Electron irradiation effect on Al2O3


              Kurt Sickafus
              Younes Sina
Ionization vs. Excitation
 Excitation transfers enough energy to an orbital electron to displace it
  further away from the nucleus.
                                                                        IONISATION
                            EXCITATION




  Incident electron with a specific energy


      Atomic electron absorbs energy and moves into a higher orbit
                                                         High energy incident electron
                                                                                         Ejected electron


 In ionization the electron is removed, resulting in an ion pair.
Bremsstralung (or Braking) Radiation

•High speed electrons may lose energy in the form of X-
rays when they quickly decelerate upon striking a heavy
material.
Bremsstrahlung
 Probability of bremsstrahlung production per atom is
  proportional to the square of Z of the absorber

 Energy emission via bremsstrahlung varies inversely with the
  square of the mass of the incident particle


    Protons and alpha particles produce less than one-millionth
    the amount of bremsstrahlung radiation as electrons of the
    same energy
Bremsstrahlung
Ratio of electron energy loss by bremsstrahlung production to
that lost by excitation and ionization = EZ/820



    E = kinetic energy of incident electron in MeV
    Z = atomic number of the absorber




Energy loss for Al:    Brem./ (Exc. & Ion.) = 1×13/820 = 1.58%
Charged Particle Tracks
 Electrons follow tortuous paths in matter as the result of multiple
  scattering events
   • Ionization track is sparse and nonuniform
 Larger mass of heavy charged particle results in dense and usually linear
  ionization track
 Path length is actual distance particle travels; range is actual depth of
  penetration in matter
Particle interactions

Energetic charged particles interact with matter by
 electrical forces and lose kinetic energy via:
  Excitation
  Ionization
  Radiative losses

~ 70% of charged particle energy deposition leads
 to nonionizing excitation
Dose = Absorbed Energy Density

Absorbed energy normalized by weight, volume, atoms, etc.



                            J
                  1 Gy = 1
                           kg
                                             SI units




  8
Water: heat to boiling point
      H2O              J
     cp   = 4.1813          (@ 25°C)
                     gK
     specific heat of water
T  80 K
                                        3
                              J     10 g
       c   H2O
           p     T = 334.5      
                              g       kg
                                5 J
                     3.345 10
                                 kg
                     0.3345 MGy Energy
                                    Absorbed
9
Projectile-Target Interactions




      # events
                     • • • t
<volume> or <weight>
Projectile-Target Interactions

                 atomic        cross-
                           •             •   flux    •   time
                 density       section



# events
            a  atoms    area    projectiles  t  time 
volume           volume   atom   areagtime 

# events         atoms    area    projectiles  t  time 
            w 
 weight          weight   atom   areagtime 
                         
Projectile-Target Interactions


    fluence       =      flux    •    time




  projectiles       projectiles 

  area           areag
                           time   t time 
Projectile-Target Interactions

                 atomic        cross-
                           •             •   fluence
                 density       section



# events
            a  atoms    area    projectiles 
volume           volume   atom   area 

# events         atoms    area    projectiles 
            w 
 weight          weight   atom   area 
                         
Projectile-Target Interactions

                    cross-
                              •   fluence
                    section


  # events
  volume
                 area    projectiles 
   atoms 
a volume          atom   area 
          
Projectile-Target Interactions
             Leading to Atomic Displacements

                                      displacement
                     dpa         =    cross-         •   fluence
                                      section
            # atomic displacements
                   volume
                                       area    projectiles 
                    atoms 
                 a volume               atom   area 
                            

Ballistic           displacements
                                       area    projectiles 
Dose
                         atom            atom   area 
Electron irradiation-induced amorphization
             of sapphire (Al2O3)




    1 MeV electrons
    room-temperature irradiation conditions
Electron irradiation-induced amorphization
             of sapphire (Al2O3)

 Two components of damage:

 1. electronic component
 (electron excitation/ionization; radiolysis)

