SlideShare a Scribd company logo
Radioactive Decay
b ig
                                      T oo
                       ns
                  o to
             pr
        a ny                         ns
      m                          tro
Too                         n eu
                    a ny
                  m
         T oo
Dataset #2:

Authors: J. K. TULI, G. REED, B. SINGH           Citation: Nuclear Data Sheets 93, 1 (2001)

Parent           Parent           Parent          Parent                                  GS-GS Q-value Daughter
                                                                    Decay Mode
Nucleus          E(level)           J"             T 1/2                                      (keV)     Nucleus
                                                                                                                    Decay
                                                                                                                   Scheme
  99                                                                                                      99
     Tc      14 2 . 6 8 3 2 1 1   1/2-        6.015 h 9          I T : 9 9 . 9 9 63 6 %                      Tc
  43                                                                                                      43


Electrons:

                Energy                         Intensity             Dose
                 (keV)                            (%)             ( MeV/Bq-s )


CE M                  1.6286 11               74.595 %           0.0012149
Auger L               2.17                    10.32 % 6          2 . 2 4 0 E - 4 14
Auger K             15.5                        2.05 % 4         3.17E-4 6
CE K              119.4670 12                   8.84 %           0.01056
CE K              121.59 3                      0.55 % 5         6.7E-4 6
CE L              137.4685 11                   1.07 %           0.00147
CE L              139.59 3                      0.172 % 16       2.40E-4 23
CE M              139.9670 14                   0.194 %          2.72E-4
CE NP             140.4430 22                   0.0374 %         5.25310E-5
CE M              142.09 3                      0.034 % 3        4.8E-5 5
CE NP             142.56 3                      0.0066 % 6       9.4E-6 9



Gamma and X-ray radiation:

             Energy                        Intensity             Dose
              (keV)                           (%)             ( MeV/Bq-s )


                   2.1726 4                6.201E-9 %          1.347E-13
XR l               2.42                    0.447 % 11          1.08E-5 3
X R k #2          18.251                   2.14 % 6            3.91E-4 11
X R k #1          18.367                   4.07 % 12           7.47E-4 21
X R k !3          20.599                   0.330 % 10          6.79E-5 20
X R k !1          20.619                   0.639 % 18          1.32E-4 4
X R k !2          21.005                   0.145 % 4           3.04E-5 8
                140.511 1                89.06 %               0.1251
                142.63 3                   0.0187 % 18         2.7E-5 3
A conversion electron is ejected by
a gamma photon from the nucleus
A conversion electron is ejected by
a gamma photon from the nucleus
A kα X-ray comes when an
electron from the L shell falls to
           the K shell
A kα X-ray comes when an
electron from the L shell falls to
           the K shell
An Auger electron is ejected by a
           kα X-ray
An Auger electron is ejected by a
           kα X-ray
Gamma decay comes when nucleus falls
from high energy state to low energy state
Gamma rays can be absorbed by electrons
in the atom
Conversion electron: Gamma ray ejects
electron
k-α, L-β X-ray radiation when electrons
from high shells fall to low shells
Auger electrons when k-α absorbed by
outer electrons, ejecting them.
Gamma decay comes when nucleus falls
from high energy state to low energy state
Gamma rays can be absorbed by electrons
in the atom
Conversion electron: Gamma ray ejects
electron
k-α, L-β X-ray radiation when electrons
from high shells fall to low shells
Auger electrons when k-α absorbed by
outer electrons, ejecting them.
Alpha decay energy
MP         (MD   MHe )                               11-34
                                                  c2
   Note that the mass of the two electrons in the He atom compensates for the fact
   that the daughter atom has two fewer electrons than the parent atom. Applying this
   to the example given in Equation 11-33, the mass of the 232Th atom is 232.038124 u
   The mass of the daughter atom 228Ra is 228.031139 u, and adding it to the 4.002603
   u mass of 4He, we get 232.033742 u for the total mass of the decay products
   Equation 11-34 then yields Q/c 2 0.004382 u, which, when multiplied by the con-
   version factor 931.5 MeV/c 2, gives Q          4.08 MeV. Thus, the rest energy of 232Th
   is greater than that of 228Ra 4He; therefore, 232Th is unstable toward spontaneous
      decay.
       The kinetic energy of the particle (for decays to the ground state of the daugh-
   ter nucleus) is slightly less than the decay energy Q because of the small recoil energy
   of the daughter nucleus. If the parent nucleus is at rest when it decays, the daughter



                      1600
                                                !286
Number of particles




                      1200                                                                            !61
                                                                                                                  !0


                      800
                                        !334
                                         !330
                      400        !
                             !376 342                  !247                !174                 !80
                                !350                                                                        !30
                                                 !280         !235                       !124

                                  5.70                   5.80                     5.90                  6.00
                                                                 Energy, MeV
Alpha decay when nucleus is too large
Alpha particles emitted at specific energies
Not dangerous from outside: can’t penetrate
skin
Dangerous when ingested/inhaled




Gamma decay comes when nucleus falls
from high energy state to low energy state
Gamma rays can be absorbed by electrons
in the atom
Conversion electron: Gamma ray ejects
electron
k-α, L-β X-ray radiation when electrons
from high shells fall to low shells
Auger electrons when k-α absorbed by
outer electrons, ejecting them.
Alpha decay when nucleus is too large
Alpha particles emitted at specific energies
Not dangerous from outside: can’t penetrate
skin
Dangerous when ingested/inhaled




