TWO PORT NETWORKS
Presented By:
Rohan Kaushik (161310109051)
Aakash Dhariwal (161310109001)
Nayan Purohit (161310109045)
CONTENTS:
 TWO – PORT NETWORKS AND ITS FUNTIONS.
 Z – PARAMETERS.
 Y – PARAMETERS.
TWO – PORT NETWORKS
 A pair of terminals through which a current may enter or leave a network is
known as a PORT.
 ‘Porte’ in French means ‘door’.
 The various term that relate these voltages and currents are called
PARAMETERS.
Linear network
+
V1
-
I1
I1 I2
I2
+
V2
-
WHY TO STUDY TWO – PORT NETWORKS?
 Practical networks are huge and very complex. There are many types of
networks that computer can't understand. So we need to construct a
systematic model for any network
 We can model any electronic device to two port network from that it is very
simple to analyse the device properties and get clear vision of internal
working of electronic device.
Z – PARAMETERS
 Z – Parameters are also called as Impedance Parameters and it’s unit is ohm (Ω).
 Impedance parameters are commonly used in the synthesis of filters and also useful in the
design and analysis of impedance matching networks and power distribution networks.
 The two – port network may be voltage – driven or current – driven as shown below.
Linear network
I1 I2
+

+

V1 V2
I1 I2
+
V1
-
Linear network
+
V2
-
+
V1
-
I1
I2
+
V2
-
Z11
Z21
Z12
Z22
The “black box” is replaced with Z-
parameters as shown below.
The terminal voltage can be related to the
terminal current as:
2221212
2121111
IzIzV
IzIzV




















2
1
2221
1211
2
1
I
I
zz
zz
V
V
In Matrix form as: The value of the parameters can be evaluated
by setting:
1. I1= 0 (input port open – circuited)
2. I2= 0 (output port open – circuited)
The Z-parameters that we want to determine are z11, z12, z21, z22.
01
2
21
01
1
11
2
2




I
I
I
V
z
I
V
z
02
2
22
02
1
12
1
1




I
I
I
V
z
I
V
z
z11 = open – circuit input impedance.
z12 = open – circuit transfer impedance from port 1 to port 2.
z21 = open – circuit transfer impedance from port 2 to port 1.
z22 = open – circuit output impedance.
EXAMPLE 1.
 Find the Z – parameters of the circuit below.
40Ω
240Ω
120Ω
+
V1
_
+
V2
_
I1
I2
I2 = 0(open circuit port 2). Redraw the
circuit.
40Ω
240Ω
120Ω
+
V1
_
+
V2
_
I1
Ia
Ib




84
(2)(1)sub
)2......(
400
280
)1.......(120
1
1
11
1
1
I
V
Z
II
IV
b
b




72
(3)(4)sub
)4.......(
400
120
.......(3)240
1
2
21
1
2
I
V
Z
II
IV
a
a
I1 = 0 (open circuit port 1). Redraw
the circuit.
40Ω
240Ω
120Ω
+
V1
_
+
V2
_
Iy I2
Ix




96Z
(2)(1)sub
)2.......(
400
160
)1.......(240
2
2
22
2
2
I
V
II
IV
x
x




72
(3)(4)sub
)4.......(
400
240
)3.......(120
2
1
12
2
1
I
V
Z
II
IV
y
y
Y - PARAMETERS
 Y – parameters also called admittance parameters and it’s unit is siemens (S).
+
V1
-
I1
I2
+
V2
-
Y11
Y21
Y12
Y22
The terminal current can be expressed in term
of terminal voltage as:
2221212
2121111
VyVyI
VyVyI


In Matrix Form:


















2
1
2221
1211
2
1
V
V
yy
yy
I
I
The Y-parameters that we want to determine are Y11, Y12, Y21, Y22.
The values of the parameters can be evaluate by setting:
i) V1 = 0 (input port short – circuited).
ii) V2 = 0 (output port short – circuited).
01
2
21
01
1
11
2
2




V
V
V
I
Y
V
I
Y
02
2
22
02
1
12
1
1




V
V
V
I
Y
V
I
Y
EXAMPLE 2.
 Find the Y – parameters of the circuit shown below.
5Ω
15Ω20Ω
+
V1
_
+
V2
_
I1
I2
5Ω
20Ω
+
V1
_
I1
I2
Ia
V2 = 0. Redraw the circuit
S
V
I
Y
II
IV
a
a
4
1
(2)(1)sub
)2.......(
25
5
)1.......(20
1
1
11
1
1




S
V
I
Y
IV
5
1
5
1
2
21
21


V1 = 0. Redraw the circuit
5Ω
15Ω
+
V2
_
I1
I2
Ix
S
V
I
Y
II
IV
x
x
15
4
(4)(3)sub
)4.......(
20
5
)3.......(15
2
2
22
2
2




