SlideShare a Scribd company logo
Alexander BORIS
    Max Planck Institute for Solid State Research
    Stuttgart




                  Spectroscopic ellipsometry:
                  application to electrodynamics
                  of correlated electron materials
                  and oxide superlattices.



September 1, 2011, Vancouver

                 MAX-PLANCK-UBC CENTRE FOR QUANTUM MATERIALS
           International Summer School on Surfaces and Interfaces in Correlated Oxides
Outline                           Outline
               • the complex dielectic function spectra -
                       one of the first steps in research of the
                       physical properties of a new material

       • spectroscopic ellipsometry -
                       basic principles and experimental implementation

       • advantages of ellipsometry -             illustrative examples -

  i)    exact numerical inversion, no        i)    superconductivity-induced
        Kramers-Kronig transformation,             transfer of the spectral weight in
        allows for K-K consistency check           high temperature cuprate SCs

  ii) no reference measurements, very        ii) superconductivity-induced optical
      accurate and highly reproducible           anomalies and iron pnictide
                                                 superconductors

  iii) oblique and variable angle of         iii) dimensionality-controlled
       incidence, very sensitive to               collective charge and spin* order
       thin-film properties                       in nickel-oxide superlattices

              * combined with low-energy muons which serve as a sensitive
              local probe of the internal magnetic field distribution
Outline                      Outline
          • the complex dielectic function spectra -
                 one of the first steps in research of the
                 physical properties of a new material
Electromagnetic waves      Electrodynamics of Solids


      ‫ܧ = ܧ‬଴ ݁ [௜(ఠ௧ିk‫ ݔ‬ାఋ)]
Dielectric polarization, susceptibility, pemittivity
                            Electrodynamics of Solids


                      ࡱ                                                            ࡼ
                                                    +                                      +q
                                   -                       -
                              -          -




                                                                    Polarization
                                   +
     Electric field




                                                    -      +                                 ݈
                          -                  -
                                   -                +                                       -q
                                                           -
                                                                                          ߤ ൌ ‫݈∙ݍ‬
                              Electric           Ionic (phonon)                        Dipole moment



                                  Polarization ࡼ ൌ 	 ∑࢏ ࣆ࢏ ൌ ߝ଴ χ ࡱ
                                                                   ࡼ
                                         ࢿ ൌ 1 ൅	χ	ൌ 1 ൅
                                                                  ఌబ ࡱ
4π
                           Electrodynamics of ∂E
                               ∇× H =    j + ε 0ε Solids
Maxwell’s equations for wave                     c          ∂t
 propagation in a conductor:                         ∂H
                                       ∇ × E = −µ0
                                                     ∂t
                                                                    ∂E       ∂ 2E 
                                       ⇒ ∇ × (∇ × E) = −∇ E = − µ0 σ
                                                                 2
                                                                        + ε 0ε 2 
                                                                    ∂t       ∂t 

 plane wave :          ‫ܧ = ܧ‬଴ ݁ [௜(ఠ௧ିk‫ ݔ‬ାఋ)] ⇒ 	k ଶ = ߤ଴ ݅߱ߪ + ߤ଴ ߝ଴ ߝ߱ଶ
                                                4ߨ           1
                           SI → CGS:        ߤ଴ → ଶ ,			ߝ଴ →
                                                ܿ           4ߨ
                  ఠమ          ସగ                      ఠ                         ସగ
       	k ଶ   =         ߝ+݅      ߪ   , 									k	 ≡ 	 N, 								Nଶ 	= ߝ + ݅      ߪ
                  ௖మ          ఠ                       ௖                         ఠ

Complex                dielectric function           optical conductivity

        ߝ̃ ߱ = ߝଵ (߱) + ݅ ∙ ߝଶ (߱)                     ߪ ߱ = ߪଵ ߱ + ݅ ∙ ߪଶ (߱)
                                                       ෤
                                               4ߨ
                                      ߝଶ ߱ =      ߪଵ 	(߱)
                                               ߱
Dielectric response of Drude metal
                                               dv        mb
  equation of motion for electrons          mb    = eE −    v
                                               dt        τ
                                                              damping term
                                                      momentum transferred to phonons
                                                      and impurities per unit time
                                 eτ     1
                  solution    v=            E
                                 mb 1 − iωτ
                                            nb e 2 τ
          current density      j = nb e v =             E
                                             mb 1 − iωτ
                σ0           γ = 1/ τ                               ω pl
                                                                      2

      σ (ω) =                                          ε1 (ω) = 1 − 2 2
              1 − iωτ                                              ω +γ
                                    4π nbe2
           ne2τ              ω pl =
                               2
                                                                   ω pl γ 2
                                                                     2
      σ0 =                            mb               σ1 (ω) =
                                                                 1
            mb           collective oscillations of             4π γ ω 2 + γ 2
                          electron charge density
Complex dielectric functionElectrodynamics of Solids


            ߝଵ (߱)




        4ߨ
 ߝଶ ߱ =    ߪ 	(߱)
        ߱ ଵ
Optical sum rules:                                        ∞
                              Spectral Weight and Sum Rules             π ne e 2
                                 f-sum rule: SW (0, ∞) = ∫ σ 1 (ω )dω =          = const
                                                          0
                                                                         2me
                                ݊௘ - total number of electrons in the system, 		݉௘ - free electron mass


  D.Y. Smith and E. Shiles,
  PRB 17, (1978) 4689-4694

                         Ω
            = 2 Al ∫ σ (ω )dω
               2m
     neff
             πe N 0




                                                                           Ω



                                                                         ω pl
                                                                           2
                                                                                    π nb e 2
        intra-band spectral weight:              SW   intra
                                                              (0, ∞) =          =              = f (T ) ≠ const
                                                                          8          2mb
Kramers-Kronig relations
   1926-1927                 response
               follow causality: P = ε 0 χ E
                                          applied field
                             ∞
                 P(t ) = ε 0 ∫ χ (t − t ' )E(t ' )dt ',       χ (t − t ' ) = 0 for t < t '
                             −∞

                 P(ω) = ε 0 χ (ω)E(ω)

                                                                  ∞
                                                                    ω ' ε 2 (ω ')
                                      ε 1 (ω ) − 1 =
                                                          2
                    KKR:                                      ⋅ P∫                dω '
                                                       π          0
                                                                    ω ' −ω
                                                                        2     2


                                                     2ω
                                                                  ∞
                                                                    ε 1 (ω ') − 1
                                      ε 2 (ω ) = −            ⋅ P∫                dω '
                                                       π          0
                                                                    ω ' −ω
                                                                         2     2




