SlideShare a Scribd company logo
Fundamentals of Electric Circuits
AC Circuits
Chapter 16. Two-port networks
16.1. Introduction
16.2. Impedance parameters
16.3. Admittance parameters
16.4. Hybrid parameters
16.5. Transmission parameters
16.6. Interconnection of networks
FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.1. Introduction
+ Port: A pair of terminals through which a current may enter or leave a
network  is an access to the network and consists of a pair of terminals
+ One-port networks: two-terminal devices or elements (R, L, C)
+ Two-port networks: four-terminal devices (op amps, transistors, transformers)
A two-port network is an electrical network with two separate
ports for input and output
+ Study of two-port networks:
 Useful in communications, control systems, power systems,…
 Treat circuit as a “black box” when embedded within a larger network
FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.2. Impedance parameters
+ Impedance & admittance parameters are commonly used in the
synthesis of filters
+ A two-port network may be voltage-driven or current driven  the
terminal voltage can be related to the terminal currents as:







2
22
1
21
2
2
12
1
11
1
I
Z
I
Z
V
I
Z
I
Z
V






  

























2
1
2
1
22
21
12
11
2
1
I
I
I
I
Z
Z
Z
Z
V
V






Z
Z: impedance parameters
FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.2. Impedance parameters
+ The value of the parameters: open circuit impedance
Open circuit input impedance: 0
2
1
1
11 
 I
I
V
Z 


Open circuit transfer impedance
from port 2 to port 1:
0
1
2
1
12 
 I
I
V
Z 


Open circuit transfer impedance
from port 1 to port 2:
0
2
1
2
21 
 I
I
V
Z 


Open circuit ouput impedance: 0
1
2
2
22 
 I
I
V
Z 


FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.2. Impedance parameters
+ Characteristics of impedance parameters
 two-port network is said to be symmetrical when Z11 = Z22
 two-port network is said to be reciprocal when Z12 = Z21 (a linear two- port network and no
dependent sources
 The T-equivalent circuit:
FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.2. Impedance parameters
R1 R2
R3
R3
R1 R2
R1 R2
R
3
. .
I V
2
.
I1
.
V1 2
+ Example 1: Determine the z-parameters for the given circuit
Solution
Method 1: Using definition equation
 
3
1
1
1
3
1
0
1
1
11 2
R
R
I
I
R
R
I
V
Z I




  



 3
1
1
3
0
1
2
21 2
R
I
I
R
I
V
Z I


  




 Open the output port: I2 = 0
 Open the intput port: I1 = 0
 
3
2
2
2
3
2
0
2
2
22 1
R
R
I
I
R
R
I
V
Z I




  



 3
2
2
3
0
2
1
12 1
R
I
I
R
I
V
Z I


  




Method 2: Using mesh current method
 
 









2
3
2
1
3
2
2
3
1
3
1
1
I
R
R
I
R
V
I
R
I
R
R
V






FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.3. Admittance parameters
+ There are some cases (i.e. ideal transformer) that the impedance
parameters may not exist for a two-port network  need an alternative
means of describing
+ Express the terminal currents in terms of the terminal voltages 
admittance parameters







2
22
1
21
2
2
12
1
11
1
V
Y
V
Y
I
V
Y
V
Y
I






  

























2
1
2
1
22
21
12
11
2
1
V
V
V
V
Y
Y
Y
Y
I
I






Y
Y: admittance parameters
FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.3. Admittance parameters
+ The value of the parameters: short circuit admittance
Short circuit input admittance:
0
1
1
11 2 
 V
V
I
Y 


Short circuit transfer admittance
from port 2 to port 1: 0
1
2
21 2 
 V
V
I
Y 


Short circuit transfer admittance
from port 1 to port 2: 0
2
1
12 1 
 V
V
I
Y 


Short circuit ouput admittance : 0
2
2
22 1 
 V
V
I
Y 


FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.3. Admittance parameters
+ Characteristics of admittance parameters
 two-port network is said to be symmetrical when Y11 = Y22
 two-port network is said to be reciprocal when Y12 = Y21 (a linear two- port network and no
dependent sources
 The Π-equivalent circuit:
FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.3. Admittance parameters
g1 g2
g3
g1 g2
g3
g1 g2
g3
.
V1
.
V2
.
I1
.
I2
+ Example 2: Determine the Y-parameters for the given circuit
Solution
Method 1: Using definition equation
 Shorten the output port: V2 = 0
 Shorten the intput port: V1 = 0
Method 2: Using node voltage method
 