 2. nuclear component
 (ballistic or displacement damage)
1. Electronic Stopping
Electron Excitation/Ionization
Bethe-Ashkin expression for ionization energy loss per unit length




H. A. Bethe, and J. Ashkin, in Experimental Nuclear Physics. Volume I, edited by E. Segrè (John Wiley &
Sons, Inc., New York, 1953), pp. 166-357.
Electron Excitation/Ionization
    Bethe-Ashkin expression for ionization energy loss per unit length
relativistic expression


                E0  2 E              
              Ln  2         2         
                   2J (1   )        

 
   dE 2 e e 
   dx
      
          4

            2 
        E0  
                                    
               2 1   2  1   2 Ln2 
                                         
                                                          
                1   2                 
                                        
                 1
                                                    
                                 2
               1  1   2             
               8
                                        
                                         
E0  me c  rest energy of the electron
         2


me  rest mass of the electron
c  speed of light




         e  14.4 eV  Å
             2
v
     
          c
     v  velocity of electron
     c  speed of light

                   2
        E0 
  1       
        E  E
            0

E0  rest energy of the electron
E  kinetic energy of the electron
e  Z  a
e  electron density
Z  atomic number
a  atomic density
0.19
     J  9.76 Z  58.5 Z    (eV)
        mean electron excitation potential


M. J. Berger, and S. M. Seltzer, Nat. Acad. Sci. / Nat. Res. Council Publ. 1133 (Washington,
1964), p. 205.
Bragg’s Rule for Additivity of Stopping Powers



W. H. Bragg, and M. A. Elder, Phil. Mag. 10, 318
(1905)
Stopping Power


                1 dE         eV  Å2 
 e  Se E                atom  e 
                a dx   e              
Bragg’s Rule for Additivity of Stopping Powers
    For binary compound with molecular unit, A B :
                                              m n

   Am Bn
    e
             m e  n e
                        A               B

where m is the number of A atoms in molecule A B
                                              m n
and n is the number of B atoms in molecule A B
                                            m n
One can show that:
            Am Bn                                   A        B
    dE                                            dE    dE
                          Am Bn
                            m          Am Bn
                                                     
    dx      e
                                        e
                                                  dx e dx    e
    where 
                Am Bn
                  is the molecular density of A B
                m                              m n
    molecules in the compound.
Ionization stopping in Al2O3
E = 1000 keV= 1 MeV



     dE/dx (E = 1 MeV) = -0.0377 eV/Å . e-


            thickness = 1000 Å
            TEM sample thickness


Total ionization energy
                           = 37.7 eV/e- = 6.032x10-18 J/e-
loss over sample thickness
Electron fluence:
Φ=1×1028 e/m2=1×108 e/Ȧ2




Irradiation time= t= 2 hr = 7200 s
φ= 1.38×104 e-/Ȧ2s
dE
Areal Energy Density =                     
                       dx     electronic

                                  J    11
                 3.504 10
 =37.7×108 eV/Ȧ2= 3.77×10-10 J/Ȧ2Å 2



                           Areal Energy Density
Total Energy Density   =
                                 thickness
                                           14   J
                        3.504 10                 3
        =3.77×10-13 J/Ȧ3                         Å
ρAl2O3= 3980 Kg/m3



Dose= 94.72×1012 J/Kg= 94.7 TGy



    Magnitude of dose: TeraGray !!
2. Nuclear Stopping
Electron displacement damage calculation

Primary damage cross-section after Seitz & Koehler (1956):
F. Seitz, and J. S. Koehler, in Solid State Physics: Advances in Research & Applications, edited by F.
Seitz, and D. Turnbull (Academic Press, 1956), pp. 305-448.




Based on the relativistic electron cross-section expression derived by McKinley & Feshbach (1948):
W. A. McKinley, Jr., and H. Feshbach, Physical Review 74, 1759 (1948).