Gamma decay comes when nucleus falls
from high energy state to low energy state
Gamma rays can be absorbed by electrons
in the atom
Conversion electron: Gamma ray ejects
electron
k-α, L-β X-ray radiation when electrons
from high shells fall to low shells
Auger electrons when k-α absorbed by
outer electrons, ejecting them.
_
n    p + e– + ν
p    n + e+ + ν
p + e–   n+ ν
                  n    ν




                  p+   β-
Dataset #3:

Author: E. BROWNE            Citation: Nuclear Data Sheets 82, 379 (1997)

Parent Parent Parent            Parent                      GS-GS Q-value Daughter
                                            Decay Mode
Nucleus E(level) J!              T1/2                           (keV)     Nucleus
                                                                                      Decay
  90                                                                        90       Scheme
  39
     Y        0        2-     64.00 h 21      "- : 100 %       2280.1 16
                                                                            40
                                                                               Zr



Beta-:

  Energy      End-point energy           Intensity        Dose
   (keV)           (keV)                    (%)        ( MeV/Bq-s )

   25.0 7         93.8 16                1.4E-6 % 3        3.5E-10 8
  185.6 10        519.4 16               0.0115 % 14       2.1E-5 3
  933.7 12 2280.1 16                  99.9885 % 14         0.9336 12



Mean beta- energy: 933.6 keV 12, total beta- intensity: 100.0000 % 20, mean beta- dose:
0.9336 MeV/Bq-s 12
Decay radiation
n
udd
            νe

            e+




       W+




u du
 p
Positron decay makes
back-to-back photons

        –
            +

                          TOTAL
                Energy: 2mc2 = 1022 keV
                Charge: 0
                Momentum: 0
Positron decay makes
        back-to-back photons
                                                       1 keV
                                                  = 51             11
                                                hν              +5
               1k
                 eV
                                –           g y: : 0
                                          er ge         h/λ
                                                              =
            51                          En ar        m:
      : hν
          =               511              h entu
    gy : 0
  er ge            λ=
                        -           +    C m
                                           Mo
 n r
E a            : h/
 Ch men    tum
   Mo                                             TOTAL
                                        Energy: 2mc2 = 1022 keV
                                        Charge: 0
                                        Momentum: 0
Authors: TILLEY, WELLER, CHEVES, CHASTELER Citation: Nuclear Physics A595, 1 (1995)

Parent Parent Parent             Parent                      GS-GS Q-value Daughter
                                  T1/2        Decay Mode
Nucleus E(level) J!                                              (keV)     Nucleus
                                                                                       Decay
  18                                                                          18      Scheme
   9
     F       0        1+      109.77 m 5       " + : 100 %       1655.50 63
                                                                               8
                                                                                 O



Beta+:

 Energy      End-point energy          Intensity      Dose
  (keV)           (keV)                   (%)      ( MeV/Bq-s )

  249.8 3     633.5 6                  96.73 % 4      0.2416 3



Mean beta+ energy: 249.8 keV 3, total beta+ intensity: 96.73 % 4, mean beta+ dose: 0.2416 MeV/Bq-s 3

Electrons:

     Energy                Intensity         Dose
      (keV)                   (%)         ( MeV/Bq-s )

Auger K       0.52         3.072 % 11      1.597E-5 6



Gamma and X-ray radiation:

     Energy             Intensity           Dose
      (keV)                (%)           ( MeV/Bq-s )

XR k#2        0.525        0.009 % 3      4.5E-8 18
XR k#1        0.525        0.017 % 7      9E-8 4
Annihil.     511.0      193.46 % 8
Positron decay requires enough initial
      energy to make a positron

   p + e– n + ν           p   n + e+ + ν
mp+me+Q = mn+Eout      mp+Q = mn+me+Eout
                n      ν




               p+       β-
Parent Parent Parent           Parent                     GS-GS Q-value Daughter
                                T1/2       Decay Mode
Nucleus E(level) J!                                           (keV)     Nucleus
                                                                                    Decay
 57                                                                       57       Scheme
    Co       0.0      7/2-   271.74 d 6      ": 100 %         836.0 4        Fe
 27                                                                       26


Electrons:

         Energy                Intensity         Dose
          (keV)                   (%)         ( MeV/Bq-s )

Auger L        0.67           251 % 4          0.001684 24
Auger K        5.62           105.1 % 17       0.00591 10
CE K           7.3009 11       71.1 % 24       0.00519 18
CE L          13.5668 7        7.4 % 3         1.00E-3 3
CE K         114.9487 9        1.83 % 10       0.00211 12
CE L         121.2146 4        0.192 % 17      2.32E-4 21
CE K         129.3616 9        1.30 % 14       0.00169 18



Gamma and X-ray radiation:

          Energy                 Intensity         Dose
           (keV)                    (%)         ( MeV/Bq-s )