                                                ∆σ 1 (ω ')
                                                              ∞

         consistency check: ∆ε 1 (ω ) = 8 ⋅ P ∫ 2          dω '
                                              0
                                                ω ' −ω  2
Normal incidenceReflectivity by normal incidence
                 reflectivity
                                                Incident light
                                                  ‫ܧ‬଴௜ sin ߱‫ݐ‬     ߶௥

         r
         Ei

                                     Reflected light
                                      ‫ܧ‬଴௥ sinሺ߱‫ ݐ‬൅ ߶௥ ሻ
                           2
                    E0 r        ~2
         r     R=              =r
         Er         E0 i
                           2




                ~ = ε − 1 = R (ω ) exp{iφ (ω )}
                r
                    ε +1
                                         r


                                     ∞
                            2ω ln R (ω ' )
        KKR:    φr (ω ) = −   ∫ ω 2 − ω ' 2 dω '
                            π 0
Outline                        Outline



    • spectroscopic ellipsometry -
                   basic principles and experimental implementation
Analogy with electric circuit electric circuit admittance
                Analogy with impedance


                        Lissajous figure


                                    a      b          resistance & reactance
                                                       (complex impedance)

          X        Y
                                                          Z = R+iωL

              R                                                  Vmaxsinωt
                                                      ϕ          Imaxsin(ωt-ϕ)
                       L                       Vmax
                                               Imax




         ϕ= arctan(ωL/R)=
         = arcSin(a/b)
                                                              Time
Polarization of light               Electrodynamics of Solids
                              ࡱ-field vector ࡱ = ࡱ࢞ + ࡱ࢟
                                                                Y

      Linear polarization
        phase delay ߮=0                                                   X



                                                                Y
    Curcular polarization
      phase delay ߮=ߨ/2
                                                                          X



                                                                Y
    Elliptical polarization                                     Ψ
                                                                     ‫ܧ‬௫
   phase delay ߮=0.35·2ߨ
                                                                          X
                                                                ‫ܧ‬௬
Spectroscopic ellipsometry



                Sample




                                               Analyzer




                             near Brewster angle
             Polaryzer        tan ߠ஻ = ݊௧ ⁄݊௜
Spectroscopic ellipsometry



                Sample




                                               Analyzer




                             near Brewster angle
             Polaryzer        tan ߠ஻ = ݊௧ ⁄݊௜             ϕ
Spectroscopic ellipsometry
                                                                                          Detector:
                                                                2,0
    Elliptically polarized light determined by:




                                                    Intensity
     1. Relative phase shift, ∆= ∆௣ − ∆௦ ;
                                         ௥೛
     2. Relative attenuation, tan Ψ =                           1,0
                                         ௥ೞ



            Sample
                                                                0,0
                                                                      0     90      180     270   360
                                                                           Analyzer angle (Ai )
                                        Analyzer
                                                            I(Ai)/I0 = 1 + α sin(2Ai) + β cos(2Ai)


                                                                                   1+ߙ
                                                                          tan Ψ =       tan ܲ ,
         Polaryzer                                                                 1−ߙ
                        ̃
                       ‫ݎ‬௣ (߱)                                                         ߚ
                 ෤
                 ߩ ߱ =        = tan Ψ(߱) ݁ ௜∙୼(ఠ)                           cos Δ =
                          ̃
                       ‫ݎ‬௦ (߱)                                                       1 − ߙଶ


                                                       1 + tan Ψ(߱) ∙ ݁ ௜∆(ఠ)
                                                                                                      ଶ
      Ψ(߱)
           	ൠ 	 ⇒ 	 ߝ̃ ߱ = (sin ߮)ଶ +(sin ߮)ଶ (tan ߮)ଶ
      Δ(߱)                                             1 − tan Ψ(߱) ∙ ݁ ௜∆(ఠ)
Spectroscopic ellipsometry




            Paul Drude
            ellipsometer

             ~ 1890
                             2007
ANKA Synchrotron, Karlsruhebeamline at ANKA
                         IR IT

                          IR-1 beamline
                Y.-L. Mathis, B. Gasharova, D. Moss




                                            Current: 80 -180 mA

                                            lifetime: 12-23 hours
ANKA Synchrotron, Karlsruhebeamline at ANKA
                         IR IT

                                                                                                      IR-1 beamline
                                                         Y.-L. Mathis, B. Gasharova, D. Moss

                                                         1.5

                                    Magnetic Field [T]
                                                                                                           Magnetic profile
                                                         1.0
                                                                                                           of a dipole

                                                         0.5                                                                    Edge and dipole
Spatial distribution                                                                                                          radiation in the visible
from the edge at
                                                         0.0
3 m from the source
(calculated for 100µm)                                    1.0m      0.5      0.0        -0.5      -1.0
                                                              Position on particle trajectory [m]
                                                                           Photons/s/.1%bw/mm^2 x10




               40                                                     150

               20
                                                                                                                                    at λ=10 µm
      y [mm]




                                                                      100
                0

               -20                                                    50

        -40mm
                                                                                             9




                                                                      0
                     -40mm -20      0   20                     40
                                 x [mm]
wide-band spectroscopic ellipsometry THz to UV
                  Ellipsometry: from


                        ANKA Synchrotron
                        edge radiation


    1m                     10m               100m                   1   eV       6.2

  0.2    THz 1         2
                                 far-IR        mid-IR near-IR                UV
        10                  100               1000                  10000 cm-1
                                                                 near-IR to deep-UV
             far-IR homebuilt ellipsometer                          spectroscopic
                at ANKA IR1- beam line,                         ellipsometer (VASE)
                     @ Karlsruhe IT                            Woollam Co., @ MPI-FKF

                                        IR homebuilt ellipsometer
                                       based on Bruker 66v/S FTIR
                                        spectrometer, @ MPI-FKF
wide-band spectroscopic ellipsometry THz to UV
                  Ellipsometry: from


                        ANKA Synchrotron
                        edge radiation


    1m                     10m               100m                   1   eV       6.2

  0.2    THz 1         2
                                 far-IR        mid-IR near-IR                UV
        10                  100               1000                  10000 cm-1
                                                                 near-IR to deep-UV
             far-IR homebuilt ellipsometer                          spectroscopic
                at ANKA IR1- beam line,                         ellipsometer (VASE)
                     @ Karlsruhe IT                            Woollam Co., @ MPI-FKF