 










2
3
2
1
3
2
2
3
1
3
1
1
V
g
g
V
g
I
V
g
V
g
g
I






 
3
1
1
1
3
1
0
1
1
11 2
g
g
V
V
g
g
V
I
Y V




  



 3
1
1
3
0
1
2
21 2
g
V
V
g
V
I
Y V




  




 
3
2
2
2
3
2
0
2
2
22 1
g
g
V
V
g
g
V
I
Y V




  



 3
2
2
3
0
2
1
12 1
g
V
V
g
V
I
Y V




  




FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.3. Admittance parameters
+ Example 3: Obtain the Y parameters for the given circuit
Solution
Shorten the output port
0
1
0
0
0
1
0
0
1
0
1
5
4
2
8
2
4
2
2
8
V
V
V
V
V
V
V
V
I
V
V 





















At node 1:
S
V
I
Y
V
V
V
V
V
I 15
.
0
75
.
0
8
5
8 1
1
11
0
0
0
0
1
1 

















At node 2:
S
V
V
V
I
Y
V
I
I
I
V
25
.
0
5
25
.
1
2
25
.
1
0
2
4
0
0
0
1
2
21
0
2
2
1
1




















FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.3. Admittance parameters
+ Example 3: Obtain the Y parameters for the given circuit
Solution
Shorten the input port
0
2
2
0
0
0
2
0
0
1
0
5
.
2
4
2
8
2
4
2
2
8
0
V
V
V
V
V
V
V
V
V
I
V 























At node 1:
S
V
V
V
I
Y 05
.
0
5
.
2
1
8 0
0
2
1
12 








At node 2:
S
V
V
V
I
Y
V
I
I
I
V
V
25
.
0
5
.
2
625
.
0
625
.
0
0
2
4 0
0
2
2
22
0
2
2
1
2
0




















 network is not reciprocal
FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.4. Hybrid parameters
+ Input voltage and output current as function of input current and output voltage of a two-port network
  

























2
1
2
1
22
21
12
11
2
1
V
I
V
I
H
H
H
H
I
V






H
+ Value of the parameters:
Short circuit input impedance 0
1
1
11 2 
 V
I
V
H 


Short circuit forward current gain 0
1
2
21 2 
 V
I
I
H 

 Open circuit output admittance 0
2
2
22 1 
 I
V
I
H 


Open circuit reverse voltage gain 0
2
1
12 1 
 I
V
V
H 


FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.4. Hybrid parameters
+ Input current and output voltage of a two-port network as function of input voltage and output current
 G parameters
  

























2
1
2
1
22
21
12
11
2
1
I
V
I
V
G
G
G
G
V
I






G
+ Value of the parameters:
Open circuit input admittance 0
1
1
11 2 
 I
V
I
G 


Open circuit forward voltage gain 0
1
2
21 2 
 I
V
V
G 

 Short circuit output impedance 0
2
2
22 1 
 V
I
V
G 


Short circuit reverse current gain 0
1
1
12 1 
 V
V
I
G 


FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.5. Transmission parameters
+ Transmission parameters:  relates the variables at the input port to
those at the output port
  

























2
2
2
2
22
21
12
11
1
1
I
V
I
V
A
A
A
A
I
V






A
+ Transimission parameters  useful in the analysis of transmission
lines (cable, fiber) and in the design of telephone system, microwave
network,…
+ A - parameters:
+ Value of the A parameters:
Open circuit voltage ratio 0
2
1
11 2 
 I
V
V
A 


Open circuit transfer admittance 0
2
1
21 2 
 I
V
I
A 


Short circuit transfer impedance 0
2
1
12 2 
 V
I
V
A 


Short circuit current ratio 0
2
1
22 2 
 V
I
I
A 


FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.5. Transmission parameters
  

























1
1
1
1
22
21
12
11
2
2
I
V
I
V
B
B
B
B
I
V






B
+ B - parameters:
+ Inverse transmission parameters  express the variables at the output port in term of the variables at the
input port
+ Value of the B - parameters:
Open circuit voltage gain 0
1
2
11 1 
 I
V
V
B 