XR l          0.7                1.52 % 15       1.06E-5 11
XR k#2        6.391             16.6 % 9         0.00106 5
XR k#1        6.404             32.9 % 15        0.00211 10
XR k$1        7.058              3.91 % 19       2.76E-4 13
XR k$3        7.058              2.00 % 10       1.41E-4 7
             14.4129 6           9.16 % 15       0.001320 22
             122.06065 12       85.60 % 17       0.10448 21
             136.47356 29       10.68 % 8        0.01458 11
             230.4 4             4E-4 % 4        9E-7 9
             339.69 21           0.0037 % 3      1.26E-5 10
             352.33 21           0.0030 % 3      1.06E-5 11
Alpha decay when nucleus is too large
Alpha particles emitted at specific energies
Not dangerous from outside: can’t penetrate
skin
Dangerous when ingested/inhaled




Beta decay: neutron turned into proton or
proton turned into neutron
Neutrino takes some energy: beta particle
has range of energies
Positron decay makes annihilation photons
Electron capture: nucleus grabs low-lying
electron



Gamma decay comes when nucleus falls
from high energy state to low energy state
Gamma rays can be absorbed by electrons
in the atom
Conversion electron: Gamma ray ejects
electron
k-α, L-β X-ray radiation when electrons
from high shells fall to low shells
Auger electrons when k-α absorbed by
outer electrons, ejecting them.
Alpha decay when nucleus is too large
Alpha particles emitted at specific energies
Not dangerous from outside: can’t penetrate
skin
Dangerous when ingested/inhaled




Beta decay: neutron turned into proton or
proton turned into neutron
Neutrino takes some energy: beta particle
has range of energies
Positron decay makes annihilation photons
Electron capture: nucleus grabs low-lying
electron



Gamma decay comes when nucleus falls
from high energy state to low energy state
Gamma rays can be absorbed by electrons
in the atom
Conversion electron: Gamma ray ejects
electron
k-α, L-β X-ray radiation when electrons
from high shells fall to low shells
Auger electrons when k-α absorbed by
outer electrons, ejecting them.
Types of radioactive decay
Types of radioactive decay
Types of radioactive decay
Types of radioactive decay
Types of radioactive decay

More Related Content

What's hot

RADIOACTIVE DECAY AND HALF-LIFE CONCEPTS
RADIOACTIVE DECAY AND HALF-LIFE CONCEPTSRADIOACTIVE DECAY AND HALF-LIFE CONCEPTS
RADIOACTIVE DECAY AND HALF-LIFE CONCEPTS
Sciencetutors E-learning Media
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
Damion Lawrence
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
prahlad maurya
 
Basic radiation 061706
Basic radiation 061706Basic radiation 061706
Basic radiation 061706Paul Tarter
 
Betatron ppt
Betatron pptBetatron ppt
Betatron ppt
Oriental
 
Basics of Nuclear physics
Basics of Nuclear physicsBasics of Nuclear physics
Basics of Nuclear physics
Jaya Yadav
 
Van de Graaff generator by ahmad zahid
Van de Graaff generator by ahmad zahidVan de Graaff generator by ahmad zahid
Van de Graaff generator by ahmad zahid
Ahmad Zahid
 
Nuclear force
Nuclear forceNuclear force
Nuclear force
Vishal Jangid
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
University of Potsdam
 
Radioactivity
RadioactivityRadioactivity
Radioactivitywilsone
 
Radioactive decay
Radioactive decayRadioactive decay
Radioactive decay
Sarbjit Rindi
 
Fission and fusion
Fission and fusionFission and fusion
Fission and fusionInga Teper
 
Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3
Younes Sina
 
Physics Final Presentation: Nuclear Physics
Physics Final Presentation: Nuclear PhysicsPhysics Final Presentation: Nuclear Physics
Physics Final Presentation: Nuclear Physics
Chris Wilson
 
Interaction of Radiation with Matter
Interaction of  Radiation with  MatterInteraction of  Radiation with  Matter
Interaction of Radiation with MatterArnab Bose
 
Background Radiation
Background RadiationBackground Radiation
Background Radiation
Iqlaas Sherif
 

What's hot (20)

Radioactive decay
Radioactive decayRadioactive decay
Radioactive decay
 
RADIOACTIVE DECAY AND HALF-LIFE CONCEPTS
RADIOACTIVE DECAY AND HALF-LIFE CONCEPTSRADIOACTIVE DECAY AND HALF-LIFE CONCEPTS
RADIOACTIVE DECAY AND HALF-LIFE CONCEPTS
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Unit 17 Radioactive Decay
Unit 17 Radioactive DecayUnit 17 Radioactive Decay
Unit 17 Radioactive Decay
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Basic radiation 061706
Basic radiation 061706Basic radiation 061706
Basic radiation 061706
 
Betatron ppt
Betatron pptBetatron ppt
Betatron ppt
 
Basics of Nuclear physics
Basics of Nuclear physicsBasics of Nuclear physics
Basics of Nuclear physics
 
Van de Graaff generator by ahmad zahid
Van de Graaff generator by ahmad zahidVan de Graaff generator by ahmad zahid
Van de Graaff generator by ahmad zahid
 
Nuclear force
Nuclear forceNuclear force
Nuclear force
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Radioactive decay
Radioactive decayRadioactive decay
Radioactive decay
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Radioactive decay
Radioactive decayRadioactive decay
Radioactive decay
 
Fission and fusion
Fission and fusionFission and fusion
Fission and fusion
 
Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3
 
Physics Final Presentation: Nuclear Physics
Physics Final Presentation: Nuclear PhysicsPhysics Final Presentation: Nuclear Physics
Physics Final Presentation: Nuclear Physics
 