Total cross-section (primary plus secondaries) after Oen (1973):
O. S. Oen, (Oak Ridge National Laboratory, Oak Ridge, TN, 1973), pp. 204.
Differential displacement cross-section, dσ

             b 2        T         T   T   dT
d (T )        T 1  2             2
              4 m       Tm         Tm Tm   T
                                              

     where T is the kinetic energy of the electron

                                2
                     E0 
       v / c  1 
                     E0 E 
                            

        Z
     where  is the fine structure constant (~1/137)

Tm  maximum energy transfer from e to target atom
           4 me M             E 
   Tm                  E  1
          me  M         2 E0 
                    2
                                 
   where E is the incident electron energy

                          O
                                           Ca
2
         e    2
                   1
b  4 Z  
  2         2

          E0   4  2
where
        1
=
      1 2
Primary displacement cross-section:

               Tm       area  
 p (E)   d  (T ) 
           Ed
                       atom    
where E d is the displacement threshold energy
Cascade cross-section:
                Tm              area  
 tot (E)    (T ) d  (T ) 
             Ed
                               atom    
where  (T ) is the number of secondary displacements,
given most simply by the Kinchin-Pease expression:
 (T )  0; T < Ed
 (T )  1; Ed  T < 2Ed
           T
 (T )       ; T  2Ed
          2Ed
E = 1000 keV


ZO = 8           TmO =271

ZAl = 13         TmAl =161

ZAve =10        TmAve =227
Ed = 20 eV


ZO = 8           EtO = 129,000

ZAl = 13         EtAl = 205,000

Zave =10         EtAve = 159,400
Ed = 40 eV


ZO= 8              EO= 238,000

ZAl= 13            EAl= 365,000

ZAve=10
Ed = 50 eV


ZO= 8                EO = 290,000

ZAl= 13              EAl = 430,000

ZAve=10
E=1 MeV
          Ed=40 eV

ZO= 8          EtO= 290,000 eV

ZAl= 13        EtAl= 430,000 eV

ZAve=10
               TmAve=227 eV

                2Ed=80 eV
α-Al2O3

E=1 MeV
Ed=40 eV
σp @ 1 MeV =2.18 barns
E  300 keV
powellite (CaMoO4)                    Ed  25 eV


      Z   ave
                 15.67        Ethreshold  295 keV
                                 ave



                                Tm  25.54 eV
                                 ave



                                2Ed  50 eV

                                                        2
                                                       Å
   tot (E)   p (E)  0.588 barns = 5.88 10   9

                                                      atom
52
53
22
     28
          41
where  (T ) is the number of secondary displaceme
     given most simply by the Kinchin-Pease expression
      (T )  0; TmT < Ed          area  
    tot (E)    (T ) d  (T ) 
      (T )  1; EdEd  T < 2Ed atom      
   where  (TT is the number of secondary displacemen
                 )
      (T )        ; T  2Ed
   given most simply by the Kinchin-Pease expression:
              2Ed
    (T )  0; T < Ed
    section Ed  T < for
Cross(T )  1; calculation 2EdAl (Ed=20 eV):
              T
    (T )         ; T  2Ed
             2Ed
σ =42 barns/atom= 4.2×10-7 Å2/atom
 tot



       1 barn = 10-24 cm 2  10 8 Å2
Electron fluence:
 Φ=1×1028 e/m2=1×108 e/Å2
 Irradiation time, t = 2 hr = 7200 s
 φ= 1.38×104 e-/Å2s
displacements per atom =  tot 
                                   Å2       e
  σtot=42 barns/atom= 4.2×10-7 Å2/atom310 6 2
                      5.88 10 6      
                                  atom      Å
                     = 0.018 dpa

  dpa=(4.2×10-7 Å2/e).(1×108 e/Å2)   = 42
RADIATION DAMAGE OF α-Al2O3 IN THE HVEM
II. Radiation damage at high temperature and high dose
G.P. PELLS and D.C. PHILLIPS
C. L. Chen, H. Furusho and H. Mori


•     The decomposition of α- Al2O3 under 200 keV
      (Ultra High Vacuum) electron irradiation

•     Aluminum precipitated from α- Al2O3 under 200
      keV electron irradiation for less than 1 min over
      the temperature range 700 to 1273 K.

