SlideShare a Scribd company logo
Electron irradiation effect on Al2O3


              Kurt Sickafus
              Younes Sina
Ionization vs. Excitation
 Excitation transfers enough energy to an orbital electron to displace it
  further away from the nucleus.
                                                                        IONISATION
                            EXCITATION




  Incident electron with a specific energy


      Atomic electron absorbs energy and moves into a higher orbit
                                                         High energy incident electron
                                                                                         Ejected electron


 In ionization the electron is removed, resulting in an ion pair.
Bremsstralung (or Braking) Radiation

•High speed electrons may lose energy in the form of X-
rays when they quickly decelerate upon striking a heavy
material.
Bremsstrahlung
 Probability of bremsstrahlung production per atom is
  proportional to the square of Z of the absorber

 Energy emission via bremsstrahlung varies inversely with the
  square of the mass of the incident particle


    Protons and alpha particles produce less than one-millionth
    the amount of bremsstrahlung radiation as electrons of the
    same energy
Bremsstrahlung
Ratio of electron energy loss by bremsstrahlung production to
that lost by excitation and ionization = EZ/820



    E = kinetic energy of incident electron in MeV
    Z = atomic number of the absorber




Energy loss for Al:    Brem./ (Exc. & Ion.) = 1×13/820 = 1.58%
Charged Particle Tracks
 Electrons follow tortuous paths in matter as the result of multiple
  scattering events
   • Ionization track is sparse and nonuniform
 Larger mass of heavy charged particle results in dense and usually linear
  ionization track
 Path length is actual distance particle travels; range is actual depth of
  penetration in matter
Particle interactions

Energetic charged particles interact with matter by
 electrical forces and lose kinetic energy via:
  Excitation
  Ionization
  Radiative losses

~ 70% of charged particle energy deposition leads
 to nonionizing excitation
Dose = Absorbed Energy Density

Absorbed energy normalized by weight, volume, atoms, etc.



                            J
                  1 Gy = 1
                           kg
                                             SI units




  8
Water: heat to boiling point
      H2O              J
     cp   = 4.1813          (@ 25°C)
                     gK
     specific heat of water
T  80 K
                                        3
                              J     10 g
       c   H2O
           p     T = 334.5      
                              g       kg
                                5 J
                     3.345 10
                                 kg
                     0.3345 MGy Energy
                                    Absorbed
9
Projectile-Target Interactions




      # events
                     • • • t
<volume> or <weight>
Projectile-Target Interactions

                 atomic        cross-
                           •             •   flux    •   time
                 density       section



# events
            a  atoms    area    projectiles  t  time 
volume           volume   atom   areagtime 

# events         atoms    area    projectiles  t  time 
            w 
 weight          weight   atom   areagtime 
                         
Projectile-Target Interactions


    fluence       =      flux    •    time




  projectiles       projectiles 

  area           areag
                           time   t time 
Projectile-Target Interactions

                 atomic        cross-
                           •             •   fluence
                 density       section



# events
            a  atoms    area    projectiles 
volume           volume   atom   area 

# events         atoms    area    projectiles 
            w 
 weight          weight   atom   area 
                         
Projectile-Target Interactions

                    cross-
                              •   fluence
                    section


  # events
  volume
                 area    projectiles 
   atoms 
a volume          atom   area 
          
Projectile-Target Interactions
             Leading to Atomic Displacements

                                      displacement
                     dpa         =    cross-         •   fluence
                                      section
            # atomic displacements
                   volume
                                       area    projectiles 
                    atoms 
                 a volume               atom   area 
                            

Ballistic           displacements
                                       area    projectiles 
Dose
                         atom            atom   area 
Electron irradiation-induced amorphization
             of sapphire (Al2O3)




    1 MeV electrons
    room-temperature irradiation conditions
Electron irradiation-induced amorphization
             of sapphire (Al2O3)

 Two components of damage:

 1. electronic component
 (electron excitation/ionization; radiolysis)

 2. nuclear component
 (ballistic or displacement damage)
1. Electronic Stopping
Electron Excitation/Ionization
Bethe-Ashkin expression for ionization energy loss per unit length




H. A. Bethe, and J. Ashkin, in Experimental Nuclear Physics. Volume I, edited by E. Segrè (John Wiley &
Sons, Inc., New York, 1953), pp. 166-357.
Electron Excitation/Ionization
    Bethe-Ashkin expression for ionization energy loss per unit length
relativistic expression


                E0  2 E              
              Ln  2         2         
                   2J (1   )        

 
   dE 2 e e 
   dx
      
          4

            2 
        E0  
                                    
               2 1   2  1   2 Ln2 
                                         
                                                          
                1   2                 
                                        
                 1
                                                    
                                 2
               1  1   2             
               8
                                        
                                         
E0  me c  rest energy of the electron
         2


me  rest mass of the electron
c  speed of light




         e  14.4 eV  Å
             2
v
     
          c
     v  velocity of electron
     c  speed of light

                   2
        E0 
  1       
        E  E
            0

E0  rest energy of the electron
E  kinetic energy of the electron
e  Z  a
e  electron density
Z  atomic number
a  atomic density
0.19
     J  9.76 Z  58.5 Z    (eV)
        mean electron excitation potential


M. J. Berger, and S. M. Seltzer, Nat. Acad. Sci. / Nat. Res. Council Publ. 1133 (Washington,
1964), p. 205.
Bragg’s Rule for Additivity of Stopping Powers



W. H. Bragg, and M. A. Elder, Phil. Mag. 10, 318
(1905)
Stopping Power


                1 dE         eV  Å2 
 e  Se E                atom  e 
                a dx   e              
Bragg’s Rule for Additivity of Stopping Powers
    For binary compound with molecular unit, A B :
                                              m n