                                        IR homebuilt ellipsometer
                                       based on Bruker 66v/S FTIR
                                        spectrometer, @ MPI-FKF
Outline                             Outline




       • advantages of ellipsometry -

  i)    exact numerical inversion, no
        Kramers-Kronig transformation,
        allows for K-K consistency check

  ii) no reference measurements, very
      accurate and highly reproducible


  iii) oblique and variable angle of
       incidence, very sensitive to
       thin-film properties
Outline                             Outline




       • advantages of ellipsometry -           illustrative examples -

  i)    exact numerical inversion, no      i)    superconductivity-induced
        Kramers-Kronig transformation,           transfer of the spectral weight in
        allows for K-K consistency check         high temperature cuprate SCs
Kramers-Kronig consistency check



                                                                  ∆σ 1Exp (ω ')
                                                             ∞

            ∆ε 1Exp (ω0 )              ∆ε    KK
                                                  (ω0 ) = 8 ⋅ P ∫ 2 2 dω '
                                                                0 ω ' −ω0
                                            1




      This additional constraint unique to ellipsometry allows one to determine
      with high accuracy changes in the spectral weight in the extrapolation
      region beyond the experimentally accessible spectral range:



             hω < 10 meV              .........          hω > 6.6 eV
T-dependent Drude                           ω pl         π e 2 nb
                                              2

                             SW Drude =             =
                                             8            2 mb



 σDC
                                  γ (T1 ) > γ (T2 )                          γ2
                                                           σ1 (ω) = σ DC
                                      T1 > T2
                                                                           ω2 + γ 2


            0



                                                                          ω pl
                                                                            2

                                                           ε1 (ω) = ε ∞ − 2 2
          -20
       ε1




                                                                         ω +γ
          -40


                0.0   0.5   1.0       1.5          2.0
                            hν (eV)
T-dependent Drude SW                         ω pl         π e 2 nb
                                               2

                             SW Drude =              =
                                               8           2 mb

                                            electron correlation effects

 σDC
                                                                       UHB



                                                            Daniel Khomslii’s lecture
            0
                                                              nb
                                                                 = f (T ) ≠ const
         -20                                                  mb
       ε1




         -40


                0.0   0.5   1.0       1.5           2.0
                            hν (eV)
Kramers-Kronig consistency check
                                                                                                        1.2

                                                                                                        1.0                                     σ1,A- σ1,B
                                                                                                        0.8
                              A                               ωp= 1.5 eV




                                                                                       ∆σ1 (10 Ω cm )
                  6                                                                                                                       SWA-SWB




                                                                                       -1
                                                                                                        0.6




                                                                                       -1
                                                                                                                                                +0.1 %
                                                                 γΑ = 0.05 eV




                                                                                       3
  σ1 (10 Ω cm )
  -1




                                                                                                        0.4                                     -0.25 %
                  4
                                                                 γB = 0.06 eV
  -1




                          B                                                                             0.2
  3




                                                                                                        0.0
                  2
                                                                                                        -0.2
                                                                                                            0.00   0.02            0.04            0.06            0.08

                                                                                                                           photon energy (eV)
                  0
                   0.00           0.05           0.10          0.15             0.20                    0.0

                                         photon energy (eV)

                                                                                                        -0.5




                                                   ∆σ (ω ')
                                                        ∞
                                                                                                                                                      ε1,A- ε1,B
                              ∆ε 1 (ω0 ) = 8 ⋅ P ∫ 2 1 2 dω '
                                                                                                        -1.0
                                                                                       ∆ε1




                                                 0 ω ' −ω0
                                                                                                        -1.5                                SWA-SWB
                                                                                                                                                      +0.1 %
                                                                                                        -2.0
                                                                                                                                                      -0.25 %
                                                                                                            0.18          0.21              0.24                   0.27

                                                                                                                           photon energy (eV)
in-plane Ba2Sr2CaCu2Oin-plane Ba2Sr2CaCu2O8
                     8                                                  Tc=91 K

                                            Tc = 91 K


             6000

                                        10 K
                                        100K
                                        200 K
σ1 (Ω cm )




             4000
-1




                                                       0
-1




             2000
                                                  -1000



                                                 ε1b
                                                                                   10 K
                0                                                                  100 K
                0.01           0.1                -2000                            200 K
                       Photon energy (eV)


                                                  -3000
                                                       0.01           0.1
                                                              Photon energy (eV)
in-plane Ba2Sr2CaCu2O8 (T>Tc)



                                                                          8
                                                                                                           exp
                                                                                     N
                                                                                                     ∆ε1
               0                                                                  ∆SW > 0
                                                                          6                            exp
                                                                                              from ∆σ1 (0 < ω < 1.0 eV)
                             as measured
∆σ1 (mΩ cm )




               -2                                                                                                   100K      200K
-1




                        extrapolated with                                                     with               SW = SW
                                                                          4                                          100K
                                                                                                                 SW > SW
                                                                                                                              200K
               -4
-1




                                                                                                                  (by ≈ 1.5%)




                                                                    ∆ε1
                               SW head = − SW tail                        2
               -6
                               SW   head
                                           > − SW   tail

               -8
                    ∆T = 200 K - by ≈ 1.5%
                                 100 K        (0.007eV 2 )                0
         -10
           0.00      0.02   0.04     0.06     0.08         0.10
                                                                          0.1        0.2        0.3                 0.4          0.5
                         Photon energy (eV)
                                                                                         Photon energy (eV)

                                                                  ∆SW total > 0

                                                SW 100 K = SW 200 K + 0.007 eV 2
Perfect conductor
                                  ω plτ → ∞
                                 σ0       σ0    ne2
     purely reactive    σ(ω) =         =     =
                               1 − iωτ   iωτ   iωm*

       Cooper pairs         ms = 2m, es = 2e, ns = n / 2


                                1 ns es2 r       1 1 r
                       j (ω) =           E(ω) =         E(ω)
                       r
                               iω ms            iω µ0λ2

                                ms       r r i ( kr⋅rr −ωt )
     penetration depth      λ=         , E = E0e
                               µ0ns es
                                     2

                                              r
                                             dj
         The first London equation: E = µ0λ2
                                    r
                                             dt
R.A. Ferrell, R.E. Glover, M. Tinkham
1958-1959
FGT-sum fule                                    KKR
                                        1                         1
                       ε1 (ω) = −               ⇒     σ1 (ω) =             δ (ω)
                                    λL ω2   2
                                                                 8λL
                                                                       2


          >6 ∆SC
  1
λL   2
         =8   ∫ ∆σ (ω)dω
              0+
                   1
Optical response of NbN SC film
                                                       J.Demsar et al., 2011




