Your company name
Technical Presentation On
Protection
Distance Protection Basics
Your company name
Agenda
1 2 3 4 5 6
Basics Characteristics
Load
Encroachment
Zones of
Protection
Resistive Faults
Remote Infeed
Your company name
Principle of Distance Protection
ZK=Uk/ Ik
Uk=0Uk
IkZ<
A B
metallic faultZk
The impedance is proportional to the distance!
Your company name
Relay Performance Parameters
Reach Accuracy
• Reach accuracy is a
comparison of the actual
ohmic reach of the relay
under practical conditions
with the relay setting value
in ohms.
• Reach accuracy particularly
depends on the level of
voltage presented to the
relay under fault conditions.
Operating Time
• Operating times vary with
Depending on the
measuring techniques
employed, transient errors
etc.
• Operating Time
Specification is more often
used in electromechanical/
static relays.
Your company name
Zones of Protection
Zone-4
•TimeDelayed
•ReverseDirection
•10-25%ofZab
Zone-1
•InstantaneousTrip
•Underreaching
•80-85%ofZab
Zone-3
•TimeDelayed
•RemoteBackup
•120%of(Zab+Zbc)
Zone-2
•TimeDelayed
•Coveradjacentline
•120%ofZab
RA
~~
RB
BUS A BUS B BUS CZab Zbc
Your company name
Simulation of Zone Trips
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R3
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R1
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R2
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R4R1-Z1
R1-Z2
R1-Z3
R2-Z1
R2-Z2
R2-Z3
R3-Z1
R3-Z2
R3-Z3
R4-Z1
R4-Z2
R4-Z3
NORMAL OPERATING CONDITION
Your company name
Simulation of Zone Trips
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R3
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R1
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R2
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R4R1-Z1
R1-Z2
R1-Z3
R2-Z1
R2-Z2
R2-Z3
R3-Z1
R3-Z2
R3-Z3
R4-Z1
R4-Z2
R4-Z3
FAULT NEAR TO RELAY R1
Your company name
Simulation of Tele Transfer Trips
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R3
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R1
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R2
21
-
Z1
21
-
Z2
21
-
Z3
0.2 s
0.6 s
R4R1-Z1
R1-Z2
R1-Z3
R2-Z1
R2-Z2
R2-Z3
R3-Z1
R3-Z2
R3-Z3
R4-Z1
R4-Z2
R4-Z3
FAULT NEAR TO RELAY R1
POTT POTT
Rx
Tx
Rx
Tx
Your company name
Distance Characteristics
Characteristic Reactance Impedance Mho Quadrilateral
R-X Diagram
Directionality Non directional Non directional Directional Directional
Applications Short Lines where
arc resistance is
the same order of
the line length
Fault Location
purposes.
Operate for Bus
Faults also
Commonly
Used in Long
Lines. Do not
operate for bus
side faults
Commonly used
due to
independent
setting for R
and X Reach
R
X
Operate
Restrain
R
X
Operate
Z
Restrain
R
X
Operate
Max sen. Line
Restrain
δ, RCA
R
X
Operate
Restrain
Restrain
Your company name
Mapping of Faults in R-X Plane
METALLIC FAULT RF=0
120%
40% 60%
80% 100%
20%
140%
XL
RL R
jX
ZL=RL + jXL
ZL
WITH FAULT RESISTANCE
Distance Proportional to ZL.
ZL
RF
120%
40% 60%
80% 100%
20%
140%
XL
RL R
jX
ZL=RL+RF + jXL
1Ω 2Ω 3Ω 4Ω
•Distance Proportional to RF+ZL.
•RF=RARC + RTOWER FOOTING
The relay measures the sum between line impedance (if fault at 100% of the line) and
the fault resistance
Your company name
Quadrilateral Characteristics
R1
R2
R3
R4
R5
Z1
ZN
The Grey region is the impedance
locus we want to cover with the
distance protection characteristic.