   Am Bn
    e
             m e  n e
                        A               B

where m is the number of A atoms in molecule A B
                                              m n
and n is the number of B atoms in molecule A B
                                            m n
One can show that:
            Am Bn                                   A        B
    dE                                            dE    dE
                          Am Bn
                            m          Am Bn
                                                     
    dx      e
                                        e
                                                  dx e dx    e
    where 
                Am Bn
                  is the molecular density of A B
                m                              m n
    molecules in the compound.
Ionization stopping in Al2O3
E = 1000 keV= 1 MeV



     dE/dx (E = 1 MeV) = -0.0377 eV/Å . e-


            thickness = 1000 Å
            TEM sample thickness


Total ionization energy
                           = 37.7 eV/e- = 6.032x10-18 J/e-
loss over sample thickness
Electron fluence:
Φ=1×1028 e/m2=1×108 e/Ȧ2




Irradiation time= t= 2 hr = 7200 s
φ= 1.38×104 e-/Ȧ2s
dE
Areal Energy Density =                     
                       dx     electronic

                                  J    11
                 3.504 10
 =37.7×108 eV/Ȧ2= 3.77×10-10 J/Ȧ2Å 2



                           Areal Energy Density
Total Energy Density   =
                                 thickness
                                           14   J
                        3.504 10                 3
        =3.77×10-13 J/Ȧ3                         Å
ρAl2O3= 3980 Kg/m3



Dose= 94.72×1012 J/Kg= 94.7 TGy



    Magnitude of dose: TeraGray !!
2. Nuclear Stopping
Electron displacement damage calculation

Primary damage cross-section after Seitz & Koehler (1956):
F. Seitz, and J. S. Koehler, in Solid State Physics: Advances in Research & Applications, edited by F.
Seitz, and D. Turnbull (Academic Press, 1956), pp. 305-448.




Based on the relativistic electron cross-section expression derived by McKinley & Feshbach (1948):
W. A. McKinley, Jr., and H. Feshbach, Physical Review 74, 1759 (1948).




Total cross-section (primary plus secondaries) after Oen (1973):
O. S. Oen, (Oak Ridge National Laboratory, Oak Ridge, TN, 1973), pp. 204.
Differential displacement cross-section, dσ

             b 2        T         T   T   dT
d (T )        T 1  2             2
              4 m       Tm         Tm Tm   T
                                              

     where T is the kinetic energy of the electron

                                2
                     E0 
       v / c  1 
                     E0 E 
                            

        Z
     where  is the fine structure constant (~1/137)

Tm  maximum energy transfer from e to target atom
           4 me M             E 
   Tm                  E  1
          me  M         2 E0 
                    2
                                 
   where E is the incident electron energy

                          O
                                           Ca
2
         e    2
                   1
b  4 Z  
  2         2

          E0   4  2
where
        1
=
      1 2
Primary displacement cross-section:

               Tm       area  
 p (E)   d  (T ) 
           Ed
                       atom    
where E d is the displacement threshold energy
Cascade cross-section:
                Tm              area  
 tot (E)    (T ) d  (T ) 
             Ed
                               atom    
where  (T ) is the number of secondary displacements,
given most simply by the Kinchin-Pease expression:
 (T )  0; T < Ed
 (T )  1; Ed  T < 2Ed
           T
 (T )       ; T  2Ed
          2Ed
E = 1000 keV


ZO = 8           TmO =271

ZAl = 13         TmAl =161

ZAve =10        TmAve =227
Ed = 20 eV


ZO = 8           EtO = 129,000

ZAl = 13         EtAl = 205,000

Zave =10         EtAve = 159,400
Ed = 40 eV


ZO= 8              EO= 238,000

ZAl= 13            EAl= 365,000

ZAve=10
Ed = 50 eV


ZO= 8                EO = 290,000

ZAl= 13              EAl = 430,000

ZAve=10
E=1 MeV
          Ed=40 eV

ZO= 8          EtO= 290,000 eV

ZAl= 13        EtAl= 430,000 eV

ZAve=10
               TmAve=227 eV

                2Ed=80 eV
α-Al2O3

E=1 MeV
Ed=40 eV
σp @ 1 MeV =2.18 barns
E  300 keV
powellite (CaMoO4)                    Ed  25 eV


      Z   ave
                 15.67        Ethreshold  295 keV
                                 ave



                                Tm  25.54 eV
                                 ave



                                2Ed  50 eV

                                                        2
                                                       Å
   tot (E)   p (E)  0.588 barns = 5.88 10   9

                                                      atom
52
53
22
     28
          41
where  (T ) is the number of secondary displaceme
     given most simply by the Kinchin-Pease expression
      (T )  0; TmT < Ed          area  
    tot (E)    (T ) d  (T ) 
      (T )  1; EdEd  T < 2Ed atom      
   where  (TT is the number of secondary displacemen
                 )
      (T )        ; T  2Ed
   given most simply by the Kinchin-Pease expression:
              2Ed
    (T )  0; T < Ed
    section Ed  T < for
Cross(T )  1; calculation 2EdAl (Ed=20 eV):
              T
    (T )         ; T  2Ed
             2Ed
σ =42 barns/atom= 4.2×10-7 Å2/atom
 tot



       1 barn = 10-24 cm 2  10 8 Å2
Electron fluence:
 Φ=1×1028 e/m2=1×108 e/Å2
 Irradiation time, t = 2 hr = 7200 s
 φ= 1.38×104 e-/Å2s
displacements per atom =  tot 
                                   Å2       e
  σtot=42 barns/atom= 4.2×10-7 Å2/atom310 6 2
                      5.88 10 6      
                                  atom      Å
                     = 0.018 dpa

  dpa=(4.2×10-7 Å2/e).(1×108 e/Å2)   = 42
RADIATION DAMAGE OF α-Al2O3 IN THE HVEM
II. Radiation damage at high temperature and high dose
G.P. PELLS and D.C. PHILLIPS
C. L. Chen, H. Furusho and H. Mori


•     The decomposition of α- Al2O3 under 200 keV
      (Ultra High Vacuum) electron irradiation

•     Aluminum precipitated from α- Al2O3 under 200
      keV electron irradiation for less than 1 min over
      the temperature range 700 to 1273 K.