 Mach-Zander
 interferometer
 with movable
 mirror:




                                     ω              1                      1
                       σ 2 (ω) = −      ε1 (ω) =               σ1 (ω) =             δ (ω)
                                     4π          4π λL ω
                                                      2
                                                                          8λL
                                                                                2
D-wave gap in cuprates
in-plane Ba2Sr2CaCu2Oin-plane Ba2Sr2CaCu2O8
                     8                                                  Tc=91 K

                                            Tc = 91 K


             6000

                                        10 K
                                        100K
                                        200 K
σ1 (Ω cm )




             4000
-1




                                                       0
-1




             2000
                                                  -1000



                                                 ε1b
                                                                                   10 K
                0                                                                  100 K
                0.01           0.1                -2000                            200 K
                       Photon energy (eV)


                                                  -3000
                                                       0.01           0.1
                                                              Photon energy (eV)
in-plane Ba2Sr2CaCu2O8 (T<Tc)

                                         ∆σ 1Exp (ω ')
                                           ∞                                    ∞
               ∆ε 1 (ω ) = 2 2 + 8 ⋅ P ∫ 2                                   = 8 ∫ ∆σ 1Exp (ω ')dω ' ( FGT − sum rule)
                             1                                           1
                                                       dω ' with
                          λLω         0+
                                         ω ' −ω    2
                                                                       λ2
                                                                        L       0+


                                                                   8
                                                                                                            exp
                                                                                                      ∆ε1
                                  as measured                      6                                     exp
                                                                                               from ∆σ1 (0 < ω < 1.0 eV)
                             extrapolated with
∆σ1 (mΩ cm )




                                                                                                                    2
                                                                                                                  1/λ L=∆SW
-1




                                                  °
                                                                                               with
                                    λL = 2300 Α                    4
-1




                                                  °
                                    λL = 2000 Α



                                                             ∆ε1
                                                                   2
                                      ∆T = 100 K - 10 K
                                                                   0
                                                                                         SC
               0                                                                ∆SW           ≈0
               0.00   0.02   0.04   0.06       0.08   0.10
                         Photon energy (eV)                        0.1             0.2             0.3              0.4       0.5
                                                                                     Photon energy (eV)


                                                                                          ∞
                                                                                     ≈ 8 ∫ ∆σ 1Intra (ω ')dω '
                                                                               1
                                                                              λ2
                                                                               L          0+
in-plane Ba2Sr2CaCu2O8 (T<Tc)

                                         ∆σ 1Exp (ω ')
                                           ∞                                          ∞
               ∆ε 1 (ω ) = 2 2 + 8 ⋅ P ∫ 2                                      = 8 ∫ ∆σ 1Exp (ω ')dω ' ( FGT − sum rule)
                             1                                             1
                                                       dω ' with
                          λLω         0+
                                         ω ' −ω    2
                                                                           λ2
                                                                            L         0+


                                                                   8
                                                                                                                exp
                                                                                                          ∆ε1
                                  as measured                      6                                         exp
                                                                                                   from ∆σ1 (0 < ω < 1.0 eV)
                             extrapolated with
∆σ1 (mΩ cm )




                                                                                                                        2
                                                                                                                      1/λ L=∆SW+1%
-1




                                                  °
                                                                                                   with
                                    λL = 2300 Α                    4                                                    2
                                                                                                                      1/λ L=∆SW-1%
-1




                                                  °
                                    λL = 2000 Α


                                                             ∆ε1
                                                                   2
                                      ∆T = 100 K - 10 K
                                                                   0
                                                                                             SC
               0                                                                      ∆SW         ≈0
               0.00   0.02   0.04   0.06       0.08   0.10
                         Photon energy (eV)                        0.1                 0.2             0.3              0.4          0.5
                                                                                           Photon energy (eV)

                                                                                 ∞
                                                                            = 8 ∫ ∆σ 1Intra (ω ')dω ' ± 0.5% (0.0008 eV 2 )
                                                                       1
                                                                   λ2
                                                                    L            0+
SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8
                       in-plane                                                     Tc=91 K

                                                   SW 100 K = SW 200 K + 0.007 eV 2
                                             8
                                                                                    exp
                                                                              ∆ε1         (∆T=200K-100K)
                                             6                                      exp
                                                                              ∆ε1         (∆T=100K-10K)

                                             4
                                                                          N
                                                                 ∆SW > 0




                                       ∆ε1
                                             2

                                             0
                                                                SC
                                                         ∆SW         ν0
                                             0.1          0.2             0.3                0.4          0.5
                                                           Photon energy (eV)

                                                          ∞
                                                        = ∫ ∆σ 1Intra (ω ')dω ' ± 0.0008 eV 2
                                                   1
                                                   λ2
                                                    L     0+
H.J.A. Molegraaf & D. van der Marel,
Science, 295, 2239 (2002)
SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8
                       in-plane                 Tc=91 K



                                       Bi2212




H.J.A. Molegraaf & D. van der Marel,
Science, 295, 2239 (2002)
SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8
                       in-plane                   Tc=91 K



                                         Bi2212




                                       Y123




H.J.A. Molegraaf & D. van der Marel,
Science, 295, 2239 (2002)
Conclusions




         Science, 304, 708 (2004)
Outline                         Outline




    • advantages of ellipsometry -         illustrative examples -




  ii) no reference measurements, very    ii) superconductivity-induced optical
      accurate and highly reproducible       anomalies and iron pnictide
                                             superconductors
Iron arsenide superconductors
                                                     Ba
                                 lattice structure

multiband electronic structure


                                            Fe As




superconductivity



   Ba0.68K0.32Fe2As2
      Tc=38.5 K
SC-reduced absorption in visible
                                      ω      ∆
                                   ! ħω > 200∆SCmax
Thermal modulation ellipsometry
inter-band excitations: LDAexcitations: LDA assignment
               inter-band assignment



                                                 A.N. Yaresko




                    Γ           M
SC-induced anomalies in visible (single-band BCS)

                ! Ν ouSC ≡ Ν ouNS




                   2∆




A.L. Dobryakov et al.,
Optics Communications 105, 309 (1994)
SC-reduced absorption in visible (Ba1-xKxFeAs)

           ! Ν ouSC < Ν ouNS




            ∆Εg
           0.5 eV
SC-induced lowering of the chemical potential

 Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969)

                                 1 ∆ SC
                                          2
                   µ SC   ≈ µN −
                                 4 µN

              ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV
                   2
SC-induced lowering of the chemical potential

 Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969)

                               1 ∆ SC
                                        2
                 µ SC   ≈ µN −
                               4 µN

            ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV
                2




 Multi band BCS:    ∆iSC ≠ ∆ jSC 
                                                  j→
                                  ⇒ nSC = nN + ∆nSC i
                                      i     i

                    µ = µ = µ SC 
                     i   j
                                 

        • self-consistent treatment of a variable chemical potential at
        the SC transition is required
SC-induced inter-band charge transfer

Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969)

                               1 ∆ SC
                                            2
                 µ SC   ≈ µN −
                               4 µN

             ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV
                 2




Multi band BCS:      ∆iSC ≠ ∆ jSC 
                                                   j→
                                   ⇒ nSC = nN + ∆nSC i
                                       i     i

                     µ = µ = µ SC 
                      i   j
                                  

      Two el’s subsystems in cuprates:
      D. I. Khomskii and F.V. Kusmartsev, PRB 46 (1992)

                               N CuO2        ∆2
         µ SC = µ N −
                         N CuO2 + N chain   4µ N
                                  N CuO2       ∆2 
         nSC
                 =n   N      1 +                    ~ 1%
          CuO2        CuO2
                              N CuO + N chain 4µ N
                                                  2 
                                   2               
SC-induced inter-band charge transfer



                                                 Fe3dxz,zy+Fe3dxy

 ∆SC < ∆SC 
  h      e        nh < nh
                    SC     N

           ⇒
 mh < me h  ∆F SC (0) > ∆ SC / ε F
   *    *                    2
           




                                        Fe3dxy
Conclusions




Ba0.68K0.32Fe2As2 - SC-reduced absorption in visible:

  • assigned to excitations from As-px,y/Fe-dz2 to Fe-dyz,zx and Fe-dxy states
  • charge transfer between the Fe-dyz,zx and Fe-dxy bands
            below Tc could explain the optical anomaly
  • self-consistent treatment of a variable chemical potential
            at the SC transition is required
  • in the presence of large Fe-As bond polarizability it can potentially
             enhance superconductivity in iron pnictides.
Outline                           Outline




    • advantages of ellipsometry -          illustrative examples -




  iii) oblique and variable angle of    iii) dimensionality-controlled
       incidence, very sensitive to          collective charge and spin* order
       thin-film properties                  in nickel-oxide superlattices

            * combined with low-energy muons which serve as a sensitive
            local probe of the internal magnetic field distribution
2D e-gas in semiconductors

                      Band Bending picture




        QHE v Klitzing 1980
        FQHE H. Störmer 1984


                          Jochen Mannhart’s lecture
Dimentionality control in oxides
                                          LaAlO3
 “solid-state chemistry approach”      wide-band-gap
                                      (~ 5eV) insulator




                                          LaNiO3
 Ruddlesden–Popper (R–P) homologous    paramagnetic
 series of Srn+1RunO3n+1                   metal
Why RNiO3?
        J.-S. Zhou, J.B. Goodenough et al.,               LaAlO3
                                 PRL 84, 526 (2000)
                                                       wide-band-gap
                                                      (~ 5eV) insulator




   Ni3+ 3d7 t62ge1g
                                        ∆CF >> JH
  eg                                                      LaNiO3
                         S=1/2
                                     W ~ EG~ JH ~ U    paramagnetic
  t2g                                                      metal
RNiO3-based Heterosctructures
                                                                     LaAlO3
                                                                  wide-band-gap
    Possible 3D-to-2D- and interface-                            (~ 5eV) insulator
    induced “engineered” properties
         of correlated electrons:


•     metal- insulator transition with unusual
      magnetic and charge ordering
•     orbital reconstruction
•     multiferroicity
       G. Giovannetti et al., PRL 103, 156401 (2009)
•     superconductivity
       J. Chaloupka and G. Khaliullin, PRL 100, 016404 (2008)

       P. Hansmann et al., PRL 103, 016401 (2009)

    “… possible orbital occupancy analogous to the cuprates …”
                                                                     LaNiO3
                                                                  paramagnetic
                                                                      metal
Theory                                       Experiment


     Perfect sample                                     Real sample

                              Technology


                                                    Extrinsic properties
      Intrinsic properties                     (stacking faults, inter-diffusion
(collective quantum phases)                        substrate contribution)




                                           high oxygen pressure PLD, MPI-FKF
                                           G. Cristiani and H.-U. Habermeier
LaNiO3|LaAlO3 superlattices

                                                                   compressive
                               tensile
                                                                  (001) LaSrAlO4
                            (001) SrTiO3




     N = 4 u.c. x 10, d = 290 ± 10 Å           N = 3 u.c. x 13, d = 312 ± 10 Å




MF-MPI beam line @ANKA, A. Frano, E. Benckiser, P. Wochner
Reciprocal-space maps




              N = 4 u.c.   N = 2 u.c.   N = 2 u.c.

Alex Frano’s poster
Reciprocal-space maps




               N = 4 u.c.          N = 2 u.c.         N = 2 u.c.

TEM: MF-MPI StEM E. Detemple, W. Sigle, P. van Aken
Theory       Experiment


                     Perfect sample      Real sample

                            Technology


                                      Extrinsic properties
                     Intrinsic properties faults, inter-diffusion
                                 (stacking
               (collective quantum phases) contribution)
                                     substrate
                         inevitable defects

                 + local probes!      vs.     macro probes

          optical spectroscopy                    dc conductivity
charge:
              (ellipsometry)                      and permittivity
               muon-SR                               magnetic
 spin:
             (slow muons)                           susceptibility

          AFM, charge order                  FM, ferroelectric, SC
Charge dynamics via spectroscopic ellipsometry

                                                                      Y
                                                                            Ai
                                         sample                                              detector



                                            E   Es                                analyzer
                                                                           IrsI
                                 P         Ep            ϕ          IrpI


                                                                ~
                                                     ~          r p (ω )
                                       polarizer     ρ (ω ) =   ~
                                                                             = tan Ψ (ω )ei∆ (ω )
                        light source
                                                                r s (ω )

                         oblique incidence
                             - sensitive to thin-film properties