Open circuit transfer admittance 0
1
2
21 1 
 I
V
I
B 


Short circuit transfer impedance 0
1
2
12 1 
 V
I
V
B 


Short circuit current gain 0
1
2
22 1 
 V
I
I
B 


+ Reciprocal network: 1
21
12
22
11 
 A
A
A
A
1
21
12
22
11 
 B
B
B
B
FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.5. Transmission parameters
. .
+ Example 4: Find the transmission parameters for the given circuit
 Open the output port: I2 = 0
Solution
 
1
1
1
2
1
1
1
17
3
20
30
20
10
I
I
I
V
I
I
V













765
.
1
17
30
0
2
1
11 2


 
I
V
V
A 


059
.
0
17 1
1
0
2
1
21 2


 
I
I
V
I
A I 




 Shorten the output port: V2 = 0
1
2
1
3
0
20
10
I
V
I
V
V
V
a
a
a











At node A:
10
1
1
a
V
V
I


 

 





 
29
.
15
20
/
17
13
1
1
0
2
1
12 2
I
I
I
V
A V 




176
.
1
20
3
10
3
13 1
1
1
1
0
2
1
22 2






 
I
I
I
I
I
I
A V 






FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.6. Interconnection of networks
+ Large, complex network  divided into sub-networks (2 port network) for the purposes of analysis and
design
+ Two-port networks - as building blocks - that can be interconnected (in series, in parallel, or in cascade) to
form a complex network
+ The value of parameters of the complex network:  calculated from the value of each parameters of
each building block
FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.6. Interconnection of networks
Series connection
[Z] = [Za] + [Zb]
Parallel connection
[Y] = [Ya] + [Yb]
Cascade connection
[T] = [Ta][Tb]
FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits
16.6. Interconnection of networks
Zn2
Zd
Zn1
Tn2
Td
Tn1
T  Tn1.Td .Tn2
+ Example 5: Find the transmission parameters of the given Pi circuit.

I 2 
V2

V1

I1 Zd V1
  V2

 I1   I2 
1 Z
.
1   
0
d 

 
 
    
 

V2

V1 Zn1

I 2

I1
V1
  V2

 I1    I2 
 Zn1
1
1
0  
.
1  
 
 


 
 
 

T  Tn1.Td .Tn2   1
 Zn1   Zn2 
1 0
1 Z
1 0

1  1
10 1
d 
 

 
 
 
Zn2

 Zn1 Zn2 Zn1.Zn2 Zn1 
1
Zd
 1

1
 Zd
1

d
Zd
Z
 T  







More Related Content

Similar to LC2-EE3726-C16-Two-port_networks.pdf

Two port networks
Two port networksTwo port networks
Two port networks
Javed khan
 
Z parameters
Z parametersZ parameters
Z parameters
shubhajitCHATTERJEE2
 
Chapter 03
Chapter 03Chapter 03
Chapter 03
Tha Mike
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
Tapas Mondal
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
Chirag Shetty
 
Arithmetic and logic unit
Arithmetic and logic unitArithmetic and logic unit
Arithmetic and logic unit
IndrajaMeghavathula
 
The voltage-mode first order universal filter using single voltage differenc...
The voltage-mode first order universal filter using single voltage  differenc...The voltage-mode first order universal filter using single voltage  differenc...
The voltage-mode first order universal filter using single voltage differenc...
IJECEIAES
 
Two port networks
Two port networksTwo port networks
Two port networks
Mohammed Waris Senan
 
Advanced motion controls b30a40ac
Advanced motion controls b30a40acAdvanced motion controls b30a40ac
Advanced motion controls b30a40ac
Electromate
 
POWER ELECTRONIC DEVICES
POWER ELECTRONIC DEVICESPOWER ELECTRONIC DEVICES
POWER ELECTRONIC DEVICESshazaliza
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
Gopinath.B.L Naidu
 
UNDERGROUND CABLE FAULT DISTANCE LOCATOR
UNDERGROUND CABLE FAULT DISTANCE LOCATORUNDERGROUND CABLE FAULT DISTANCE LOCATOR
UNDERGROUND CABLE FAULT DISTANCE LOCATOR
ijiert bestjournal
 