•     φ (electron dose rate)= 1023 e m-2s-1
•     Vacuum level < 3×10-8 Pa
Model:
   Thermally activated atom movement
 Forced atom displacement ( knock-on collision)
RADIATION DAMAGE OF α-Al2O3 IN THE HVEM
II. Radiation damage at high temperature and high dose
G.P. PELLS and D.C. PHILLIPS



 Single-crystal α-Al2O3 irradiated with 1 MeV electrons in a high-voltage
  electron microscope at several fixed temperatures in the range 320-
  1070 K.
• At 770 K and below the nature of the observed damage could not be
  resolved.
• At 870 K and above island-like surface features rapidly formed followed
  by dislocations which grew to form a dense network.
• After high doses (>l0 dpa) precipitates were observed.
• The associated diffraction patterns and their temperature dependence
  suggested that the precipitates were of aluminum metal.
Cryogenic radiation response of sapphire
R. Devanathan, W.J. Weber, K.E. Sickafus, M. Nastasi, L.M. Wang, S.X. Wang


Sapphire (a-Al2O3) irradiated by heavy-ion and electron at cryogenic
temperatures using a high-voltage electron microscope.
1.5 MeV Xe
1 MeV Kr
Dual beam of 1 MeV Kr and 900 keV electrons
T=20 to 100 K
At 20 K, α-alumina is amorphized by 1.5 MeV Xe about 3.8 (dpa)
Critical temperature for amorphization is about 170 K
The material remains crystalline when irradiated at 26 K with a dual beam
of heavy ions and electrons.

Electron irradiation can promote damage annealing, even at cryogenic
temperatures, by causing the migration of point-defects produced in
ceramics by ion irradiation.
Effects of ionizing radiation in ceramics
R. Devanathan ,K.E. Sickafus, W.J. Weber, M. Nastasi


α-Al2O3 was irradiated with 1 MeV Kr+ or 1.5 MeV Xe+ and 1
MeV electrons in a high-voltage electron microscope interfaced
to an ion accelerator that enabled the in situ observation of the
structural changes.

The results indicate that simultaneous electron irradiation can
retard or prevent amorphization by heavy ions.

Comparison with similar experiments in metals suggests that
highly ionizing radiation can anneal damage to the crystal lattice
in ceramics by enhancing the mobility of point defects.
High flux e-


                                               O2
            ~1000 Å      heat




                                  Al ppt.



                                  Vacuum

>40 dpa
Long time
Surface at high stress

More Related Content

What's hot

Dosimetry with calorimeter
Dosimetry with calorimeterDosimetry with calorimeter
Dosimetry with calorimeter
efiagbedzi
 
Thimble Ion chamber
Thimble Ion chamberThimble Ion chamber
Thimble Ion chamber
MOAYYAD ALSSABBAGH
 
Scintillation Detector.pptx
Scintillation Detector.pptxScintillation Detector.pptx
Scintillation Detector.pptx
MandeepKaur528541
 
Radiation units
Radiation unitsRadiation units
Radiation units
Amina Abdurahman
 
Treatment Planning Ii Patient Data, Corrections, And Set Up
Treatment Planning Ii Patient Data, Corrections, And Set UpTreatment Planning Ii Patient Data, Corrections, And Set Up
Treatment Planning Ii Patient Data, Corrections, And Set Up
fondas vakalis
 
2018 hm-RADATION PROTECTION
2018 hm-RADATION PROTECTION 2018 hm-RADATION PROTECTION
2018 hm-RADATION PROTECTION
Harsh Mohan
 
Compton effect and pair production
Compton effect and pair productionCompton effect and pair production
Compton effect and pair production
Pramod Tike
 
Fm khan chapter 5 mod
Fm khan chapter 5 modFm khan chapter 5 mod
Fm khan chapter 5 mod
Harvin Nelson
 
RBE
RBERBE
Half value layer.pptx
Half value layer.pptxHalf value layer.pptx
Half value layer.pptx
GokulAnanth9
 
Electron beam radiotherapy
Electron beam radiotherapyElectron beam radiotherapy
Electron beam radiotherapy
Dr. Ankita Pandey
 
Thermoluminescent dosimeter
Thermoluminescent dosimeterThermoluminescent dosimeter
Thermoluminescent dosimeter
Dr Vijay Raturi
 
Interaction of radiation with matter
Interaction of radiation with matterInteraction of radiation with matter
Interaction of radiation with matter
Abhishek Soni
 
Occupational radiation safety in Radiotherapy, Timothy Peace S
Occupational radiation safety in Radiotherapy, Timothy Peace SOccupational radiation safety in Radiotherapy, Timothy Peace S
Occupational radiation safety in Radiotherapy, Timothy Peace S
ohscmcvellore
 
proton therapy
proton therapyproton therapy
proton therapy
dinadawi
 
Gas filled detectors
Gas filled detectorsGas filled detectors
Gas filled detectors
Amara Usman
 
Thermoluminescent dosimetry (tld)
Thermoluminescent dosimetry (tld)Thermoluminescent dosimetry (tld)
Thermoluminescent dosimetry (tld)
messi1910
 
Production of x ray
Production of x rayProduction of x ray
Production of x ray
DaisyFaithy Clare
 
Radiation detection and measurement
Radiation detection and measurement Radiation detection and measurement
Radiation detection and measurement
Shahid Younas
 
RADIATION PROTECTION
RADIATION PROTECTIONRADIATION PROTECTION
RADIATION PROTECTION
Subrata Roy
 

What's hot (20)

Dosimetry with calorimeter
Dosimetry with calorimeterDosimetry with calorimeter
Dosimetry with calorimeter
 