                         intrinsic SL’s electrodynamics
                         is not flawed by a substrate, contacts and
                         extended defects
Isotropic film on isotropic substrate in vacuum
                                                                                                  ૚⁄૛
                                                  ଶ               ଶ                           ૛
         ߮௜                                      ܰ cos ߮ − ܰ − sin ࣐
                                       ‫ݎ‬଴ଵ೛೛ =                                                    ૚⁄૛
    01                                           ܰ ଶ cos ߮ + ܰ ଶ − sin ࣐                      ૛
                                d
         ܰ               SL                           ଶ                   ଶ           ૛                   ૛
                                                                                                              ૚⁄૛
    12                                           −݊ cos ߚ + ܰ ݊ − ࡺࡿ sin ࢼ
                                       ‫ݎ‬ଵଶ೛೛ =                                                                ૚⁄૛
                                                                                      ૛
                 ߚ௜                               ݊ଶ cos ߚ   +ܰ   ݊ଶ      − ࡺࡿ sin ࢼ                    ૛
         ࡺ࢙      substrate
                                                                                      ૚⁄૛
                                                 cos ߮ − ܰ ଶ − sin ࣐              ૛
                                       ‫ݎ‬଴ଵೞೞ =
        ‫ݎ‬௣ (߱)
         ̃                                       cos ߮ + ܰ ଶ − sin ࣐              ૛
                                                                                      ૚⁄૛
  ߩ ߱ =
  ෤            = tan Ψ(߱) ݁ ௜∙୼(ఠ)
        ‫ݎ‬௦ (߱)
           ̃                                                                                                ૚⁄૛
                                                                      ଶ           ૛                   ૛
                                                 −ࡺࡿ cos ߚ + ܰ − ࡺࡿ sin ࢼ
              ‫ݎ‬଴ଵ೛೛ + ‫ݎ‬ଵଶ೛೛ ݁ ି௜ଶఈ     ‫ݎ‬ଵଶೞೞ =                                                        ૚⁄૛
   ‫ݎ‬௣ (߱) =
    ̃                                              cos ߚ + ܰ ଶ − ࡺࡿ ૛ sin ࢼ                       ૛
              1 + ‫ݎ‬଴ଵ೛೛ ‫ݎ‬ଵଶ೛೛ ݁ ି௜ଶఈ
             ‫ݎ‬଴ଵೞೞ + ‫ݎ‬ଵଶೞೞ ݁ ି௜ଶఈ         Snell‘s law: sin ߮ = ܰ௦ sin ߚ
   ‫ݎ‬௦ (߱) =
    ̃
            1 + ‫ݎ‬଴ଵೞೞ ‫ݎ‬ଵଶೞೞ ݁ ି௜ଶఈ                                                                                  ૚⁄૛
                                                                              ௗ           ଶ                    ૛
                                       Phase thickness: ߙ = 2ߨ                    ܰ − sin ࣐
                                                                              ఒ


                     Known: ߩ ߱ , ߮, ࡺࡿ
                            ෤                    ߱
                     Unkown: ࡺ ߱ , ݀
complex dielectric function of bare SLs
 numerical inversion




                                          Drude parameters:
                                          N = 4:   ω p ≈ 1.10 eV , γ ≈ 87 meV        m*
                                                                                        = 10
                                          N = 2:   ω p ≈ 1.05 eV , γ ≈ 196 meV       m

                                                                              V
                                         EF = 0.5eV , VF = 1.33 ⋅107 cm , l = F
                                                                       s     2π cγ
                                                           o                     o
                       mean free path:    N = 4:   l = 9.7 A,   N = 2:    l = 4.4 A
from itinerant to localized electrons
LaNiO3
from itinerant to localized electrons
LaNiO3
from itinerant to localized electrons
LaNiO3




                                                   ΔNeff=0.03




                              Effective number of electrons localized:
                                                      ω
                                   ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′
                                                  2m
                                                π e N Ni 0
from itinerant to localized electrons
LaNiO3




                                                              ΔNeff=0.03




                                         Effective number of electrons localized:
   bulk NdNiO3 - ΔNeff=0.058                                     ω
                                              ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′
                                                             2m
 T.Katsufuji, Y.Tokura et al., (1995):                     π e N Ni 0
from itinerant to localized electrons
LaNiO3




                                                              ΔNeff=0.03




                                         Effective number of electrons localized:
   bulk NdNiO3 - ΔNeff=0.058                                     ω
                                              ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′
                                                             2m
 T.Katsufuji, Y.Tokura et al., (1995):                     π e N Ni 0
Metal – Insulator Transition (MIT) in LaNiO3




      Continuing the analogy with bulk RNiO3 series, one would then expect another
      second-order transition due to the onset of antiferromagnetic ordering at TN < TMI
      in the N = 2 SLs, as in RNiO3 with small R (Lu through Sm).
Low-Energy µSR measurements
                                         Rob Kiefl’s lecture




                          Thomas Prokscha, Zaher Salman,
                          Andreas Suter, Elvezio Morenzoni
LaNiO3|LaAlO3 SLs : µ+ Spin Relaxation
                      F (t ) − B (t )                 BTF = 0
           AZF (t ) =                 = aoG (t )
                      F (t ) + B(t )
         G(t) is the Fourier transform of the field
         distribution averaged over all muon sites.




      Fast depolarization rate:
                                                           Ni spins are AFM ordered
LaNiO3|LaAlO3 SLs : µ+ Spin Rotation
                                                               BTF=100 G
     The time evolution of the muon
     polarisation in a transverse field BTF is
                                                          µ+
                 F (t ) − B(t )
    ATF (t ) =                   = aoG (t ) cos(ω L t )
                 F (t ) + B (t )
      where Larmor frequency ωL= γµBTF ,
                    γµ= 2π×13.55 MHz/kG
LaNiO3|LaAlO3 SLs : µ+ Spin Rotation
                                                          BTF > 0
     The time evolution of the muon
     polarisation in a transverse field BTF is
                                                          µ+
                 F (t ) − B(t )
    ATF (t ) =                   = aoG (t ) cos(ω L t )
                 F (t ) + B (t )
      where Larmor frequency ωL= γµBTF ,
                    γµ= 2π×13.55 MHz/kG




          BTF =100 Gauss                         BTF =1000 Gauss    BTF =3000 Gauss
LaNiO3|LaAlO3 SLs : charge and spin order
LaNiO3|LaAlO3 SLs : charge and spin order
LaNiO3|LaAlO3 SLs : charge and spin order
Science, 332, 937 (2011)
SUMMARY


   i)   superconductivity-induced
        transfer of the spectral weight in
        high temperature cuprate SCs



   ii) superconductivity-induced
       optical anomalies and iron-based
       pnictide superconductors




   iii) dimensionality-controlled
        collective charge and spin* order
        in nickel-oxide superlattices
Thank you !