Interaction of Radiation with Matter
Interaction of  Radiation with  MatterInteraction of  Radiation with  Matter
Interaction of Radiation with Matter
 
PET Cyclotron
PET Cyclotron PET Cyclotron
PET Cyclotron
 
Background Radiation
Background RadiationBackground Radiation
Background Radiation
 

Viewers also liked

Chapter 2 basic structure concepts
Chapter 2  basic structure conceptsChapter 2  basic structure concepts
Chapter 2 basic structure concepts
Simon Foo
 
Chapter 22.2 : Radioactive Decay
Chapter 22.2 : Radioactive DecayChapter 22.2 : Radioactive Decay
Chapter 22.2 : Radioactive DecayChris Foltz
 
Isotopes And Radioactivity 09
Isotopes And Radioactivity 09Isotopes And Radioactivity 09
Isotopes And Radioactivity 09
Paula Mills
 
Atomic theory timeline
Atomic theory timelineAtomic theory timeline
Atomic theory timeline
ramatboy
 
ISOTOP, ISOTON DAN ISOBAR
ISOTOP, ISOTON DAN ISOBARISOTOP, ISOTON DAN ISOBAR
ISOTOP, ISOTON DAN ISOBAR
Home
 
Isotop, isobar dan isoton
Isotop, isobar dan isotonIsotop, isobar dan isoton
Isotop, isobar dan isotonABINUL HAKIM
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
Albert DeFusco
 
Nuclear Materials
Nuclear MaterialsNuclear Materials
Nuclear Materials
Anuroop Ashok
 
isotop, isobar, isoton
isotop, isobar, isotonisotop, isobar, isoton
isotop, isobar, isotonberlianablue
 
Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,kamal2200
 
Isotope isotone isobar
Isotope isotone isobarIsotope isotone isobar
Isotope isotone isobarFendi Ard
 
Isotopes, isotones, and isobars
Isotopes, isotones, and isobarsIsotopes, isotones, and isobars
Isotopes, isotones, and isobars
Evina Nathalia
 
Option C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half lifeOption C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half life
Lawrence kok
 
Models of the Atom
Models of the AtomModels of the Atom
Models of the AtomOhMiss
 
Nuclear Power Taja
Nuclear Power TajaNuclear Power Taja
Nuclear Power TajaRosalmara
 
DIFFERENT ATOMIC MODELS
DIFFERENT ATOMIC MODELSDIFFERENT ATOMIC MODELS
DIFFERENT ATOMIC MODELSShahn Tee
 
Atomic Theory power point cscope
Atomic Theory power point cscopeAtomic Theory power point cscope
Atomic Theory power point cscope
Jenny Dixon
 
Nucleus Ppt
Nucleus PptNucleus Ppt
Nucleus Pptiyss0104
 

Viewers also liked (20)

Chapter 2 basic structure concepts
Chapter 2  basic structure conceptsChapter 2  basic structure concepts
Chapter 2 basic structure concepts
 
Chapter 22.2 : Radioactive Decay
Chapter 22.2 : Radioactive DecayChapter 22.2 : Radioactive Decay
Chapter 22.2 : Radioactive Decay
 
Isotopes And Radioactivity 09
Isotopes And Radioactivity 09Isotopes And Radioactivity 09
Isotopes And Radioactivity 09
 
Atomic theory timeline
Atomic theory timelineAtomic theory timeline
Atomic theory timeline
 
ISOTOP, ISOTON DAN ISOBAR
ISOTOP, ISOTON DAN ISOBARISOTOP, ISOTON DAN ISOBAR
ISOTOP, ISOTON DAN ISOBAR
 
Isotop, isobar dan isoton
Isotop, isobar dan isotonIsotop, isobar dan isoton
Isotop, isobar dan isoton
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
 
Nuclear Materials
Nuclear MaterialsNuclear Materials
Nuclear Materials
 
isotop, isobar, isoton
isotop, isobar, isotonisotop, isobar, isoton
isotop, isobar, isoton
 
Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,
 
Isotope isotone isobar
Isotope isotone isobarIsotope isotone isobar
Isotope isotone isobar
 
Isotopes, isotones, and isobars
Isotopes, isotones, and isobarsIsotopes, isotones, and isobars
Isotopes, isotones, and isobars
 
Option C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half lifeOption C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half life
 
Models of the Atom
Models of the AtomModels of the Atom
Models of the Atom
 
Nuclear Power Taja
Nuclear Power TajaNuclear Power Taja
Nuclear Power Taja
 
DIFFERENT ATOMIC MODELS
DIFFERENT ATOMIC MODELSDIFFERENT ATOMIC MODELS
DIFFERENT ATOMIC MODELS
 
Atomic Theory power point cscope
Atomic Theory power point cscopeAtomic Theory power point cscope
Atomic Theory power point cscope
 
Nucleus Ppt
Nucleus PptNucleus Ppt
Nucleus Ppt
 
Nuclear energy
Nuclear energyNuclear energy
Nuclear energy
 
Struture of an atom
Struture of an atomStruture of an atom
Struture of an atom
 

Similar to Types of radioactive decay

Nuclear properties of cobalt isotopic chain .last one111
Nuclear properties of cobalt isotopic chain   .last   one111Nuclear properties of cobalt isotopic chain   .last   one111
Nuclear properties of cobalt isotopic chain .last one111
Balsam Ata
 