Voltagedoubler
VoltagedoublerVoltagedoubler
Voltagedoubler
Krishnaveni Reddy
 
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
MahoneyKadir
 
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.316 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
MahoneyKadir
 
One input voltage and three output voltage universal biquad filters with orth...
One input voltage and three output voltage universal biquad filters with orth...One input voltage and three output voltage universal biquad filters with orth...
One input voltage and three output voltage universal biquad filters with orth...
IJECEIAES
 
Basic Electrical (Short Course).pptx
Basic Electrical (Short Course).pptxBasic Electrical (Short Course).pptx
Basic Electrical (Short Course).pptx
BudhadityaBiswas5
 
Ch2- OpAmps.pdf
Ch2- OpAmps.pdfCh2- OpAmps.pdf
Ch2- OpAmps.pdf
MohamedTagEldeen7
 
Current Differencing Transconductance Amplifier
Current Differencing Transconductance AmplifierCurrent Differencing Transconductance Amplifier
Current Differencing Transconductance Amplifier
Hoopeer Hoopeer
 
“Microcontroller Based Substation Monitoring system with gsm modem”.
“Microcontroller Based Substation Monitoring system with gsm modem”.“Microcontroller Based Substation Monitoring system with gsm modem”.
“Microcontroller Based Substation Monitoring system with gsm modem”.
Priya Rachakonda
 

Similar to LC2-EE3726-C16-Two-port_networks.pdf (20)

Two port networks
Two port networksTwo port networks
Two port networks
 
Z parameters
Z parametersZ parameters
Z parameters
 
Chapter 03
Chapter 03Chapter 03
Chapter 03
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
Arithmetic and logic unit
Arithmetic and logic unitArithmetic and logic unit
Arithmetic and logic unit
 
The voltage-mode first order universal filter using single voltage differenc...
The voltage-mode first order universal filter using single voltage  differenc...The voltage-mode first order universal filter using single voltage  differenc...
The voltage-mode first order universal filter using single voltage differenc...
 
Two port networks
Two port networksTwo port networks
Two port networks
 
Advanced motion controls b30a40ac
Advanced motion controls b30a40acAdvanced motion controls b30a40ac
Advanced motion controls b30a40ac
 
POWER ELECTRONIC DEVICES
POWER ELECTRONIC DEVICESPOWER ELECTRONIC DEVICES
POWER ELECTRONIC DEVICES
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
 
UNDERGROUND CABLE FAULT DISTANCE LOCATOR
UNDERGROUND CABLE FAULT DISTANCE LOCATORUNDERGROUND CABLE FAULT DISTANCE LOCATOR
UNDERGROUND CABLE FAULT DISTANCE LOCATOR
 
Voltagedoubler
VoltagedoublerVoltagedoubler
Voltagedoubler
 
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
 
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.316 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
 
One input voltage and three output voltage universal biquad filters with orth...
One input voltage and three output voltage universal biquad filters with orth...One input voltage and three output voltage universal biquad filters with orth...
One input voltage and three output voltage universal biquad filters with orth...
 
Basic Electrical (Short Course).pptx
Basic Electrical (Short Course).pptxBasic Electrical (Short Course).pptx
Basic Electrical (Short Course).pptx
 
Ch2- OpAmps.pdf
Ch2- OpAmps.pdfCh2- OpAmps.pdf
Ch2- OpAmps.pdf
 
Current Differencing Transconductance Amplifier
Current Differencing Transconductance AmplifierCurrent Differencing Transconductance Amplifier
Current Differencing Transconductance Amplifier
 
“Microcontroller Based Substation Monitoring system with gsm modem”.
“Microcontroller Based Substation Monitoring system with gsm modem”.“Microcontroller Based Substation Monitoring system with gsm modem”.
“Microcontroller Based Substation Monitoring system with gsm modem”.
 