More Related Content

What's hot

Magnetoresistance and Its Types(PPT)
Magnetoresistance and Its Types(PPT)Magnetoresistance and Its Types(PPT)
Magnetoresistance and Its Types(PPT)
ZubairArshad19
 
josphenson junction
josphenson junctionjosphenson junction
josphenson junction
Kumar Vivek
 
Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"
Shuvan Prashant
 
Metamaterial
MetamaterialMetamaterial
Metamaterial
Nishargo Nigar
 
Metamaterial
MetamaterialMetamaterial
Metamaterial
Khalid Saeed Al-Badri
 
Metamaterials
Metamaterials Metamaterials
Metamaterials
Shuvan Prashant
 
Thermoelectric Materials
Thermoelectric MaterialsThermoelectric Materials
Thermoelectric Materials
Viji Vijitha
 
Density functional theory
Density functional theoryDensity functional theory
Density functional theory
sandhya singh
 
Organic photovoltaic
Organic photovoltaicOrganic photovoltaic
Organic photovoltaic
ZaidKhan281
 
Plasmonic1 new
Plasmonic1 newPlasmonic1 new
Plasmonic1 new
Besa Hoxha
 
Transition metal dichalcogenide NPs, recent advances in scientific research
Transition metal dichalcogenide NPs, recent advances in scientific researchTransition metal dichalcogenide NPs, recent advances in scientific research
Transition metal dichalcogenide NPs, recent advances in scientific research
ANJUNITHIKURUP
 
Quantum dot lasers
Quantum dot lasersQuantum dot lasers
Quantum dot lasersBise Mond
 
Graphene -Applications in Electronics
Graphene -Applications in ElectronicsGraphene -Applications in Electronics
Graphene -Applications in Electronics
Zaahir Salam
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
University of Michigan
 
Graphene electronic properties (1)
Graphene electronic properties (1)Graphene electronic properties (1)
Graphene electronic properties (1)
Sapan Anand
 
s3-Ellipsometry.ppt
s3-Ellipsometry.ppts3-Ellipsometry.ppt
s3-Ellipsometry.ppt
DevendraBhale
 
Nano solar cells
Nano solar cellsNano solar cells
Nano solar cellsSubash John
 
Tight binding
Tight bindingTight binding
Tight binding
University of Kentucky
 
Direct and in direct band gap-Modern Physics
Direct and in direct band gap-Modern PhysicsDirect and in direct band gap-Modern Physics
Direct and in direct band gap-Modern Physics
Chandra Prakash Pandey
 

What's hot (20)

Magnetoresistance and Its Types(PPT)
Magnetoresistance and Its Types(PPT)Magnetoresistance and Its Types(PPT)
Magnetoresistance and Its Types(PPT)
 
josphenson junction
josphenson junctionjosphenson junction
josphenson junction
 
Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"
 
Metamaterial
MetamaterialMetamaterial
Metamaterial
 
Metamaterial
MetamaterialMetamaterial
Metamaterial
 
Metamaterials
Metamaterials Metamaterials
Metamaterials
 
Thermoelectric Materials
Thermoelectric MaterialsThermoelectric Materials
Thermoelectric Materials
 
Density functional theory
Density functional theoryDensity functional theory
Density functional theory
 
Organic photovoltaic
Organic photovoltaicOrganic photovoltaic
Organic photovoltaic
 
Plasmonic1 new
Plasmonic1 newPlasmonic1 new
Plasmonic1 new
 
Transition metal dichalcogenide NPs, recent advances in scientific research
Transition metal dichalcogenide NPs, recent advances in scientific researchTransition metal dichalcogenide NPs, recent advances in scientific research
Transition metal dichalcogenide NPs, recent advances in scientific research
 
Quantum dot lasers
Quantum dot lasersQuantum dot lasers
Quantum dot lasers
 
Graphene -Applications in Electronics
Graphene -Applications in ElectronicsGraphene -Applications in Electronics
Graphene -Applications in Electronics
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
 
Graphene electronic properties (1)
Graphene electronic properties (1)Graphene electronic properties (1)
Graphene electronic properties (1)
 
s3-Ellipsometry.ppt
s3-Ellipsometry.ppts3-Ellipsometry.ppt
s3-Ellipsometry.ppt
 
Nano solar cells
Nano solar cellsNano solar cells
Nano solar cells
 
Tight binding
Tight bindingTight binding
Tight binding
 
Plasmonics
PlasmonicsPlasmonics
Plasmonics
 
Direct and in direct band gap-Modern Physics
Direct and in direct band gap-Modern PhysicsDirect and in direct band gap-Modern Physics
Direct and in direct band gap-Modern Physics
 

Similar to Spectroscopic ellipsometry

Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative Energy
EngenuitySC
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
vvk0
 
Electromagnetic Wave
Electromagnetic WaveElectromagnetic Wave
Electromagnetic WaveYong Heui Cho
 
Chem140alecture3.ppt
Chem140alecture3.pptChem140alecture3.ppt
Chem140alecture3.ppt
Sc Pattar
 
Band structure
Band structureBand structure
Band structure
nirupam12
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20Bipin Kujur
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Lewis Larsen
 
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddfECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
hushamss2271
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)oriolespinal
 
Lecture 5: Junctions
Lecture 5: JunctionsLecture 5: Junctions
Lecture 5: Junctions
University of Liverpool
 
Pot.ppt.pdf
Pot.ppt.pdfPot.ppt.pdf
Pot.ppt.pdf
ashwanikushwaha15
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
Roppon Picha
 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdf
ssuser9ae06b
 

Similar to Spectroscopic ellipsometry (20)

Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative Energy
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
 
Part i
Part iPart i
Part i
 
Electromagnetic Wave
Electromagnetic WaveElectromagnetic Wave
Electromagnetic Wave
 
Chem140alecture3.ppt
Chem140alecture3.pptChem140alecture3.ppt
Chem140alecture3.ppt
 
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
 
quantum dots
quantum dotsquantum dots
quantum dots
 
4 b5lecture62008
4 b5lecture620084 b5lecture62008
4 b5lecture62008
 
Band structure
Band structureBand structure
Band structure
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
 
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddfECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Lecture 5: Junctions
Lecture 5: JunctionsLecture 5: Junctions
Lecture 5: Junctions
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
Pot.ppt.pdf
Pot.ppt.pdfPot.ppt.pdf
Pot.ppt.pdf
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdf
 

More from nirupam12

D Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam EpitaxyD Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam Epitaxy
nirupam12
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
nirupam12
 