11 Nuclear
11 Nuclear11 Nuclear
11 Nuclear
Gita_Sathianathan
 
Presentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptPresentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.ppt
RezaMohammadi90
 
Inside the atom
Inside the atomInside the atom
Inside the atom
Christy Betos
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
nirupam12
 
Exploration Geology- Radioactive method of exploration
Exploration Geology- Radioactive method of explorationExploration Geology- Radioactive method of exploration
Exploration Geology- Radioactive method of exploration
sruthy sajeev
 
2. Atomic Structure and Interatomic Bonding.ppt
2. Atomic Structure and Interatomic Bonding.ppt2. Atomic Structure and Interatomic Bonding.ppt
2. Atomic Structure and Interatomic Bonding.ppt
AparnaZagabathuni1
 
03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf
HassanSoboh
 
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
Yoshitaro Takaesu
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnologyStar Gold
 
Neutron Detection
Neutron DetectionNeutron Detection
Neutron Detection
Daniel Maierhafer
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13Faysal Khan
 
4307985.ppt
4307985.ppt4307985.ppt
4307985.ppt
Jose Paulo
 
Shell effects in atomic nuclei
Shell effects in atomic nucleiShell effects in atomic nuclei
Shell effects in atomic nuclei
MohammedFox
 
Ah32642646
Ah32642646Ah32642646
Ah32642646IJMER
 
Radiobiology2
Radiobiology2Radiobiology2
Radiobiology2zedan
 
Hari talk sdmc_puri_final
Hari talk sdmc_puri_finalHari talk sdmc_puri_final
Hari talk sdmc_puri_final
Nitish Pal
 
Atomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak speciesAtomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak species
AstroAtom
 

Similar to Types of radioactive decay (20)

Nuclear properties of cobalt isotopic chain .last one111
Nuclear properties of cobalt isotopic chain   .last   one111Nuclear properties of cobalt isotopic chain   .last   one111
Nuclear properties of cobalt isotopic chain .last one111
 
11 Nuclear
11 Nuclear11 Nuclear
11 Nuclear
 
Presentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptPresentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.ppt
 
Inside the atom
Inside the atomInside the atom
Inside the atom
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
 
Exploration Geology- Radioactive method of exploration
Exploration Geology- Radioactive method of explorationExploration Geology- Radioactive method of exploration
Exploration Geology- Radioactive method of exploration
 
2. Atomic Structure and Interatomic Bonding.ppt
2. Atomic Structure and Interatomic Bonding.ppt2. Atomic Structure and Interatomic Bonding.ppt
2. Atomic Structure and Interatomic Bonding.ppt
 
03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf
 
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
Neutron Detection
Neutron DetectionNeutron Detection
Neutron Detection
 
Aes
AesAes
Aes
 
Radioactivi ty 1
Radioactivi ty 1Radioactivi ty 1
Radioactivi ty 1
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
 
4307985.ppt
4307985.ppt4307985.ppt
4307985.ppt
 
Shell effects in atomic nuclei
Shell effects in atomic nucleiShell effects in atomic nuclei
Shell effects in atomic nuclei
 
Ah32642646
Ah32642646Ah32642646
Ah32642646
 
Radiobiology2
Radiobiology2Radiobiology2
Radiobiology2
 
Hari talk sdmc_puri_final
Hari talk sdmc_puri_finalHari talk sdmc_puri_final
Hari talk sdmc_puri_final
 
Atomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak speciesAtomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak species
 

More from David Graff

Extrasolar planets
Extrasolar planetsExtrasolar planets
Extrasolar planetsDavid Graff
 
Structure Of Matter
Structure Of MatterStructure Of Matter
Structure Of Matter
David Graff
 
Dark Energy
Dark EnergyDark Energy
Dark Energy
David Graff
 
Astronomy and the enlightnement
Astronomy and the enlightnementAstronomy and the enlightnement
Astronomy and the enlightnement
David Graff
 
Gravitational Microlensing
Gravitational MicrolensingGravitational Microlensing
Gravitational Microlensing
David Graff
 
Astrobiology: Life on other planets
Astrobiology: Life on other planetsAstrobiology: Life on other planets
Astrobiology: Life on other planets
David Graff
 
SPECT
SPECTSPECT
PET CT
PET CTPET CT
PET CT
David Graff
 
Gamma Camera Image Quality
Gamma Camera Image QualityGamma Camera Image Quality
Gamma Camera Image Quality
David Graff
 

More from David Graff (9)

Extrasolar planets
Extrasolar planetsExtrasolar planets
Extrasolar planets
 
Structure Of Matter
Structure Of MatterStructure Of Matter
Structure Of Matter
 
Dark Energy
Dark EnergyDark Energy
Dark Energy
 
Astronomy and the enlightnement
Astronomy and the enlightnementAstronomy and the enlightnement
Astronomy and the enlightnement
 
Gravitational Microlensing
Gravitational MicrolensingGravitational Microlensing
Gravitational Microlensing
 
Astrobiology: Life on other planets
Astrobiology: Life on other planetsAstrobiology: Life on other planets
Astrobiology: Life on other planets
 
SPECT
SPECTSPECT
SPECT
 
PET CT
PET CTPET CT
PET CT
 
Gamma Camera Image Quality
Gamma Camera Image QualityGamma Camera Image Quality
Gamma Camera Image Quality
 