Thimble Ion chamber
Thimble Ion chamberThimble Ion chamber
Thimble Ion chamber
 
Scintillation Detector.pptx
Scintillation Detector.pptxScintillation Detector.pptx
Scintillation Detector.pptx
 
Radiation units
Radiation unitsRadiation units
Radiation units
 
Treatment Planning Ii Patient Data, Corrections, And Set Up
Treatment Planning Ii Patient Data, Corrections, And Set UpTreatment Planning Ii Patient Data, Corrections, And Set Up
Treatment Planning Ii Patient Data, Corrections, And Set Up
 
2018 hm-RADATION PROTECTION
2018 hm-RADATION PROTECTION 2018 hm-RADATION PROTECTION
2018 hm-RADATION PROTECTION
 
Compton effect and pair production
Compton effect and pair productionCompton effect and pair production
Compton effect and pair production
 
Fm khan chapter 5 mod
Fm khan chapter 5 modFm khan chapter 5 mod
Fm khan chapter 5 mod
 
RBE
RBERBE
RBE
 
Half value layer.pptx
Half value layer.pptxHalf value layer.pptx
Half value layer.pptx
 
Electron beam radiotherapy
Electron beam radiotherapyElectron beam radiotherapy
Electron beam radiotherapy
 
Thermoluminescent dosimeter
Thermoluminescent dosimeterThermoluminescent dosimeter
Thermoluminescent dosimeter
 
Interaction of radiation with matter
Interaction of radiation with matterInteraction of radiation with matter
Interaction of radiation with matter
 
Occupational radiation safety in Radiotherapy, Timothy Peace S
Occupational radiation safety in Radiotherapy, Timothy Peace SOccupational radiation safety in Radiotherapy, Timothy Peace S
Occupational radiation safety in Radiotherapy, Timothy Peace S
 
proton therapy
proton therapyproton therapy
proton therapy
 
Gas filled detectors
Gas filled detectorsGas filled detectors
Gas filled detectors
 
Thermoluminescent dosimetry (tld)
Thermoluminescent dosimetry (tld)Thermoluminescent dosimetry (tld)
Thermoluminescent dosimetry (tld)
 
Production of x ray
Production of x rayProduction of x ray
Production of x ray
 
Radiation detection and measurement
Radiation detection and measurement Radiation detection and measurement
Radiation detection and measurement
 
RADIATION PROTECTION
RADIATION PROTECTIONRADIATION PROTECTION
RADIATION PROTECTION
 

Viewers also liked

Kalcijum i jedinjenja kalcijuma
Kalcijum i jedinjenja kalcijumaKalcijum i jedinjenja kalcijuma
Kalcijum i jedinjenja kalcijuma
miluskaprsic
 
Chimie 2016-17 cours 02 ; révision modèle atomique
Chimie 2016-17 cours 02 ; révision modèle atomique Chimie 2016-17 cours 02 ; révision modèle atomique
Chimie 2016-17 cours 02 ; révision modèle atomique
Jean-Philippe Lehoux
 
Glazes Theory And Practice Bryant Hudson
Glazes Theory And Practice Bryant HudsonGlazes Theory And Practice Bryant Hudson
Glazes Theory And Practice Bryant Hudson
Bryant Hudson
 
Phase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemPhase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 System
Younes Sina
 
Inclusion control for clean steel
Inclusion control for clean steelInclusion control for clean steel
Inclusion control for clean steel
SANTOSH KUMAR
 
Al2O3 Nanofluid
Al2O3 NanofluidAl2O3 Nanofluid
Al2O3 Nanofluid
Suman Krishna Kanth
 
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental materialDENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
Dr-Faisal Al-Qahtani
 
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDSNATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
Alagappapandian M
 
carbon compound
carbon compoundcarbon compound
carbon compound
Miz Malinz
 
Nouveau microsoft word document
Nouveau microsoft word documentNouveau microsoft word document
Nouveau microsoft word document
karimfpk
 
Cement manufacturing process
Cement manufacturing processCement manufacturing process
Cement manufacturing process
Shreenath Bohra
 
Sozialpolitik Kanada Und Australien
Sozialpolitik Kanada Und AustralienSozialpolitik Kanada Und Australien
Sozialpolitik Kanada Und Australienbolkovac
 
01 fonction stockage_la_batterie
01 fonction stockage_la_batterie01 fonction stockage_la_batterie
01 fonction stockage_la_batterie
Abdellah HILALI
 
Metabolisme des lipides
Metabolisme des lipidesMetabolisme des lipides
Metabolisme des lipideskillua zoldyck
 
Brochure Meca-19102016-bd
Brochure Meca-19102016-bdBrochure Meca-19102016-bd
Brochure Meca-19102016-bdCamille Volant
 
Protection des métaux contre la corrosion
Protection des métaux contre la corrosionProtection des métaux contre la corrosion
Protection des métaux contre la corrosion
CHTAOU Karim
 
effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
 effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g... effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
Noël Djobo
 
Présentation de la plate-forme d'éco-conception CORINE
Présentation de la plate-forme d'éco-conception CORINEPrésentation de la plate-forme d'éco-conception CORINE
Présentation de la plate-forme d'éco-conception CORINE
Brice Kosinski
 
L’oxydation
L’oxydationL’oxydation
L’oxydation
Missipssa BENATMANE
 
Animation obtention, conversion et séparation des aromatiques
Animation obtention, conversion et séparation des aromatiquesAnimation obtention, conversion et séparation des aromatiques
Animation obtention, conversion et séparation des aromatiquesTarik Taleb Bendiab
 

Viewers also liked (20)

Kalcijum i jedinjenja kalcijuma
Kalcijum i jedinjenja kalcijumaKalcijum i jedinjenja kalcijuma
Kalcijum i jedinjenja kalcijuma
 
