Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Capacitance

3,657 views

Published on

Published in: Technology, Business

Capacitance

  1. 1. 25-2. Capacitance charge storage, energy storage Given As a Result Capacitor: Any two isolated conductors
  2. 2. 25-2. Capacitance Units of capacitance: Farad (F) = Coulomb/Volt Potential (or Voltage) Capacitance
  3. 3. 25-2. Capacitance +q -q E field between the plates: (Gauss’ Law) Relate E to potential difference V : What is the capacitance C  ? Area of each plate = A Separation = d charge/area =  = q/A
  4. 4. 25-2. Capacitance Capacitance and Your iPod
  5. 5. 25-2. Capacitance <ul><li>A huge parallel plate capacitor consists of two square metal plates of side 50 cm, separated by an air gap of 1 mm </li></ul><ul><li>What is the capacitance? </li></ul>C =  0 A/d = (8.85 x 10 –12 F/m)(0.25 m 2 )/(0.001 m) = 2.21 x 10 –9 F ( Very Small!! ) Units of capacitance: Farad (F) = Coulomb/Volt
  6. 6. 25-2. Capacitance <ul><li>Does the capacitance of a capacitor increase, decrease, or remain the same? </li></ul><ul><li>When the charge q on it is doubled </li></ul><ul><li>When the potential difference across it tripled </li></ul>Determine what is NOT changed.
  7. 7. 25-2. Capacitance <ul><li>A parallel plate capacitor of capacitance C is charged using a battery. </li></ul><ul><li>Charge = Q, potential difference = V. </li></ul><ul><li>Plate separation is INCREASED while battery remains connected. </li></ul><ul><li>V is fixed by battery! </li></ul><ul><li>C decreases (=  0 A/d) </li></ul><ul><li>Q=CV; Q decreases </li></ul><ul><li>E = Q/  0 A decreases </li></ul>Does the Electric Field Inside: (a) Increase? (b) Remain the Same? (c) Decrease? +Q – Q
  8. 8. 25-3. Calculating the Capacitance Cylindrical Capacitor
  9. 9. 25-3. Calculating the Capacitance Spherical Capacitor
  10. 10. 25-3. Calculating the Capacitance Capacitance of a single conducting sphere Spherical Capacitor
  11. 11. 25-4. C in Parallel and in Series Q: the same V: the same Parallel Series
  12. 12. 25-4. C in Parallel and in Series <ul><li>A wire is an equipotential surface. </li></ul><ul><li>V AB = V CD = V </li></ul><ul><li>Q total = Q 1 + Q 2 </li></ul><ul><li>C eq V = C 1 V + C 2 V </li></ul><ul><li>Equivalent parallel capacitance = sum of capacitances </li></ul>V: the same Parallel A B C D C 1 C 2 Q 1 Q 2 C eq Q total
  13. 13. 25-4. C in Parallel and in Series <ul><li>Q 1 = Q 2 = Q (WHY??) </li></ul><ul><li>V AC = V AB + V BC </li></ul>Q: the same Series A B C C 1 C 2 Q 1 Q 2 C eq Q
  14. 14. 25-4. Example 1 <ul><li>Q = CV; V = 120 V </li></ul><ul><li>Q 1 = (10  F)(120V) = 1200  C </li></ul><ul><li>Q 2 = (20  F)(120V) = 2400  C </li></ul><ul><li>Q 3 = (30  F)(120V) = 3600  C </li></ul><ul><li>Note that: </li></ul><ul><li>Total charge (7200  C) is shared between the 3 capacitors in the ratio C 1 :C 2 :C 3 — i.e. 1:2:3 </li></ul>10  F 30  F 20  F 120V What is the charge on each capacitor?
  15. 15. 25-4. Example 2 <ul><li>Q = CV; Q is same for all capacitors </li></ul><ul><li>Combined C is given by: </li></ul><ul><li>C eq = 5.46  F </li></ul><ul><li>Q = CV = (5.46  F)(120V) = 655  C </li></ul><ul><li>V 1 = Q/C 1 = (655  C)/(10  F) = 65.5 V </li></ul><ul><li>V 2 = Q/C 2 = (655  C)/(20  F) = 32.75 V </li></ul><ul><li>V 3 = Q/C 3 = (655  C)/(30  F) = 21.8 V </li></ul>10  F 30  F 20  F 120V What is the potential difference across each capacitor?
  16. 16. 25-4. Example 3 <ul><li>Then, we have two 10  F capacitors in series </li></ul><ul><li>So, there is 5V across the 10  F capacitor of interest </li></ul><ul><li>Hence, Q = ( 10  F )(5V) = 50  C </li></ul>What is the charge on the 10  F capacitor? 10  F 5  F 5  F 10V 10  F 10  F 10V
  17. 17. 25-4. Example 4 (N-1) Capacitors with A and d: Parallel Connection + –
  18. 18. 25-4. Example 5 <ul><li>10  F capacitor is initially charged to 120V. </li></ul><ul><li>20  F capacitor is initially uncharged. </li></ul><ul><li>Switch is closed, equilibrium is reached. </li></ul>Initial charge on 10  F = (10  F)(120V)= 1200  C After switch is closed, let charges = Q 1 and Q 2 . Charge is conserved: Q 1 + Q 2 = 1200  C And, V final is same: <ul><li>Q 1 = 400  C </li></ul><ul><li>Q 2 = 800  C </li></ul><ul><li>V final = Q 1 /C 1 = 40 V </li></ul>What is the charge on each capacitor? 10  F (C 1 ) 20  F (C 2 )
  19. 20. 25-5. Energy Stored <ul><li>Start out with uncharged capacitor </li></ul><ul><li>Transfer small amount of charge dq from one plate to the other until charge on each plate has magnitude Q </li></ul><ul><li>How much work was needed? </li></ul>dq
  20. 21. 25-5. Energy Stored in an E-Field <ul><li>Energy stored in capacitor: U = Q 2 /(2C) = CV 2 /2 </li></ul><ul><li>View the energy as stored in ELECTRIC FIELD </li></ul><ul><li>For example, parallel plate capacitor: </li></ul><ul><li>Energy DENSITY = energy/volume = u </li></ul>General expression for any region with vacuum (or air)
  21. 22. 25-6. Capacitor with a Dielectric Dielectric: Noncoducting material HW5-8 Breakdown Potential: Dielectric Strength (kV/mm) X Length (mm)
  22. 23. 25-6. Capacitor with a Dielectric or ??
  23. 24. 25-6. Capacitor with a Dielectric
  24. 25. 25-6. Capacitor with a Dielectric
  25. 26. 25-6. Example <ul><li>Capacitor has charge Q, voltage V </li></ul><ul><li>Battery remains connected while dielectric slab is inserted. </li></ul><ul><li>Do the following increase, decrease or stay the same: </li></ul><ul><ul><li>Potential difference? </li></ul></ul><ul><ul><li>Capacitance? </li></ul></ul><ul><ul><li>Charge? </li></ul></ul><ul><ul><li>Electric field? </li></ul></ul>dielectric slab
  26. 27. 25-6. Example <ul><li>Initial values: capacitance = C ; charge = Q ; potential difference = V ; electric field = E </li></ul><ul><li>Battery remains connected </li></ul><ul><li>V is FIXED; V new = V ( same ) </li></ul><ul><li>C new =  C ( increases ) </li></ul><ul><li>Q new = (  C)V =  Q ( increases ). </li></ul><ul><li>Since V new = V, E new = E ( same ) </li></ul>dielectric slab

×