Recently uploaded

Collective Mining | Corporate Presentation - May 2024
Collective Mining | Corporate Presentation - May 2024Collective Mining | Corporate Presentation - May 2024
Collective Mining | Corporate Presentation - May 2024
CollectiveMining1
 
Osisko Development - Investor Presentation - June 24
Osisko Development - Investor Presentation - June 24Osisko Development - Investor Presentation - June 24
Osisko Development - Investor Presentation - June 24
Philip Rabenok
 
Snam 2023-27 Industrial Plan - Financial Presentation
Snam 2023-27 Industrial Plan - Financial PresentationSnam 2023-27 Industrial Plan - Financial Presentation
Snam 2023-27 Industrial Plan - Financial Presentation
Valentina Ottini
 
Corporate Presentation Probe June 2024.pdf
Corporate Presentation Probe June 2024.pdfCorporate Presentation Probe June 2024.pdf
Corporate Presentation Probe June 2024.pdf
Probe Gold
 
2024-deutsche-bank-global-consumer-conference.pdf
2024-deutsche-bank-global-consumer-conference.pdf2024-deutsche-bank-global-consumer-conference.pdf
2024-deutsche-bank-global-consumer-conference.pdf
Sysco_Investors
 
Investor Day 2024 Presentation Sysco 2024
Investor Day 2024 Presentation Sysco 2024Investor Day 2024 Presentation Sysco 2024
Investor Day 2024 Presentation Sysco 2024
Sysco_Investors
 
cyberagent_For New Investors_EN_240424.pdf
cyberagent_For New Investors_EN_240424.pdfcyberagent_For New Investors_EN_240424.pdf
cyberagent_For New Investors_EN_240424.pdf
CyberAgent, Inc.
 
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
ybout
 

Recently uploaded (8)

Collective Mining | Corporate Presentation - May 2024
Collective Mining | Corporate Presentation - May 2024Collective Mining | Corporate Presentation - May 2024
Collective Mining | Corporate Presentation - May 2024
 
Osisko Development - Investor Presentation - June 24
Osisko Development - Investor Presentation - June 24Osisko Development - Investor Presentation - June 24
Osisko Development - Investor Presentation - June 24
 
Snam 2023-27 Industrial Plan - Financial Presentation
Snam 2023-27 Industrial Plan - Financial PresentationSnam 2023-27 Industrial Plan - Financial Presentation
Snam 2023-27 Industrial Plan - Financial Presentation
 
Corporate Presentation Probe June 2024.pdf
Corporate Presentation Probe June 2024.pdfCorporate Presentation Probe June 2024.pdf
Corporate Presentation Probe June 2024.pdf
 
2024-deutsche-bank-global-consumer-conference.pdf
2024-deutsche-bank-global-consumer-conference.pdf2024-deutsche-bank-global-consumer-conference.pdf
2024-deutsche-bank-global-consumer-conference.pdf
 
Investor Day 2024 Presentation Sysco 2024
Investor Day 2024 Presentation Sysco 2024Investor Day 2024 Presentation Sysco 2024
Investor Day 2024 Presentation Sysco 2024
 
cyberagent_For New Investors_EN_240424.pdf
cyberagent_For New Investors_EN_240424.pdfcyberagent_For New Investors_EN_240424.pdf
cyberagent_For New Investors_EN_240424.pdf
 
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
一比一原版(UW毕业证)华盛顿大学毕业证成绩单专业办理
 