Your company name
MHO Vs. Quad Characteristics
ZL
X
LOAD
RF
Quad
Rf Mho
Short line
ZL
X
LOAD
Long line
Your company name
During Double Infeed
F
A
B
FA
A
A
m R
I
I
RZ
I
V
Z   FBAAAA RIIIZV 
• The fault has more or less fault resistance.
• If the fault is an arcing fault the fault resistance is normally very small.
• The influence of the fault resistance depends on the fault current infeed from the
remote line end.
• The fault resistance seen by the distance protection is increased compared to its
real value. This applies if EA &EB are approximately in phase i.e no load transfer
across the feeder.
Your company name
Resistive Fault During Double Infeed
FR
F
A
B
R
I
I

AZ
UNDERREACH!
Your company name
Remote Backup
• Due to fault current contribution substation B (not ”seen” by relay in ”A), the distance
protection in station A will measure a higher impedance than the "true" impedance to
the fault.
• The relay will under reach and this means in practice it can be difficult to get a
remote back-up.
 1 2A L A A B B FV Z I I I I Z     
Z<
IA IB2
IB1 If=IA+IB1+IB2
ZL
ZFUA
1 2A A B B
m L F
A A
V I I I
Z Z Z
I I
 
   
In feed Factor
A B
Your company name
Load Encroachment
X
Zone 01
Zone 02
Zone 03 Remote back-up
R
Zone 05
Remote fault
that has to be
detected
Zone 04 Remote back-up
Your company name
Reduced Resistive Reach
X
Zone 01
Zone 02
Zone 03 Remote back-up
R
Zone 05
Remote fault that has to be
detected. But Can’t Detect due
to reduced Resistive Reach
Setting
Zone 04 Remote back-up
Your company name
Customized Reach Setting
X
Zone 01
Zone 02
Zone 03 Remote back-up
Zone 04 Remote back-up
R
Zone 05
Remote fault to be detected
Your company name
Remote Backup with Load Encroachment
scheme
Zone 03
Zone 02
Zone 01
Zone 04
The green area represents the load encroachment area and “cuts” any impedance
protection that might enter in it
Your company name
Your company name
Any Questions???

Technical presentation on protection distance protection

  • 1.
    Your company name TechnicalPresentation On Protection Distance Protection Basics
  • 2.
    Your company name Agenda 12 3 4 5 6 Basics Characteristics Load Encroachment Zones of Protection Resistive Faults Remote Infeed
  • 3.
    Your company name Principleof Distance Protection ZK=Uk/ Ik Uk=0Uk IkZ< A B metallic faultZk The impedance is proportional to the distance!
  • 4.
    Your company name RelayPerformance Parameters Reach Accuracy • Reach accuracy is a comparison of the actual ohmic reach of the relay under practical conditions with the relay setting value in ohms. • Reach accuracy particularly depends on the level of voltage presented to the relay under fault conditions. Operating Time • Operating times vary with Depending on the measuring techniques employed, transient errors etc. • Operating Time Specification is more often used in electromechanical/ static relays.
  • 5.
    Your company name Zonesof Protection Zone-4 •TimeDelayed •ReverseDirection •10-25%ofZab Zone-1 •InstantaneousTrip •Underreaching •80-85%ofZab Zone-3 •TimeDelayed •RemoteBackup •120%of(Zab+Zbc) Zone-2 •TimeDelayed •Coveradjacentline •120%ofZab RA ~~ RB BUS A BUS B BUS CZab Zbc
  • 6.
    Your company name Simulationof Zone Trips 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R3 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R1 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R2 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R4R1-Z1 R1-Z2 R1-Z3 R2-Z1 R2-Z2 R2-Z3 R3-Z1 R3-Z2 R3-Z3 R4-Z1 R4-Z2 R4-Z3 NORMAL OPERATING CONDITION
  • 7.
    Your company name Simulationof Zone Trips 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R3 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R1 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R2 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R4R1-Z1 R1-Z2 R1-Z3 R2-Z1 R2-Z2 R2-Z3 R3-Z1 R3-Z2 R3-Z3 R4-Z1 R4-Z2 R4-Z3 FAULT NEAR TO RELAY R1
  • 8.