Recently uploaded

Knee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdfKnee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdf
vimalpl1234
 
BENIGN PROSTATIC HYPERPLASIA.BPH. BPHpdf
BENIGN PROSTATIC HYPERPLASIA.BPH. BPHpdfBENIGN PROSTATIC HYPERPLASIA.BPH. BPHpdf
BENIGN PROSTATIC HYPERPLASIA.BPH. BPHpdf
DR SETH JOTHAM
 
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Prof. Marcus Renato de Carvalho
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Saeid Safari
 
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdfAlcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Dr Jeenal Mistry
 
Flu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore KarnatakaFlu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore Karnataka
addon Scans
 
BRACHYTHERAPY OVERVIEW AND APPLICATORS
BRACHYTHERAPY OVERVIEW  AND  APPLICATORSBRACHYTHERAPY OVERVIEW  AND  APPLICATORS
BRACHYTHERAPY OVERVIEW AND APPLICATORS
Krishan Murari
 
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness JourneyTom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
greendigital
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
aljamhori teaching hospital
 
Evaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animalsEvaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animals
Shweta
 
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
bkling
 
Ocular injury ppt Upendra pal optometrist upums saifai etawah
Ocular injury  ppt  Upendra pal  optometrist upums saifai etawahOcular injury  ppt  Upendra pal  optometrist upums saifai etawah
Ocular injury ppt Upendra pal optometrist upums saifai etawah
pal078100
 
Are There Any Natural Remedies To Treat Syphilis.pdf
Are There Any Natural Remedies To Treat Syphilis.pdfAre There Any Natural Remedies To Treat Syphilis.pdf
Are There Any Natural Remedies To Treat Syphilis.pdf
Little Cross Family Clinic
 
heat stroke and heat exhaustion in children
heat stroke and heat exhaustion in childrenheat stroke and heat exhaustion in children
heat stroke and heat exhaustion in children
SumeraAhmad5
 
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIONDACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
DR SETH JOTHAM
 
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptxTriangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
Dr. Rabia Inam Gandapore
 
24 Upakrama.pptx class ppt useful in all
24 Upakrama.pptx class ppt useful in all24 Upakrama.pptx class ppt useful in all
24 Upakrama.pptx class ppt useful in all
DrSathishMS1
 
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
VarunMahajani
 
Prix Galien International 2024 Forum Program
Prix Galien International 2024 Forum ProgramPrix Galien International 2024 Forum Program
Prix Galien International 2024 Forum Program
Levi Shapiro
 
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTSARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
Dr. Vinay Pareek
 

Recently uploaded (20)

Knee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdfKnee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdf
 
BENIGN PROSTATIC HYPERPLASIA.BPH. BPHpdf
BENIGN PROSTATIC HYPERPLASIA.BPH. BPHpdfBENIGN PROSTATIC HYPERPLASIA.BPH. BPHpdf
BENIGN PROSTATIC HYPERPLASIA.BPH. BPHpdf
 
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
 
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdfAlcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
 
Flu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore KarnatakaFlu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore Karnataka
 
BRACHYTHERAPY OVERVIEW AND APPLICATORS
BRACHYTHERAPY OVERVIEW  AND  APPLICATORSBRACHYTHERAPY OVERVIEW  AND  APPLICATORS
BRACHYTHERAPY OVERVIEW AND APPLICATORS
 
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness JourneyTom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
 
Evaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animalsEvaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animals
 
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
 
Ocular injury ppt Upendra pal optometrist upums saifai etawah
Ocular injury  ppt  Upendra pal  optometrist upums saifai etawahOcular injury  ppt  Upendra pal  optometrist upums saifai etawah
Ocular injury ppt Upendra pal optometrist upums saifai etawah
 
Are There Any Natural Remedies To Treat Syphilis.pdf
Are There Any Natural Remedies To Treat Syphilis.pdfAre There Any Natural Remedies To Treat Syphilis.pdf
Are There Any Natural Remedies To Treat Syphilis.pdf
 
heat stroke and heat exhaustion in children
heat stroke and heat exhaustion in childrenheat stroke and heat exhaustion in children
heat stroke and heat exhaustion in children
 
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIONDACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
 
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptxTriangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
 
24 Upakrama.pptx class ppt useful in all
24 Upakrama.pptx class ppt useful in all24 Upakrama.pptx class ppt useful in all
24 Upakrama.pptx class ppt useful in all
 
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
 
Prix Galien International 2024 Forum Program
Prix Galien International 2024 Forum ProgramPrix Galien International 2024 Forum Program
Prix Galien International 2024 Forum Program
 
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTSARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
 

