This document discusses data preprocessing techniques for data mining. It explains that real-world data is often dirty, containing issues like missing values, noise, and inconsistencies. Major tasks in data preprocessing include data cleaning, integration, transformation, reduction, and discretization. Data cleaning techniques are especially important and involve filling in missing values, identifying and handling outliers, resolving inconsistencies, and reducing redundancy from data integration. Other techniques discussed include binning data for smoothing noisy values and handling missing data through various imputation methods.