LC2-EE3726-C16-Two-port_networks.pdf

  • 1. Fundamentals of Electric Circuits AC Circuits Chapter 16. Two-port networks 16.1. Introduction 16.2. Impedance parameters 16.3. Admittance parameters 16.4. Hybrid parameters 16.5. Transmission parameters 16.6. Interconnection of networks
  • 2. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.1. Introduction + Port: A pair of terminals through which a current may enter or leave a network  is an access to the network and consists of a pair of terminals + One-port networks: two-terminal devices or elements (R, L, C) + Two-port networks: four-terminal devices (op amps, transistors, transformers) A two-port network is an electrical network with two separate ports for input and output + Study of two-port networks:  Useful in communications, control systems, power systems,…  Treat circuit as a “black box” when embedded within a larger network
  • 3. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.2. Impedance parameters + Impedance & admittance parameters are commonly used in the synthesis of filters + A two-port network may be voltage-driven or current driven  the terminal voltage can be related to the terminal currents as:        2 22 1 21 2 2 12 1 11 1 I Z I Z V I Z I Z V                                   2 1 2 1 22 21 12 11 2 1 I I I I Z Z Z Z V V       Z Z: impedance parameters
  • 4. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.2. Impedance parameters + The value of the parameters: open circuit impedance Open circuit input impedance: 0 2 1 1 11   I I V Z    Open circuit transfer impedance from port 2 to port 1: 0 1 2 1 12   I I V Z    Open circuit transfer impedance from port 1 to port 2: 0 2 1 2 21   I I V Z    Open circuit ouput impedance: 0 1 2 2 22   I I V Z   
  • 5. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.2. Impedance parameters + Characteristics of impedance parameters  two-port network is said to be symmetrical when Z11 = Z22  two-port network is said to be reciprocal when Z12 = Z21 (a linear two- port network and no dependent sources  The T-equivalent circuit:
  • 6. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.2. Impedance parameters R1 R2 R3 R3 R1 R2 R1 R2 R 3 . . I V 2 . I1 . V1 2 + Example 1: Determine the z-parameters for the given circuit Solution Method 1: Using definition equation   3 1 1 1 3 1 0 1 1 11 2 R R I I R R I V Z I            3 1 1 3 0 1 2 21 2 R I I R I V Z I           Open the output port: I2 = 0  Open the intput port: I1 = 0   3 2 2 2 3 2 0 2 2 22 1 R R I I R R I V Z I            3 2 2 3 0 2 1 12 1 R I I R I V Z I          Method 2: Using mesh current method              2 3 2 1 3 2 2 3 1 3 1 1 I R R I R V I R I R R V      
  • 7. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3. Admittance parameters + There are some cases (i.e. ideal transformer) that the impedance parameters may not exist for a two-port network  need an alternative means of describing + Express the terminal currents in terms of the terminal voltages  admittance parameters        2 22 1 21 2 2 12 1 11 1 V Y V Y I V Y V Y I                                   2 1 2 1 22 21 12 11 2 1 V V V V Y Y Y Y I I       Y Y: admittance parameters
  • 8. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3. Admittance parameters + The value of the parameters: short circuit admittance Short circuit input admittance: 0 1 1 11 2   V V I Y    Short circuit transfer admittance from port 2 to port 1: 0 1 2 21 2   V V I Y    Short circuit transfer admittance from port 1 to port 2: 0 2 1 12 1   V V I Y    Short circuit ouput admittance : 0 2 2 22 1   V V I Y   
  • 9. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3. Admittance parameters + Characteristics of admittance parameters  two-port network is said to be symmetrical when Y11 = Y22  two-port network is said to be reciprocal when Y12 = Y21 (a linear two- port network and no dependent sources  The Π-equivalent circuit:
  • 10. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3. Admittance parameters g1 g2 g3 g1 g2 g3 g1 g2 g3 . V1 . V2 . I1 . I2 + Example 2: Determine the Y-parameters for the given circuit Solution Method 1: Using definition equation  Shorten the output port: V2 = 0  Shorten the intput port: V1 = 0 Method 2: Using node voltage method               2 3 2 1 3 2 2 3 1 3 1 1 V g g V g I V g V g g I         3 1 1 1 3 1 0 1 1 11 2 g g V V g g V I Y V            3 1 1 3 0 1 2 21 2 g V V g V I Y V              3 2 2 2 3 2 0 2 2 22 1 g g V V g g V I Y V            3 2 2 3 0 2 1 12 1 g V V g V I Y V           
  • 11. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3. Admittance parameters + Example 3: Obtain the Y parameters for the given circuit Solution Shorten the output port 0 1 0 0 0 1 0 0 1 0 1 5 4 2 8 2 4 2 2 8 V V V V V V V V I V V                       At node 1: S V I Y V V V V V I 15 . 0 75 . 0 8 5 8 1 1 11 0 0 0 0 1 1                   At node 2: S V V V I Y V I I I V 25 . 0 5 25 . 1 2 25 . 1 0 2 4 0 0 0 1 2 21 0 2 2 1 1                    