•     φ (electron dose rate)= 1023 e m-2s-1
•     Vacuum level < 3×10-8 Pa
Model:
   Thermally activated atom movement
 Forced atom displacement ( knock-on collision)
RADIATION DAMAGE OF α-Al2O3 IN THE HVEM
II. Radiation damage at high temperature and high dose
G.P. PELLS and D.C. PHILLIPS



 Single-crystal α-Al2O3 irradiated with 1 MeV electrons in a high-voltage
  electron microscope at several fixed temperatures in the range 320-
  1070 K.
• At 770 K and below the nature of the observed damage could not be
  resolved.
• At 870 K and above island-like surface features rapidly formed followed
  by dislocations which grew to form a dense network.
• After high doses (>l0 dpa) precipitates were observed.
• The associated diffraction patterns and their temperature dependence
  suggested that the precipitates were of aluminum metal.
Cryogenic radiation response of sapphire
R. Devanathan, W.J. Weber, K.E. Sickafus, M. Nastasi, L.M. Wang, S.X. Wang


Sapphire (a-Al2O3) irradiated by heavy-ion and electron at cryogenic
temperatures using a high-voltage electron microscope.
1.5 MeV Xe
1 MeV Kr
Dual beam of 1 MeV Kr and 900 keV electrons
T=20 to 100 K
At 20 K, α-alumina is amorphized by 1.5 MeV Xe about 3.8 (dpa)
Critical temperature for amorphization is about 170 K
The material remains crystalline when irradiated at 26 K with a dual beam
of heavy ions and electrons.

Electron irradiation can promote damage annealing, even at cryogenic
temperatures, by causing the migration of point-defects produced in
ceramics by ion irradiation.
Effects of ionizing radiation in ceramics
R. Devanathan ,K.E. Sickafus, W.J. Weber, M. Nastasi


α-Al2O3 was irradiated with 1 MeV Kr+ or 1.5 MeV Xe+ and 1
MeV electrons in a high-voltage electron microscope interfaced
to an ion accelerator that enabled the in situ observation of the
structural changes.

The results indicate that simultaneous electron irradiation can
retard or prevent amorphization by heavy ions.

Comparison with similar experiments in metals suggests that
highly ionizing radiation can anneal damage to the crystal lattice
in ceramics by enhancing the mobility of point defects.
High flux e-


                                               O2
            ~1000 Å      heat




                                  Al ppt.