Chimie 2016-17 cours 02 ; révision modèle atomique
Chimie 2016-17 cours 02 ; révision modèle atomique Chimie 2016-17 cours 02 ; révision modèle atomique
Chimie 2016-17 cours 02 ; révision modèle atomique
 
Glazes Theory And Practice Bryant Hudson
Glazes Theory And Practice Bryant HudsonGlazes Theory And Practice Bryant Hudson
Glazes Theory And Practice Bryant Hudson
 
Phase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemPhase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 System
 
Inclusion control for clean steel
Inclusion control for clean steelInclusion control for clean steel
Inclusion control for clean steel
 
Al2O3 Nanofluid
Al2O3 NanofluidAl2O3 Nanofluid
Al2O3 Nanofluid
 
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental materialDENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
 
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDSNATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
 
carbon compound
carbon compoundcarbon compound
carbon compound
 
Nouveau microsoft word document
Nouveau microsoft word documentNouveau microsoft word document
Nouveau microsoft word document
 
Cement manufacturing process
Cement manufacturing processCement manufacturing process
Cement manufacturing process
 
Sozialpolitik Kanada Und Australien
Sozialpolitik Kanada Und AustralienSozialpolitik Kanada Und Australien
Sozialpolitik Kanada Und Australien
 
01 fonction stockage_la_batterie
01 fonction stockage_la_batterie01 fonction stockage_la_batterie
01 fonction stockage_la_batterie
 
Metabolisme des lipides
Metabolisme des lipidesMetabolisme des lipides
Metabolisme des lipides
 
Brochure Meca-19102016-bd
Brochure Meca-19102016-bdBrochure Meca-19102016-bd
Brochure Meca-19102016-bd
 
Protection des métaux contre la corrosion
Protection des métaux contre la corrosionProtection des métaux contre la corrosion
Protection des métaux contre la corrosion
 
effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
 effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g... effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
 
Présentation de la plate-forme d'éco-conception CORINE
Présentation de la plate-forme d'éco-conception CORINEPrésentation de la plate-forme d'éco-conception CORINE
Présentation de la plate-forme d'éco-conception CORINE
 
L’oxydation
L’oxydationL’oxydation
L’oxydation
 
Animation obtention, conversion et séparation des aromatiques
Animation obtention, conversion et séparation des aromatiquesAnimation obtention, conversion et séparation des aromatiques
Animation obtention, conversion et séparation des aromatiques
 

Similar to Electron irradiation effect on Al2O3

Radiation detectors
Radiation detectorsRadiation detectors
Radiation detectors
Girishpalvai Kumar
 
Quantum physics
Quantum physicsQuantum physics
Quantum physics
JFG407
 
interaction of radiation with matter modified.pptx
interaction of radiation with matter modified.pptxinteraction of radiation with matter modified.pptx
interaction of radiation with matter modified.pptx
Geet501819
 
Materials_Ch2.pdf
Materials_Ch2.pdfMaterials_Ch2.pdf
Materials_Ch2.pdf
sabry said
 
Electron beam therapy
Electron beam therapyElectron beam therapy
Electron beam therapy
Kiran Ramakrishna
 
Structure of atom
Structure of atom Structure of atom
Structure of atom
sahil9100
 
Wave particle duality
Wave particle dualityWave particle duality
Wave particle duality
Alessio Bernardelli
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effect
utpal sarkar
 
Facultyetsuedublantonlecture3radiationppt3714
Facultyetsuedublantonlecture3radiationppt3714Facultyetsuedublantonlecture3radiationppt3714
Facultyetsuedublantonlecture3radiationppt3714
Michel Tamira
 
Phys234h_Lecture09.ppt PARTICLES BEHAVING A WAVES
Phys234h_Lecture09.ppt PARTICLES BEHAVING A WAVESPhys234h_Lecture09.ppt PARTICLES BEHAVING A WAVES
Phys234h_Lecture09.ppt PARTICLES BEHAVING A WAVES
AlberthVertudazo
 
Electron arrangements
Electron arrangementsElectron arrangements
Electron arrangements
atreasuredsecret
 
All you need_to_know_about_additional_science[2]
All you need_to_know_about_additional_science[2]All you need_to_know_about_additional_science[2]
All you need_to_know_about_additional_science[2]
mcconvillezoe
 
Chapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear ChemistryChapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear Chemistry
Mary Beth Smith
 
All you need_to_know_about_additional_science[1]
All you need_to_know_about_additional_science[1]All you need_to_know_about_additional_science[1]
All you need_to_know_about_additional_science[1]
lucywalshaw
 
Chemchapt5 101015131345-phpapp01
Chemchapt5 101015131345-phpapp01Chemchapt5 101015131345-phpapp01
Chemchapt5 101015131345-phpapp01
Cleophas Rwemera
 
Radioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - SachinRadioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - Sachin
SACHINS700327
 
Dictionary of physics
Dictionary of physicsDictionary of physics
Dictionary of physics
Arun Umrao
 
Physics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
Physics dictionary for CBSE, ISCE, Class X Students by Arun UmraoPhysics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
Physics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
ssuserd6b1fd
 
Plasma Chemistry CH2
Plasma Chemistry CH2Plasma Chemistry CH2
Plasma Chemistry CH2
SITHUHan3
 
Plasma Chemistry CH2_part2
Plasma Chemistry CH2_part2Plasma Chemistry CH2_part2
Plasma Chemistry CH2_part2
SITHUHan3
 

Similar to Electron irradiation effect on Al2O3 (20)

Radiation detectors
Radiation detectorsRadiation detectors
Radiation detectors
 
Quantum physics
Quantum physicsQuantum physics
Quantum physics
 
interaction of radiation with matter modified.pptx
interaction of radiation with matter modified.pptxinteraction of radiation with matter modified.pptx
interaction of radiation with matter modified.pptx
 
Materials_Ch2.pdf
Materials_Ch2.pdfMaterials_Ch2.pdf
Materials_Ch2.pdf
 
Electron beam therapy
Electron beam therapyElectron beam therapy
Electron beam therapy
 