Types of radioactive decay

  • 2.
  • 3. b ig T oo ns o to pr a ny ns m tro Too n eu a ny m T oo
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9. Dataset #2: Authors: J. K. TULI, G. REED, B. SINGH Citation: Nuclear Data Sheets 93, 1 (2001) Parent Parent Parent Parent GS-GS Q-value Daughter Decay Mode Nucleus E(level) J" T 1/2 (keV) Nucleus Decay Scheme 99 99 Tc 14 2 . 6 8 3 2 1 1 1/2- 6.015 h 9 I T : 9 9 . 9 9 63 6 % Tc 43 43 Electrons: Energy Intensity Dose (keV) (%) ( MeV/Bq-s ) CE M 1.6286 11 74.595 % 0.0012149 Auger L 2.17 10.32 % 6 2 . 2 4 0 E - 4 14 Auger K 15.5 2.05 % 4 3.17E-4 6 CE K 119.4670 12 8.84 % 0.01056 CE K 121.59 3 0.55 % 5 6.7E-4 6 CE L 137.4685 11 1.07 % 0.00147 CE L 139.59 3 0.172 % 16 2.40E-4 23 CE M 139.9670 14 0.194 % 2.72E-4 CE NP 140.4430 22 0.0374 % 5.25310E-5 CE M 142.09 3 0.034 % 3 4.8E-5 5 CE NP 142.56 3 0.0066 % 6 9.4E-6 9 Gamma and X-ray radiation: Energy Intensity Dose (keV) (%) ( MeV/Bq-s ) 2.1726 4 6.201E-9 % 1.347E-13 XR l 2.42 0.447 % 11 1.08E-5 3 X R k #2 18.251 2.14 % 6 3.91E-4 11 X R k #1 18.367 4.07 % 12 7.47E-4 21 X R k !3 20.599 0.330 % 10 6.79E-5 20 X R k !1 20.619 0.639 % 18 1.32E-4 4 X R k !2 21.005 0.145 % 4 3.04E-5 8 140.511 1 89.06 % 0.1251 142.63 3 0.0187 % 18 2.7E-5 3
  • 10. A conversion electron is ejected by a gamma photon from the nucleus
  • 11. A conversion electron is ejected by a gamma photon from the nucleus
  • 12. A kα X-ray comes when an electron from the L shell falls to the K shell
  • 13. A kα X-ray comes when an electron from the L shell falls to the K shell
  • 14. An Auger electron is ejected by a kα X-ray
  • 15. An Auger electron is ejected by a kα X-ray
  • 16. Gamma decay comes when nucleus falls from high energy state to low energy state Gamma rays can be absorbed by electrons in the atom Conversion electron: Gamma ray ejects electron k-α, L-β X-ray radiation when electrons from high shells fall to low shells Auger electrons when k-α absorbed by outer electrons, ejecting them.
  • 17. Gamma decay comes when nucleus falls from high energy state to low energy state Gamma rays can be absorbed by electrons in the atom Conversion electron: Gamma ray ejects electron k-α, L-β X-ray radiation when electrons from high shells fall to low shells Auger electrons when k-α absorbed by outer electrons, ejecting them.
  • 18.
  • 20. MP (MD MHe ) 11-34 c2 Note that the mass of the two electrons in the He atom compensates for the fact that the daughter atom has two fewer electrons than the parent atom. Applying this to the example given in Equation 11-33, the mass of the 232Th atom is 232.038124 u The mass of the daughter atom 228Ra is 228.031139 u, and adding it to the 4.002603 u mass of 4He, we get 232.033742 u for the total mass of the decay products Equation 11-34 then yields Q/c 2 0.004382 u, which, when multiplied by the con- version factor 931.5 MeV/c 2, gives Q 4.08 MeV. Thus, the rest energy of 232Th is greater than that of 228Ra 4He; therefore, 232Th is unstable toward spontaneous decay. The kinetic energy of the particle (for decays to the ground state of the daugh- ter nucleus) is slightly less than the decay energy Q because of the small recoil energy of the daughter nucleus. If the parent nucleus is at rest when it decays, the daughter 1600 !286 Number of particles 1200 !61 !0 800 !334 !330 400 ! !376 342 !247 !174 !80 !350 !30 !280 !235 !124 5.70 5.80 5.90 6.00 Energy, MeV
  • 21.
  • 22.
  • 23. Alpha decay when nucleus is too large Alpha particles emitted at specific energies Not dangerous from outside: can’t penetrate skin Dangerous when ingested/inhaled Gamma decay comes when nucleus falls from high energy state to low energy state Gamma rays can be absorbed by electrons in the atom Conversion electron: Gamma ray ejects electron k-α, L-β X-ray radiation when electrons from high shells fall to low shells Auger electrons when k-α absorbed by outer electrons, ejecting them.
  • 24. Alpha decay when nucleus is too large Alpha particles emitted at specific energies Not dangerous from outside: can’t penetrate skin Dangerous when ingested/inhaled Gamma decay comes when nucleus falls from high energy state to low energy state Gamma rays can be absorbed by electrons in the atom Conversion electron: Gamma ray ejects electron k-α, L-β X-ray radiation when electrons from high shells fall to low shells Auger electrons when k-α absorbed by outer electrons, ejecting them.