                                  Vacuum

>40 dpa
Long time
Surface at high stress

Electron irradiation effect on Al2O3

  • 1.
    Electron irradiation effecton Al2O3 Kurt Sickafus Younes Sina
  • 2.
    Ionization vs. Excitation Excitation transfers enough energy to an orbital electron to displace it further away from the nucleus. IONISATION EXCITATION Incident electron with a specific energy Atomic electron absorbs energy and moves into a higher orbit High energy incident electron Ejected electron In ionization the electron is removed, resulting in an ion pair.
  • 3.
    Bremsstralung (or Braking)Radiation •High speed electrons may lose energy in the form of X- rays when they quickly decelerate upon striking a heavy material.
  • 4.
    Bremsstrahlung  Probability ofbremsstrahlung production per atom is proportional to the square of Z of the absorber  Energy emission via bremsstrahlung varies inversely with the square of the mass of the incident particle Protons and alpha particles produce less than one-millionth the amount of bremsstrahlung radiation as electrons of the same energy
  • 5.
    Bremsstrahlung Ratio of electronenergy loss by bremsstrahlung production to that lost by excitation and ionization = EZ/820 E = kinetic energy of incident electron in MeV Z = atomic number of the absorber Energy loss for Al: Brem./ (Exc. & Ion.) = 1×13/820 = 1.58%
  • 6.
    Charged Particle Tracks Electrons follow tortuous paths in matter as the result of multiple scattering events • Ionization track is sparse and nonuniform  Larger mass of heavy charged particle results in dense and usually linear ionization track  Path length is actual distance particle travels; range is actual depth of penetration in matter
  • 7.
    Particle interactions Energetic chargedparticles interact with matter by electrical forces and lose kinetic energy via: Excitation Ionization Radiative losses ~ 70% of charged particle energy deposition leads to nonionizing excitation
  • 8.
    Dose = AbsorbedEnergy Density Absorbed energy normalized by weight, volume, atoms, etc. J 1 Gy = 1 kg SI units 8
  • 9.
    Water: heat toboiling point H2O J cp = 4.1813 (@ 25°C) gK specific heat of water T  80 K 3 J 10 g c H2O p T = 334.5  g kg 5 J  3.345 10 kg  0.3345 MGy Energy Absorbed 9
  • 11.
    Projectile-Target Interactions # events • • • t <volume> or <weight>
  • 12.
    Projectile-Target Interactions atomic cross- • • flux • time density section # events  a  atoms    area    projectiles  t  time  volume  volume   atom   areagtime  # events  atoms    area    projectiles  t  time   w  weight  weight   atom   areagtime  
  • 13.
    Projectile-Target Interactions fluence = flux • time  projectiles   projectiles    area      areag  time   t time 
  • 14.
    Projectile-Target Interactions atomic cross- • • fluence density section # events  a  atoms    area    projectiles  volume  volume   atom   area  # events  atoms    area    projectiles   w  weight  weight   atom   area  
  • 15.
    Projectile-Target Interactions cross- • fluence section # events volume   area    projectiles   atoms  a volume  atom   area   
  • 16.
    Projectile-Target Interactions Leading to Atomic Displacements displacement dpa = cross- • fluence section # atomic displacements volume   area    projectiles   atoms  a volume  atom   area    Ballistic displacements   area    projectiles  Dose atom  atom   area 
  • 17.
    Electron irradiation-induced amorphization of sapphire (Al2O3) 1 MeV electrons room-temperature irradiation conditions
  • 18.
    Electron irradiation-induced amorphization of sapphire (Al2O3) Two components of damage: 1. electronic component (electron excitation/ionization; radiolysis) 2. nuclear component (ballistic or displacement damage)
  • 19.
  • 20.