Structure of atom
Structure of atom Structure of atom
Structure of atom
 
Wave particle duality
Wave particle dualityWave particle duality
Wave particle duality
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effect
 
Facultyetsuedublantonlecture3radiationppt3714
Facultyetsuedublantonlecture3radiationppt3714Facultyetsuedublantonlecture3radiationppt3714
Facultyetsuedublantonlecture3radiationppt3714
 
Phys234h_Lecture09.ppt PARTICLES BEHAVING A WAVES
Phys234h_Lecture09.ppt PARTICLES BEHAVING A WAVESPhys234h_Lecture09.ppt PARTICLES BEHAVING A WAVES
Phys234h_Lecture09.ppt PARTICLES BEHAVING A WAVES
 
Electron arrangements
Electron arrangementsElectron arrangements
Electron arrangements
 
All you need_to_know_about_additional_science[2]
All you need_to_know_about_additional_science[2]All you need_to_know_about_additional_science[2]
All you need_to_know_about_additional_science[2]
 
Chapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear ChemistryChapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear Chemistry
 
All you need_to_know_about_additional_science[1]
All you need_to_know_about_additional_science[1]All you need_to_know_about_additional_science[1]
All you need_to_know_about_additional_science[1]
 
Chemchapt5 101015131345-phpapp01
Chemchapt5 101015131345-phpapp01Chemchapt5 101015131345-phpapp01
Chemchapt5 101015131345-phpapp01
 
Radioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - SachinRadioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - Sachin
 
Dictionary of physics
Dictionary of physicsDictionary of physics
Dictionary of physics
 
Physics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
Physics dictionary for CBSE, ISCE, Class X Students by Arun UmraoPhysics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
Physics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
 
Plasma Chemistry CH2
Plasma Chemistry CH2Plasma Chemistry CH2
Plasma Chemistry CH2
 
Plasma Chemistry CH2_part2
Plasma Chemistry CH2_part2Plasma Chemistry CH2_part2
Plasma Chemistry CH2_part2
 

More from Younes Sina

Physics by Younes Sina
Physics by Younes SinaPhysics by Younes Sina
Physics by Younes Sina
Younes Sina
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
Younes Sina
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
Younes Sina
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
Younes Sina
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
Younes Sina
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
Younes Sina
 
Chapter 8
Chapter 8Chapter 8
Chapter 8
Younes Sina
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
Younes Sina
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
Younes Sina
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
Younes Sina
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
Younes Sina
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
Younes Sina
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
Younes Sina
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
Younes Sina
 
ICDIM 2012 presentation
ICDIM 2012 presentationICDIM 2012 presentation
ICDIM 2012 presentation
Younes Sina
 
Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)
Younes Sina
 
توسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدتوسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدYounes Sina
 
Nuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesNuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclides
Younes Sina
 
Ion implantation effects in sapphire-Poster for advisory meeting at utk
Ion implantation effects in sapphire-Poster for advisory meeting at utkIon implantation effects in sapphire-Poster for advisory meeting at utk
Ion implantation effects in sapphire-Poster for advisory meeting at utk
Younes Sina
 
RBS
RBSRBS

More from Younes Sina (20)

Physics by Younes Sina
Physics by Younes SinaPhysics by Younes Sina
Physics by Younes Sina
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Chapter 8
Chapter 8Chapter 8
Chapter 8
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
ICDIM 2012 presentation
ICDIM 2012 presentationICDIM 2012 presentation
ICDIM 2012 presentation
 
Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)
 
توسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدتوسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصد
 
Nuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesNuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclides
 
Ion implantation effects in sapphire-Poster for advisory meeting at utk
Ion implantation effects in sapphire-Poster for advisory meeting at utkIon implantation effects in sapphire-Poster for advisory meeting at utk
Ion implantation effects in sapphire-Poster for advisory meeting at utk
 
RBS
RBSRBS
RBS
 

Recently uploaded

Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
SOFTTECHHUB
 
20240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 202420240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 2024
Matthew Sinclair
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex ProofszkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
Alex Pruden
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
Claudio Di Ciccio
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
Kari Kakkonen
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
Rohit Gautam
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Paige Cruz
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
Matthew Sinclair
 
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AIEnchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Vladimir Iglovikov, Ph.D.
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 

Recently uploaded (20)

Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
 
20240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 202420240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 2024
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex ProofszkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
 
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AIEnchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 