    Your company name Simulationof Tele Transfer Trips 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R3 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R1 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R2 21 - Z1 21 - Z2 21 - Z3 0.2 s 0.6 s R4R1-Z1 R1-Z2 R1-Z3 R2-Z1 R2-Z2 R2-Z3 R3-Z1 R3-Z2 R3-Z3 R4-Z1 R4-Z2 R4-Z3 FAULT NEAR TO RELAY R1 POTT POTT Rx Tx Rx Tx
  • 9.
    Your company name DistanceCharacteristics Characteristic Reactance Impedance Mho Quadrilateral R-X Diagram Directionality Non directional Non directional Directional Directional Applications Short Lines where arc resistance is the same order of the line length Fault Location purposes. Operate for Bus Faults also Commonly Used in Long Lines. Do not operate for bus side faults Commonly used due to independent setting for R and X Reach R X Operate Restrain R X Operate Z Restrain R X Operate Max sen. Line Restrain δ, RCA R X Operate Restrain Restrain
  • 10.
    Your company name Mappingof Faults in R-X Plane METALLIC FAULT RF=0 120% 40% 60% 80% 100% 20% 140% XL RL R jX ZL=RL + jXL ZL WITH FAULT RESISTANCE Distance Proportional to ZL. ZL RF 120% 40% 60% 80% 100% 20% 140% XL RL R jX ZL=RL+RF + jXL 1Ω 2Ω 3Ω 4Ω •Distance Proportional to RF+ZL. •RF=RARC + RTOWER FOOTING The relay measures the sum between line impedance (if fault at 100% of the line) and the fault resistance
  • 11.
    Your company name QuadrilateralCharacteristics R1 R2 R3 R4 R5 Z1 ZN The Grey region is the impedance locus we want to cover with the distance protection characteristic.
  • 12.
    Your company name MHOVs. Quad Characteristics ZL X LOAD RF Quad Rf Mho Short line ZL X LOAD Long line
  • 13.
    Your company name DuringDouble Infeed F A B FA A A m R I I RZ I V Z   FBAAAA RIIIZV  • The fault has more or less fault resistance. • If the fault is an arcing fault the fault resistance is normally very small. • The influence of the fault resistance depends on the fault current infeed from the remote line end. • The fault resistance seen by the distance protection is increased compared to its real value. This applies if EA &EB are approximately in phase i.e no load transfer across the feeder.
  • 14.
    Your company name ResistiveFault During Double Infeed FR F A B R I I  AZ UNDERREACH!
  • 15.
    Your company name RemoteBackup • Due to fault current contribution substation B (not ”seen” by relay in ”A), the distance protection in station A will measure a higher impedance than the "true" impedance to the fault. • The relay will under reach and this means in practice it can be difficult to get a remote back-up.  1 2A L A A B B FV Z I I I I Z      Z< IA IB2 IB1 If=IA+IB1+IB2 ZL ZFUA 1 2A A B B m L F A A V I I I Z Z Z I I       In feed Factor A B
  • 16.
    Your company name LoadEncroachment X Zone 01 Zone 02 Zone 03 Remote back-up R Zone 05 Remote fault that has to be detected Zone 04 Remote back-up
  • 17.
    Your company name ReducedResistive Reach X Zone 01 Zone 02 Zone 03 Remote back-up R Zone 05 Remote fault that has to be detected. But Can’t Detect due to reduced Resistive Reach Setting Zone 04 Remote back-up
  • 18.
    Your company name CustomizedReach Setting X Zone 01 Zone 02 Zone 03 Remote back-up Zone 04 Remote back-up R Zone 05 Remote fault to be detected
  • 19.
    Your company name RemoteBackup with Load Encroachment scheme Zone 03 Zone 02 Zone 01 Zone 04 The green area represents the load encroachment area and “cuts” any impedance protection that might enter in it
  • 20.
  • 21.