10. To allow this to happen we use a synchronising input to all units called the clock Ck . It is incorporated into the bistable in the following way: When using clocked logic elements we use a convention to specify the state of inputs prior to the clock and after the clock. Before we use and after the clock we use Sequential Logic
  • 11. The truth table therefore looks like: Note that due to the inversion through the NAND gates on the inputs the set and reset inputs are now active high not active low. The only time now that the inputs are effective is when the clock is at logic 1: When Ck = 0 both NAND outputs are 1 and this is the storage state for the original bistable. When Ck = 1 then the NAND outputs are the inversion of the S and R values. This is called a Clocked R S Bistable 0 0 0 1 0 1 0 1 1 1 Indeterminate
  • 12. Sometimes synchronisation has to be at a very well defined moment in time. The time when Ck is high may be too long to be sure of correct synchronisation. To ensure synchronisation is exact we must not use a level trigger but an edge trigger. See below: Ck Level triggered Edge triggered The arrows indicate the duration or the instant of the clock. Sequential Logic Positive Edge or Rising Edge Negative Edge or Falling Edge
  • 13. This can be achieved by using what is called a Master Slave Bistable. See below: Master Slave The operation is as follows: When Ck is at 0, the Master bistable is disabled (locked) and its outputs and are fixed at their value. The Slave will be enabled (unlocked) and its outputs and will simply reflect the values on its and inputs which are the outputs of the Master. 0 1
  • 14. As the Ck input changes to 1 the Slave becomes disabled locking the output values. The Master becomes enabled ( unlocked ) and the and inputs can now have their effect on the Master’s output. Nothing happens on the Slave output as it is locked. As the Ck input changes from 1 to 0 the Master outputs become locked and the Slave becomes unlocked. The Slave now reflects the Masters output. 1 0 Sequential Logic
  • 15. This is therefore a falling edge triggered master slave R S bistable. The symbol for this is the same as the level triggered variety. Sequential Logic
  • 16. Other types of bistable D-type bistable (Data) If these are connected in parallel, they can be used to produce a register see below: Sequential Logic
  • 17. When the clock Ck input is pulsed, whatever number that is on inputs D3 to D0 will be transferred onto the outputs Q3 to Q0. This can form the basis of a register connected to a data bus. The values on the data bus (D inputs) can change and the only time they are referenced is when the clock operates. Many of these registers are found within microprocessor central processing units to hold information. The actual size (number of bits) will depend upon the size of the information being stored. In our case it is a simple 4 bit register. D3 D2 D1 D0 Q3 Q2 Q1 Q0 Ck
  • 18. If instead of being connected in parallel they are serially connected then we form what is called a shift register. See below. Information appearing on the input will be moved one place to the right each time a clock pulse occurs e.g. if the sequence 1 then 0 then 1 then 1 is placed on the input then the following occurs as the clock changes Sequential Logic QA QD QC QB Ck Input
  • 19. First pulse Second pulse Third pulse Fourth pulse 1 1 1 0 The Serial information (information coming in bit by bit) is now available on the Q outputs in parallel. Sequential Logic Clock pulse Input QA QB QC QD X X X X 1 X X 0 1 1 X 0 1 1 1 0 1 X X X
  • 20. T-type bistable (Toggle) Each time a clock pulse occurs the values of and change state. This is a toggling operation. Such a bistable can be used to produce a halving of an input frequency. See below: Input Output Input Output
  • 21. Note that the change in output occurs on the falling edge of the clock input. A row of these can be used to  2,  4,  8,  16, etc. Sequential Logic
  • 22. An important development of the R. S. bistable is the J. K. bistable. This has the following logic circuit: Fill in the Truth Table below 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 The same Always 0 Always 1 Opposite 0 0 0 } 0 0 1 0 1 0 } 0 1 1 1 0 0 } 1 0 1 1 1 0 } 1 1 1
  • 23. From the table we can say that the truth table for a J. K. bistable is: The symbol adopted is as follows: Note that the symbol has two extra inputs which are the Preset input and the Clear input. They have the same effect as the J and K but they are asynchronous inputs – this means that they do not require the operation of the clock input for them to operate. Also they tend to be active low inputs which mean that to make them operate we need to apply a logic ‘0’. When not in use they are connected to logic ‘1’. 0 0 0 1 1 0 1 1
  • 24. Example using a Shift Register QA QD QC QB Ck Sequential Logic
  • 25. Clock pulse QA QB QC QD EXNOR O/P Number 0 0 0 0 0 1 st 2 nd 3 rd 4 th 5 th 6 th 7 th 8 th 9 th 10 th 11 th 12 th 13 th 14 th 15 th
  • 26. This resource was created by the University of Wales Newport and released as an open educational resource through the Open Engineering Resources project of the HE Academy Engineering Subject Centre. The Open Engineering Resources project was funded by HEFCE and part of the JISC/HE Academy UKOER programme. © 2009 University of Wales Newport This work is licensed under a Creative Commons Attribution 2.0 License . The JISC logo is licensed under the terms of the Creative Commons Attribution-Non-Commercial-No Derivative Works 2.0 UK: England & Wales Licence.  All reproductions must comply with the terms of that licence. The HEA logo is owned by the Higher Education Academy Limited may be freely distributed and copied for educational purposes only, provided that appropriate acknowledgement is given to the Higher Education Academy as the copyright holder and original publisher. The name and logo of University of Wales Newport is a trade mark and all rights in it are reserved. The name and logo should not be reproduced without the express authorisation of the University. Sequential Logic