    Electron Excitation/Ionization Bethe-Ashkin expressionfor ionization energy loss per unit length H. A. Bethe, and J. Ashkin, in Experimental Nuclear Physics. Volume I, edited by E. Segrè (John Wiley & Sons, Inc., New York, 1953), pp. 166-357.
  • 21.
    Electron Excitation/Ionization Bethe-Ashkin expression for ionization energy loss per unit length relativistic expression   E0  2 E   Ln  2 2     2J (1   )    dE 2 e e  dx  4 2  E0     2 1   2  1   2 Ln2     1   2    1   2  1  1   2   8   
  • 22.
    E0  mec  rest energy of the electron 2 me  rest mass of the electron c  speed of light e  14.4 eV  Å 2
  • 23.
    v  c v  velocity of electron c  speed of light 2  E0    1    E  E 0 E0  rest energy of the electron E  kinetic energy of the electron
  • 24.
    e  Z a e  electron density Z  atomic number a  atomic density
  • 25.
    0.19 J  9.76 Z  58.5 Z (eV)  mean electron excitation potential M. J. Berger, and S. M. Seltzer, Nat. Acad. Sci. / Nat. Res. Council Publ. 1133 (Washington, 1964), p. 205.
  • 26.
    Bragg’s Rule forAdditivity of Stopping Powers W. H. Bragg, and M. A. Elder, Phil. Mag. 10, 318 (1905)
  • 27.
    Stopping Power 1 dE  eV  Å2   e  Se E    atom  e  a dx e  
  • 28.
    Bragg’s Rule forAdditivity of Stopping Powers For binary compound with molecular unit, A B : m n  Am Bn e  m e  n e A B where m is the number of A atoms in molecule A B m n and n is the number of B atoms in molecule A B m n One can show that: Am Bn A B dE dE dE  Am Bn m  Am Bn   dx e e dx e dx e where  Am Bn is the molecular density of A B m m n molecules in the compound.
  • 29.
  • 30.
    E = 1000keV= 1 MeV dE/dx (E = 1 MeV) = -0.0377 eV/Å . e- thickness = 1000 Å TEM sample thickness Total ionization energy = 37.7 eV/e- = 6.032x10-18 J/e- loss over sample thickness
  • 31.
    Electron fluence: Φ=1×1028 e/m2=1×108e/Ȧ2 Irradiation time= t= 2 hr = 7200 s φ= 1.38×104 e-/Ȧ2s
  • 32.
    dE Areal Energy Density=  dx electronic J 11  3.504 10 =37.7×108 eV/Ȧ2= 3.77×10-10 J/Ȧ2Å 2 Areal Energy Density Total Energy Density = thickness 14 J  3.504 10 3 =3.77×10-13 J/Ȧ3 Å
  • 33.
    ρAl2O3= 3980 Kg/m3 Dose=94.72×1012 J/Kg= 94.7 TGy Magnitude of dose: TeraGray !!
  • 34.
  • 35.
    Electron displacement damagecalculation Primary damage cross-section after Seitz & Koehler (1956): F. Seitz, and J. S. Koehler, in Solid State Physics: Advances in Research & Applications, edited by F. Seitz, and D. Turnbull (Academic Press, 1956), pp. 305-448. Based on the relativistic electron cross-section expression derived by McKinley & Feshbach (1948): W. A. McKinley, Jr., and H. Feshbach, Physical Review 74, 1759 (1948). Total cross-section (primary plus secondaries) after Oen (1973): O. S. Oen, (Oak Ridge National Laboratory, Oak Ridge, TN, 1973), pp. 204.
  • 36.
    Differential displacement cross-section,dσ  b 2 T  T T   dT d (T )  T 1  2      2 4 m Tm  Tm Tm   T  where T is the kinetic energy of the electron 2  E0    v / c  1   E0 E      Z where  is the fine structure constant (~1/137)
  • 37.
     Tm  maximumenergy transfer from e to target atom 4 me M  E  Tm  E  1 me  M   2 E0  2  where E is the incident electron energy O Ca
  • 41.
    2 e  2 1 b  4 Z   2 2  E0   4  2 where 1 = 1 2
  • 42.
    Primary displacement cross-section: Tm   area    p (E)   d  (T )  Ed  atom   where E d is the displacement threshold energy Cascade cross-section: Tm   area    tot (E)    (T ) d  (T )  Ed  atom   where  (T ) is the number of secondary displacements, given most simply by the Kinchin-Pease expression:  (T )  0; T < Ed  (T )  1; Ed  T < 2Ed T  (T )  ; T  2Ed 2Ed
  • 43.
    E = 1000keV ZO = 8 TmO =271 ZAl = 13 TmAl =161 ZAve =10 TmAve =227
  • 44.
    Ed = 20eV ZO = 8 EtO = 129,000 ZAl = 13 EtAl = 205,000 Zave =10 EtAve = 159,400
  • 45.
    Ed = 40eV ZO= 8 EO= 238,000 ZAl= 13 EAl= 365,000 ZAve=10
  • 46.