Electron irradiation effect on Al2O3

  • 1. Electron irradiation effect on Al2O3 Kurt Sickafus Younes Sina
  • 2. Ionization vs. Excitation  Excitation transfers enough energy to an orbital electron to displace it further away from the nucleus. IONISATION EXCITATION Incident electron with a specific energy Atomic electron absorbs energy and moves into a higher orbit High energy incident electron Ejected electron In ionization the electron is removed, resulting in an ion pair.
  • 3. Bremsstralung (or Braking) Radiation •High speed electrons may lose energy in the form of X- rays when they quickly decelerate upon striking a heavy material.
  • 4. Bremsstrahlung  Probability of bremsstrahlung production per atom is proportional to the square of Z of the absorber  Energy emission via bremsstrahlung varies inversely with the square of the mass of the incident particle Protons and alpha particles produce less than one-millionth the amount of bremsstrahlung radiation as electrons of the same energy
  • 5. Bremsstrahlung Ratio of electron energy loss by bremsstrahlung production to that lost by excitation and ionization = EZ/820 E = kinetic energy of incident electron in MeV Z = atomic number of the absorber Energy loss for Al: Brem./ (Exc. & Ion.) = 1×13/820 = 1.58%
  • 6. Charged Particle Tracks  Electrons follow tortuous paths in matter as the result of multiple scattering events • Ionization track is sparse and nonuniform  Larger mass of heavy charged particle results in dense and usually linear ionization track  Path length is actual distance particle travels; range is actual depth of penetration in matter
  • 7. Particle interactions Energetic charged particles interact with matter by electrical forces and lose kinetic energy via: Excitation Ionization Radiative losses ~ 70% of charged particle energy deposition leads to nonionizing excitation
  • 8. Dose = Absorbed Energy Density Absorbed energy normalized by weight, volume, atoms, etc. J 1 Gy = 1 kg SI units 8
  • 9. Water: heat to boiling point H2O J cp = 4.1813 (@ 25°C) gK specific heat of water T  80 K 3 J 10 g c H2O p T = 334.5  g kg 5 J  3.345 10 kg  0.3345 MGy Energy Absorbed 9
  • 10.
  • 11. Projectile-Target Interactions # events • • • t <volume> or <weight>
  • 12. Projectile-Target Interactions atomic cross- • • flux • time density section # events  a  atoms    area    projectiles  t  time  volume  volume   atom   areagtime  # events  atoms    area    projectiles  t  time   w  weight  weight   atom   areagtime  
  • 13. Projectile-Target Interactions fluence = flux • time  projectiles   projectiles    area      areag  time   t time 
  • 14. Projectile-Target Interactions atomic cross- • • fluence density section # events  a  atoms    area    projectiles  volume  volume   atom   area  # events  atoms    area    projectiles   w  weight  weight   atom   area  
  • 15. Projectile-Target Interactions cross- • fluence section # events volume   area    projectiles   atoms  a volume  atom   area   
  • 16. Projectile-Target Interactions Leading to Atomic Displacements displacement dpa = cross- • fluence section # atomic displacements volume   area    projectiles   atoms  a volume  atom   area    Ballistic displacements   area    projectiles  Dose atom  atom   area 
  • 17. Electron irradiation-induced amorphization of sapphire (Al2O3) 1 MeV electrons room-temperature irradiation conditions
  • 18. Electron irradiation-induced amorphization of sapphire (Al2O3) Two components of damage: 1. electronic component (electron excitation/ionization; radiolysis) 2. nuclear component (ballistic or displacement damage)
  • 20. Electron Excitation/Ionization Bethe-Ashkin expression for ionization energy loss per unit length H. A. Bethe, and J. Ashkin, in Experimental Nuclear Physics. Volume I, edited by E. Segrè (John Wiley & Sons, Inc., New York, 1953), pp. 166-357.
  • 21. Electron Excitation/Ionization Bethe-Ashkin expression for ionization energy loss per unit length relativistic expression   E0  2 E   Ln  2 2     2J (1   )    dE 2 e e  dx  4 2  E0     2 1   2  1   2 Ln2     1   2    1   2  1  1   2   8   
  • 22. E0  me c  rest energy of the electron 2 me  rest mass of the electron c  speed of light e  14.4 eV  Å 2
  • 23. v  c v  velocity of electron c  speed of light 2  E0    1    E  E 0 E0  rest energy of the electron E  kinetic energy of the electron
  • 24. e  Z  a e  electron density Z  atomic number a  atomic density
  • 25. 0.19 J  9.76 Z  58.5 Z (eV)  mean electron excitation potential M. J. Berger, and S. M. Seltzer, Nat. Acad. Sci. / Nat. Res. Council Publ. 1133 (Washington, 1964), p. 205.
  • 26. Bragg’s Rule for Additivity of Stopping Powers W. H. Bragg, and M. A. Elder, Phil. Mag. 10, 318 (1905)
  • 27. Stopping Power 1 dE  eV  Å2   e  Se E    atom  e  a dx e  
  • 28. Bragg’s Rule for Additivity of Stopping Powers For binary compound with molecular unit, A B : m n  Am Bn e  m e  n e A B where m is the number of A atoms in molecule A B m n and n is the number of B atoms in molecule A B m n One can show that: Am Bn A B dE dE dE  Am Bn m  Am Bn   dx e e dx e dx e where  Am Bn is the molecular density of A B m m n molecules in the compound.
  • 30. E = 1000 keV= 1 MeV dE/dx (E = 1 MeV) = -0.0377 eV/Å . e- thickness = 1000 Å TEM sample thickness Total ionization energy = 37.7 eV/e- = 6.032x10-18 J/e- loss over sample thickness
  • 31. Electron fluence: Φ=1×1028 e/m2=1×108 e/Ȧ2 Irradiation time= t= 2 hr = 7200 s φ= 1.38×104 e-/Ȧ2s
  • 32. dE Areal Energy Density =  dx electronic J 11  3.504 10 =37.7×108 eV/Ȧ2= 3.77×10-10 J/Ȧ2Å 2 Areal Energy Density Total Energy Density = thickness 14 J  3.504 10 3 =3.77×10-13 J/Ȧ3 Å