  • 25.
  • 26. _ n p + e– + ν p n + e+ + ν p + e– n+ ν n ν p+ β-
  • 27.
  • 28.
  • 29.
  • 30. Dataset #3: Author: E. BROWNE Citation: Nuclear Data Sheets 82, 379 (1997) Parent Parent Parent Parent GS-GS Q-value Daughter Decay Mode Nucleus E(level) J! T1/2 (keV) Nucleus Decay 90 90 Scheme 39 Y 0 2- 64.00 h 21 "- : 100 % 2280.1 16 40 Zr Beta-: Energy End-point energy Intensity Dose (keV) (keV) (%) ( MeV/Bq-s ) 25.0 7 93.8 16 1.4E-6 % 3 3.5E-10 8 185.6 10 519.4 16 0.0115 % 14 2.1E-5 3 933.7 12 2280.1 16 99.9885 % 14 0.9336 12 Mean beta- energy: 933.6 keV 12, total beta- intensity: 100.0000 % 20, mean beta- dose: 0.9336 MeV/Bq-s 12
  • 31.
  • 32.
  • 33.
  • 35.
  • 36.
  • 37. n udd νe e+ W+ u du p
  • 38. Positron decay makes back-to-back photons – + TOTAL Energy: 2mc2 = 1022 keV Charge: 0 Momentum: 0
  • 39. Positron decay makes back-to-back photons 1 keV = 51 11 hν +5 1k eV – g y: : 0 er ge h/λ = 51 En ar m: : hν = 511 h entu gy : 0 er ge λ= - + C m Mo n r E a : h/ Ch men tum Mo TOTAL Energy: 2mc2 = 1022 keV Charge: 0 Momentum: 0
  • 40.
  • 41.
  • 42. Authors: TILLEY, WELLER, CHEVES, CHASTELER Citation: Nuclear Physics A595, 1 (1995) Parent Parent Parent Parent GS-GS Q-value Daughter T1/2 Decay Mode Nucleus E(level) J! (keV) Nucleus Decay 18 18 Scheme 9 F 0 1+ 109.77 m 5 " + : 100 % 1655.50 63 8 O Beta+: Energy End-point energy Intensity Dose (keV) (keV) (%) ( MeV/Bq-s ) 249.8 3 633.5 6 96.73 % 4 0.2416 3 Mean beta+ energy: 249.8 keV 3, total beta+ intensity: 96.73 % 4, mean beta+ dose: 0.2416 MeV/Bq-s 3 Electrons: Energy Intensity Dose (keV) (%) ( MeV/Bq-s ) Auger K 0.52 3.072 % 11 1.597E-5 6 Gamma and X-ray radiation: Energy Intensity Dose (keV) (%) ( MeV/Bq-s ) XR k#2 0.525 0.009 % 3 4.5E-8 18 XR k#1 0.525 0.017 % 7 9E-8 4 Annihil. 511.0 193.46 % 8
  • 43. Positron decay requires enough initial energy to make a positron p + e– n + ν p n + e+ + ν mp+me+Q = mn+Eout mp+Q = mn+me+Eout n ν p+ β-
  • 44.
  • 45.
  • 46. Parent Parent Parent Parent GS-GS Q-value Daughter T1/2 Decay Mode Nucleus E(level) J! (keV) Nucleus Decay 57 57 Scheme Co 0.0 7/2- 271.74 d 6 ": 100 % 836.0 4 Fe 27 26 Electrons: Energy Intensity Dose (keV) (%) ( MeV/Bq-s ) Auger L 0.67 251 % 4 0.001684 24 Auger K 5.62 105.1 % 17 0.00591 10 CE K 7.3009 11 71.1 % 24 0.00519 18 CE L 13.5668 7 7.4 % 3 1.00E-3 3 CE K 114.9487 9 1.83 % 10 0.00211 12 CE L 121.2146 4 0.192 % 17 2.32E-4 21 CE K 129.3616 9 1.30 % 14 0.00169 18 Gamma and X-ray radiation: Energy Intensity Dose (keV) (%) ( MeV/Bq-s ) XR l 0.7 1.52 % 15 1.06E-5 11 XR k#2 6.391 16.6 % 9 0.00106 5 XR k#1 6.404 32.9 % 15 0.00211 10 XR k$1 7.058 3.91 % 19 2.76E-4 13 XR k$3 7.058 2.00 % 10 1.41E-4 7 14.4129 6 9.16 % 15 0.001320 22 122.06065 12 85.60 % 17 0.10448 21 136.47356 29 10.68 % 8 0.01458 11 230.4 4 4E-4 % 4 9E-7 9 339.69 21 0.0037 % 3 1.26E-5 10 352.33 21 0.0030 % 3 1.06E-5 11
  • 47. Alpha decay when nucleus is too large Alpha particles emitted at specific energies Not dangerous from outside: can’t penetrate skin Dangerous when ingested/inhaled Beta decay: neutron turned into proton or proton turned into neutron Neutrino takes some energy: beta particle has range of energies Positron decay makes annihilation photons Electron capture: nucleus grabs low-lying electron Gamma decay comes when nucleus falls from high energy state to low energy state Gamma rays can be absorbed by electrons in the atom Conversion electron: Gamma ray ejects electron k-α, L-β X-ray radiation when electrons from high shells fall to low shells Auger electrons when k-α absorbed by outer electrons, ejecting them.
  • 48. Alpha decay when nucleus is too large Alpha particles emitted at specific energies Not dangerous from outside: can’t penetrate skin Dangerous when ingested/inhaled Beta decay: neutron turned into proton or proton turned into neutron Neutrino takes some energy: beta particle has range of energies Positron decay makes annihilation photons Electron capture: nucleus grabs low-lying electron Gamma decay comes when nucleus falls from high energy state to low energy state Gamma rays can be absorbed by electrons in the atom Conversion electron: Gamma ray ejects electron k-α, L-β X-ray radiation when electrons from high shells fall to low shells Auger electrons when k-α absorbed by outer electrons, ejecting them.