S
V
I
Y
IV
5
1
5
2
1
12
12


Thank
You

Two port networks

  • 1.
    TWO PORT NETWORKS PresentedBy: Rohan Kaushik (161310109051) Aakash Dhariwal (161310109001) Nayan Purohit (161310109045)
  • 2.
    CONTENTS:  TWO –PORT NETWORKS AND ITS FUNTIONS.  Z – PARAMETERS.  Y – PARAMETERS.
  • 3.
    TWO – PORTNETWORKS  A pair of terminals through which a current may enter or leave a network is known as a PORT.  ‘Porte’ in French means ‘door’.  The various term that relate these voltages and currents are called PARAMETERS. Linear network + V1 - I1 I1 I2 I2 + V2 -
  • 4.
    WHY TO STUDYTWO – PORT NETWORKS?  Practical networks are huge and very complex. There are many types of networks that computer can't understand. So we need to construct a systematic model for any network  We can model any electronic device to two port network from that it is very simple to analyse the device properties and get clear vision of internal working of electronic device.
  • 5.
    Z – PARAMETERS Z – Parameters are also called as Impedance Parameters and it’s unit is ohm (Ω).  Impedance parameters are commonly used in the synthesis of filters and also useful in the design and analysis of impedance matching networks and power distribution networks.  The two – port network may be voltage – driven or current – driven as shown below. Linear network I1 I2 +  +  V1 V2 I1 I2 + V1 - Linear network + V2 -
  • 6.
    + V1 - I1 I2 + V2 - Z11 Z21 Z12 Z22 The “black box”is replaced with Z- parameters as shown below. The terminal voltage can be related to the terminal current as: 2221212 2121111 IzIzV IzIzV                     2 1 2221 1211 2 1 I I zz zz V V In Matrix form as: The value of the parameters can be evaluated by setting: 1. I1= 0 (input port open – circuited) 2. I2= 0 (output port open – circuited)
  • 7.
    The Z-parameters thatwe want to determine are z11, z12, z21, z22. 01 2 21 01 1 11 2 2     I I I V z I V z 02 2 22 02 1 12 1 1     I I I V z I V z z11 = open – circuit input impedance. z12 = open – circuit transfer impedance from port 1 to port 2. z21 = open – circuit transfer impedance from port 2 to port 1. z22 = open – circuit output impedance.
  • 8.
    EXAMPLE 1.  Findthe Z – parameters of the circuit below. 40Ω 240Ω 120Ω + V1 _ + V2 _ I1 I2
  • 9.
    I2 = 0(opencircuit port 2). Redraw the circuit. 40Ω 240Ω 120Ω + V1 _ + V2 _ I1 Ia Ib     84 (2)(1)sub )2......( 400 280 )1.......(120 1 1 11 1 1 I V Z II IV b b     72 (3)(4)sub )4.......( 400 120 .......(3)240 1 2 21 1 2 I V Z II IV a a I1 = 0 (open circuit port 1). Redraw the circuit. 40Ω 240Ω 120Ω + V1 _ + V2 _ Iy I2 Ix     96Z (2)(1)sub )2.......( 400 160 )1.......(240 2 2 22 2 2 I V II IV x x     72 (3)(4)sub )4.......( 400 240 )3.......(120 2 1 12 2 1 I V Z II IV y y
  • 10.
    Y - PARAMETERS Y – parameters also called admittance parameters and it’s unit is siemens (S). + V1 - I1 I2 + V2 - Y11 Y21 Y12 Y22 The terminal current can be expressed in term of terminal voltage as: 2221212 2121111 VyVyI VyVyI   In Matrix Form:                   2 1 2221 1211 2 1 V V yy yy I I
  • 11.
    The Y-parameters thatwe want to determine are Y11, Y12, Y21, Y22. The values of the parameters can be evaluate by setting: i) V1 = 0 (input port short – circuited). ii) V2 = 0 (output port short – circuited). 01 2 21 01 1 11 2 2     V V V I Y V I Y 02 2 22 02 1 12 1 1     V V V I Y V I Y
  • 12.
    EXAMPLE 2.  Findthe Y – parameters of the circuit shown below. 5Ω 15Ω20Ω + V1 _ + V2 _ I1 I2
  • 13.
    5Ω 20Ω + V1 _ I1 I2 Ia V2 = 0.Redraw the circuit S V I Y II IV a a 4 1 (2)(1)sub )2.......( 25 5 )1.......(20 1 1 11 1 1     S V I Y IV 5 1 5 1 2 21 21   V1 = 0. Redraw the circuit 5Ω 15Ω + V2 _ I1 I2 Ix S V I Y II IV x x 15 4 (4)(3)sub )4.......( 20 5 )3.......(15 2 2 22 2 2     S V I Y IV 5 1 5 2 1 12 12  
  • 14.