    Ed = 50eV ZO= 8 EO = 290,000 ZAl= 13 EAl = 430,000 ZAve=10
  • 47.
    E=1 MeV Ed=40 eV ZO= 8 EtO= 290,000 eV ZAl= 13 EtAl= 430,000 eV ZAve=10 TmAve=227 eV 2Ed=80 eV
  • 49.
    α-Al2O3 E=1 MeV Ed=40 eV σp@ 1 MeV =2.18 barns
  • 50.
    E  300keV powellite (CaMoO4) Ed  25 eV Z ave  15.67 Ethreshold  295 keV ave Tm  25.54 eV ave 2Ed  50 eV 2 Å  tot (E)   p (E)  0.588 barns = 5.88 10 9 atom
  • 52.
  • 53.
  • 54.
    22 28 41
  • 55.
    where  (T) is the number of secondary displaceme given most simply by the Kinchin-Pease expression  (T )  0; TmT < Ed   area    tot (E)    (T ) d  (T )   (T )  1; EdEd  T < 2Ed atom   where  (TT is the number of secondary displacemen )  (T )  ; T  2Ed given most simply by the Kinchin-Pease expression: 2Ed  (T )  0; T < Ed  section Ed  T < for Cross(T )  1; calculation 2EdAl (Ed=20 eV): T  (T )  ; T  2Ed 2Ed σ =42 barns/atom= 4.2×10-7 Å2/atom tot 1 barn = 10-24 cm 2  10 8 Å2
  • 56.
    Electron fluence: Φ=1×1028e/m2=1×108 e/Å2 Irradiation time, t = 2 hr = 7200 s φ= 1.38×104 e-/Å2s displacements per atom =  tot  Å2 e σtot=42 barns/atom= 4.2×10-7 Å2/atom310 6 2  5.88 10 6  atom Å = 0.018 dpa dpa=(4.2×10-7 Å2/e).(1×108 e/Å2) = 42
  • 57.
    RADIATION DAMAGE OFα-Al2O3 IN THE HVEM II. Radiation damage at high temperature and high dose G.P. PELLS and D.C. PHILLIPS
  • 58.
    C. L. Chen,H. Furusho and H. Mori • The decomposition of α- Al2O3 under 200 keV (Ultra High Vacuum) electron irradiation • Aluminum precipitated from α- Al2O3 under 200 keV electron irradiation for less than 1 min over the temperature range 700 to 1273 K. • φ (electron dose rate)= 1023 e m-2s-1 • Vacuum level < 3×10-8 Pa Model: Thermally activated atom movement  Forced atom displacement ( knock-on collision)
  • 60.
    RADIATION DAMAGE OFα-Al2O3 IN THE HVEM II. Radiation damage at high temperature and high dose G.P. PELLS and D.C. PHILLIPS  Single-crystal α-Al2O3 irradiated with 1 MeV electrons in a high-voltage electron microscope at several fixed temperatures in the range 320- 1070 K. • At 770 K and below the nature of the observed damage could not be resolved. • At 870 K and above island-like surface features rapidly formed followed by dislocations which grew to form a dense network. • After high doses (>l0 dpa) precipitates were observed. • The associated diffraction patterns and their temperature dependence suggested that the precipitates were of aluminum metal.
  • 61.
    Cryogenic radiation responseof sapphire R. Devanathan, W.J. Weber, K.E. Sickafus, M. Nastasi, L.M. Wang, S.X. Wang Sapphire (a-Al2O3) irradiated by heavy-ion and electron at cryogenic temperatures using a high-voltage electron microscope. 1.5 MeV Xe 1 MeV Kr Dual beam of 1 MeV Kr and 900 keV electrons T=20 to 100 K At 20 K, α-alumina is amorphized by 1.5 MeV Xe about 3.8 (dpa) Critical temperature for amorphization is about 170 K The material remains crystalline when irradiated at 26 K with a dual beam of heavy ions and electrons. Electron irradiation can promote damage annealing, even at cryogenic temperatures, by causing the migration of point-defects produced in ceramics by ion irradiation.
  • 62.
    Effects of ionizingradiation in ceramics R. Devanathan ,K.E. Sickafus, W.J. Weber, M. Nastasi α-Al2O3 was irradiated with 1 MeV Kr+ or 1.5 MeV Xe+ and 1 MeV electrons in a high-voltage electron microscope interfaced to an ion accelerator that enabled the in situ observation of the structural changes. The results indicate that simultaneous electron irradiation can retard or prevent amorphization by heavy ions. Comparison with similar experiments in metals suggests that highly ionizing radiation can anneal damage to the crystal lattice in ceramics by enhancing the mobility of point defects.
  • 63.
    High flux e- O2 ~1000 Å heat Al ppt. Vacuum >40 dpa Long time Surface at high stress