  • 12. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3. Admittance parameters + Example 3: Obtain the Y parameters for the given circuit Solution Shorten the input port 0 2 2 0 0 0 2 0 0 1 0 5 . 2 4 2 8 2 4 2 2 8 0 V V V V V V V V V I V                         At node 1: S V V V I Y 05 . 0 5 . 2 1 8 0 0 2 1 12          At node 2: S V V V I Y V I I I V V 25 . 0 5 . 2 625 . 0 625 . 0 0 2 4 0 0 2 2 22 0 2 2 1 2 0                      network is not reciprocal
  • 13. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.4. Hybrid parameters + Input voltage and output current as function of input current and output voltage of a two-port network                             2 1 2 1 22 21 12 11 2 1 V I V I H H H H I V       H + Value of the parameters: Short circuit input impedance 0 1 1 11 2   V I V H    Short circuit forward current gain 0 1 2 21 2   V I I H    Open circuit output admittance 0 2 2 22 1   I V I H    Open circuit reverse voltage gain 0 2 1 12 1   I V V H   
  • 14. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.4. Hybrid parameters + Input current and output voltage of a two-port network as function of input voltage and output current  G parameters                             2 1 2 1 22 21 12 11 2 1 I V I V G G G G V I       G + Value of the parameters: Open circuit input admittance 0 1 1 11 2   I V I G    Open circuit forward voltage gain 0 1 2 21 2   I V V G    Short circuit output impedance 0 2 2 22 1   V I V G    Short circuit reverse current gain 0 1 1 12 1   V V I G   
  • 15. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.5. Transmission parameters + Transmission parameters:  relates the variables at the input port to those at the output port                             2 2 2 2 22 21 12 11 1 1 I V I V A A A A I V       A + Transimission parameters  useful in the analysis of transmission lines (cable, fiber) and in the design of telephone system, microwave network,… + A - parameters: + Value of the A parameters: Open circuit voltage ratio 0 2 1 11 2   I V V A    Open circuit transfer admittance 0 2 1 21 2   I V I A    Short circuit transfer impedance 0 2 1 12 2   V I V A    Short circuit current ratio 0 2 1 22 2   V I I A   
  • 16. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.5. Transmission parameters                             1 1 1 1 22 21 12 11 2 2 I V I V B B B B I V       B + B - parameters: + Inverse transmission parameters  express the variables at the output port in term of the variables at the input port + Value of the B - parameters: Open circuit voltage gain 0 1 2 11 1   I V V B    Open circuit transfer admittance 0 1 2 21 1   I V I B    Short circuit transfer impedance 0 1 2 12 1   V I V B    Short circuit current gain 0 1 2 22 1   V I I B    + Reciprocal network: 1 21 12 22 11   A A A A 1 21 12 22 11   B B B B
  • 17. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.5. Transmission parameters . . + Example 4: Find the transmission parameters for the given circuit  Open the output port: I2 = 0 Solution   1 1 1 2 1 1 1 17 3 20 30 20 10 I I I V I I V              765 . 1 17 30 0 2 1 11 2     I V V A    059 . 0 17 1 1 0 2 1 21 2     I I V I A I       Shorten the output port: V2 = 0 1 2 1 3 0 20 10 I V I V V V a a a            At node A: 10 1 1 a V V I               29 . 15 20 / 17 13 1 1 0 2 1 12 2 I I I V A V      176 . 1 20 3 10 3 13 1 1 1 1 0 2 1 22 2         I I I I I I A V       
  • 18. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.6. Interconnection of networks + Large, complex network  divided into sub-networks (2 port network) for the purposes of analysis and design + Two-port networks - as building blocks - that can be interconnected (in series, in parallel, or in cascade) to form a complex network + The value of parameters of the complex network:  calculated from the value of each parameters of each building block
  • 19. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.6. Interconnection of networks Series connection [Z] = [Za] + [Zb] Parallel connection [Y] = [Ya] + [Yb] Cascade connection [T] = [Ta][Tb]
  • 20. FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.6. Interconnection of networks Zn2 Zd Zn1 Tn2 Td Tn1 T  Tn1.Td .Tn2 + Example 5: Find the transmission parameters of the given Pi circuit.  I 2  V2  V1  I1 Zd V1   V2   I1   I2  1 Z . 1    0 d               V2  V1 Zn1  I 2  I1 V1   V2   I1    I2   Zn1 1 1 0   . 1                T  Tn1.Td .Tn2   1  Zn1   Zn2  1 0 1 Z 1 0  1  1 10 1 d           Zn2   Zn1 Zn2 Zn1.Zn2 Zn1  1 Zd  1  1  Zd 1  d Zd Z  T        