  • 33. ρAl2O3= 3980 Kg/m3 Dose= 94.72×1012 J/Kg= 94.7 TGy Magnitude of dose: TeraGray !!
  • 35. Electron displacement damage calculation Primary damage cross-section after Seitz & Koehler (1956): F. Seitz, and J. S. Koehler, in Solid State Physics: Advances in Research & Applications, edited by F. Seitz, and D. Turnbull (Academic Press, 1956), pp. 305-448. Based on the relativistic electron cross-section expression derived by McKinley & Feshbach (1948): W. A. McKinley, Jr., and H. Feshbach, Physical Review 74, 1759 (1948). Total cross-section (primary plus secondaries) after Oen (1973): O. S. Oen, (Oak Ridge National Laboratory, Oak Ridge, TN, 1973), pp. 204.
  • 36. Differential displacement cross-section, dσ  b 2 T  T T   dT d (T )  T 1  2      2 4 m Tm  Tm Tm   T  where T is the kinetic energy of the electron 2  E0    v / c  1   E0 E      Z where  is the fine structure constant (~1/137)
  • 37.  Tm  maximum energy transfer from e to target atom 4 me M  E  Tm  E  1 me  M   2 E0  2  where E is the incident electron energy O Ca
  • 38.
  • 39.
  • 40.
  • 41. 2 e  2 1 b  4 Z   2 2  E0   4  2 where 1 = 1 2
  • 42. Primary displacement cross-section: Tm   area    p (E)   d  (T )  Ed  atom   where E d is the displacement threshold energy Cascade cross-section: Tm   area    tot (E)    (T ) d  (T )  Ed  atom   where  (T ) is the number of secondary displacements, given most simply by the Kinchin-Pease expression:  (T )  0; T < Ed  (T )  1; Ed  T < 2Ed T  (T )  ; T  2Ed 2Ed
  • 43. E = 1000 keV ZO = 8 TmO =271 ZAl = 13 TmAl =161 ZAve =10 TmAve =227
  • 44. Ed = 20 eV ZO = 8 EtO = 129,000 ZAl = 13 EtAl = 205,000 Zave =10 EtAve = 159,400
  • 45. Ed = 40 eV ZO= 8 EO= 238,000 ZAl= 13 EAl= 365,000 ZAve=10
  • 46. Ed = 50 eV ZO= 8 EO = 290,000 ZAl= 13 EAl = 430,000 ZAve=10
  • 47. E=1 MeV Ed=40 eV ZO= 8 EtO= 290,000 eV ZAl= 13 EtAl= 430,000 eV ZAve=10 TmAve=227 eV 2Ed=80 eV
  • 48.
  • 49. α-Al2O3 E=1 MeV Ed=40 eV σp @ 1 MeV =2.18 barns
  • 50. E  300 keV powellite (CaMoO4) Ed  25 eV Z ave  15.67 Ethreshold  295 keV ave Tm  25.54 eV ave 2Ed  50 eV 2 Å  tot (E)   p (E)  0.588 barns = 5.88 10 9 atom
  • 51.
  • 52. 52
  • 53. 53
  • 54. 22 28 41
  • 55. where  (T ) is the number of secondary displaceme given most simply by the Kinchin-Pease expression  (T )  0; TmT < Ed   area    tot (E)    (T ) d  (T )   (T )  1; EdEd  T < 2Ed atom   where  (TT is the number of secondary displacemen )  (T )  ; T  2Ed given most simply by the Kinchin-Pease expression: 2Ed  (T )  0; T < Ed  section Ed  T < for Cross(T )  1; calculation 2EdAl (Ed=20 eV): T  (T )  ; T  2Ed 2Ed σ =42 barns/atom= 4.2×10-7 Å2/atom tot 1 barn = 10-24 cm 2  10 8 Å2
  • 56. Electron fluence: Φ=1×1028 e/m2=1×108 e/Å2 Irradiation time, t = 2 hr = 7200 s φ= 1.38×104 e-/Å2s displacements per atom =  tot  Å2 e σtot=42 barns/atom= 4.2×10-7 Å2/atom310 6 2  5.88 10 6  atom Å = 0.018 dpa dpa=(4.2×10-7 Å2/e).(1×108 e/Å2) = 42
  • 57. RADIATION DAMAGE OF α-Al2O3 IN THE HVEM II. Radiation damage at high temperature and high dose G.P. PELLS and D.C. PHILLIPS
  • 58. C. L. Chen, H. Furusho and H. Mori • The decomposition of α- Al2O3 under 200 keV (Ultra High Vacuum) electron irradiation • Aluminum precipitated from α- Al2O3 under 200 keV electron irradiation for less than 1 min over the temperature range 700 to 1273 K. • φ (electron dose rate)= 1023 e m-2s-1 • Vacuum level < 3×10-8 Pa Model: Thermally activated atom movement  Forced atom displacement ( knock-on collision)
  • 59.
  • 60. RADIATION DAMAGE OF α-Al2O3 IN THE HVEM II. Radiation damage at high temperature and high dose G.P. PELLS and D.C. PHILLIPS  Single-crystal α-Al2O3 irradiated with 1 MeV electrons in a high-voltage electron microscope at several fixed temperatures in the range 320- 1070 K. • At 770 K and below the nature of the observed damage could not be resolved. • At 870 K and above island-like surface features rapidly formed followed by dislocations which grew to form a dense network. • After high doses (>l0 dpa) precipitates were observed. • The associated diffraction patterns and their temperature dependence suggested that the precipitates were of aluminum metal.
  • 61. Cryogenic radiation response of sapphire R. Devanathan, W.J. Weber, K.E. Sickafus, M. Nastasi, L.M. Wang, S.X. Wang Sapphire (a-Al2O3) irradiated by heavy-ion and electron at cryogenic temperatures using a high-voltage electron microscope. 1.5 MeV Xe 1 MeV Kr Dual beam of 1 MeV Kr and 900 keV electrons T=20 to 100 K At 20 K, α-alumina is amorphized by 1.5 MeV Xe about 3.8 (dpa) Critical temperature for amorphization is about 170 K The material remains crystalline when irradiated at 26 K with a dual beam of heavy ions and electrons. Electron irradiation can promote damage annealing, even at cryogenic temperatures, by causing the migration of point-defects produced in ceramics by ion irradiation.
  • 62. Effects of ionizing radiation in ceramics R. Devanathan ,K.E. Sickafus, W.J. Weber, M. Nastasi α-Al2O3 was irradiated with 1 MeV Kr+ or 1.5 MeV Xe+ and 1 MeV electrons in a high-voltage electron microscope interfaced to an ion accelerator that enabled the in situ observation of the structural changes. The results indicate that simultaneous electron irradiation can retard or prevent amorphization by heavy ions. Comparison with similar experiments in metals suggests that highly ionizing radiation can anneal damage to the crystal lattice in ceramics by enhancing the mobility of point defects.
  • 63. High flux e- O2 ~1000 Å heat Al ppt. Vacuum >40 dpa Long time Surface at high stress