Charge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesCharge, spin and orbitals in oxides
Charge, spin and orbitals in oxides
nirupam12
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimer
nirupam12
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
nirupam12
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
nirupam12
 
Polarons in bulk and near surfaces
Polarons in bulk and near surfacesPolarons in bulk and near surfaces
Polarons in bulk and near surfaces
nirupam12
 
Resonant X Ray Diffraction
Resonant X Ray DiffractionResonant X Ray Diffraction
Resonant X Ray Diffraction
nirupam12
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
nirupam12
 
Piezo Responce Force Microscopy
Piezo Responce Force MicroscopyPiezo Responce Force Microscopy
Piezo Responce Force Microscopynirupam12
 
Piezoelectric mems
Piezoelectric memsPiezoelectric mems
Piezoelectric memsnirupam12
 

More from nirupam12 (11)

D Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam EpitaxyD Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam Epitaxy
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Charge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesCharge, spin and orbitals in oxides
Charge, spin and orbitals in oxides
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimer
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
 
Polarons in bulk and near surfaces
Polarons in bulk and near surfacesPolarons in bulk and near surfaces
Polarons in bulk and near surfaces
 
Resonant X Ray Diffraction
Resonant X Ray DiffractionResonant X Ray Diffraction
Resonant X Ray Diffraction
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
 
Piezo Responce Force Microscopy
Piezo Responce Force MicroscopyPiezo Responce Force Microscopy
Piezo Responce Force Microscopy
 
Piezoelectric mems
Piezoelectric memsPiezoelectric mems
Piezoelectric mems
 

Recently uploaded

Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 

Recently uploaded (20)

Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 

Spectroscopic ellipsometry

  • 1. Alexander BORIS Max Planck Institute for Solid State Research Stuttgart Spectroscopic ellipsometry: application to electrodynamics of correlated electron materials and oxide superlattices. September 1, 2011, Vancouver MAX-PLANCK-UBC CENTRE FOR QUANTUM MATERIALS International Summer School on Surfaces and Interfaces in Correlated Oxides
  • 2. Outline Outline • the complex dielectic function spectra - one of the first steps in research of the physical properties of a new material • spectroscopic ellipsometry - basic principles and experimental implementation • advantages of ellipsometry - illustrative examples - i) exact numerical inversion, no i) superconductivity-induced Kramers-Kronig transformation, transfer of the spectral weight in allows for K-K consistency check high temperature cuprate SCs ii) no reference measurements, very ii) superconductivity-induced optical accurate and highly reproducible anomalies and iron pnictide superconductors iii) oblique and variable angle of iii) dimensionality-controlled incidence, very sensitive to collective charge and spin* order thin-film properties in nickel-oxide superlattices * combined with low-energy muons which serve as a sensitive local probe of the internal magnetic field distribution
  • 3. Outline Outline • the complex dielectic function spectra - one of the first steps in research of the physical properties of a new material
  • 4. Electromagnetic waves Electrodynamics of Solids ‫ܧ = ܧ‬଴ ݁ [௜(ఠ௧ିk‫ ݔ‬ାఋ)]
  • 5. Dielectric polarization, susceptibility, pemittivity Electrodynamics of Solids ࡱ ࡼ + +q - - - - Polarization + Electric field - + ݈ - - - + -q - ߤ ൌ ‫݈∙ݍ‬ Electric Ionic (phonon) Dipole moment Polarization ࡼ ൌ ∑࢏ ࣆ࢏ ൌ ߝ଴ χ ࡱ ࡼ ࢿ ൌ 1 ൅ χ ൌ 1 ൅ ఌబ ࡱ
  • 6. Electrodynamics of ∂E ∇× H = j + ε 0ε Solids Maxwell’s equations for wave c ∂t propagation in a conductor: ∂H ∇ × E = −µ0 ∂t  ∂E ∂ 2E  ⇒ ∇ × (∇ × E) = −∇ E = − µ0 σ 2 + ε 0ε 2   ∂t ∂t  plane wave : ‫ܧ = ܧ‬଴ ݁ [௜(ఠ௧ିk‫ ݔ‬ାఋ)] ⇒ k ଶ = ߤ଴ ݅߱ߪ + ߤ଴ ߝ଴ ߝ߱ଶ 4ߨ 1 SI → CGS: ߤ଴ → ଶ , ߝ଴ → ܿ 4ߨ ఠమ ସగ ఠ ସగ k ଶ = ߝ+݅ ߪ , k ≡ N, Nଶ = ߝ + ݅ ߪ ௖మ ఠ ௖ ఠ Complex dielectric function optical conductivity ߝ̃ ߱ = ߝଵ (߱) + ݅ ∙ ߝଶ (߱) ߪ ߱ = ߪଵ ߱ + ݅ ∙ ߪଶ (߱) ෤ 4ߨ ߝଶ ߱ = ߪଵ (߱) ߱
  • 7. Dielectric response of Drude metal dv mb equation of motion for electrons mb = eE − v dt τ damping term momentum transferred to phonons and impurities per unit time eτ 1 solution v= E mb 1 − iωτ nb e 2 τ current density j = nb e v = E mb 1 − iωτ σ0 γ = 1/ τ ω pl 2 σ (ω) = ε1 (ω) = 1 − 2 2 1 − iωτ ω +γ 4π nbe2 ne2τ ω pl = 2 ω pl γ 2 2 σ0 = mb σ1 (ω) = 1 mb collective oscillations of 4π γ ω 2 + γ 2 electron charge density
  • 8. Complex dielectric functionElectrodynamics of Solids ߝଵ (߱) 4ߨ ߝଶ ߱ = ߪ (߱) ߱ ଵ
  • 9. Optical sum rules: ∞ Spectral Weight and Sum Rules π ne e 2 f-sum rule: SW (0, ∞) = ∫ σ 1 (ω )dω = = const 0 2me ݊௘ - total number of electrons in the system, ݉௘ - free electron mass D.Y. Smith and E. Shiles, PRB 17, (1978) 4689-4694 Ω = 2 Al ∫ σ (ω )dω 2m neff πe N 0 Ω ω pl 2 π nb e 2 intra-band spectral weight: SW intra (0, ∞) = = = f (T ) ≠ const 8 2mb
  • 10. Kramers-Kronig relations 1926-1927 response follow causality: P = ε 0 χ E applied field ∞ P(t ) = ε 0 ∫ χ (t − t ' )E(t ' )dt ', χ (t − t ' ) = 0 for t < t ' −∞ P(ω) = ε 0 χ (ω)E(ω) ∞ ω ' ε 2 (ω ') ε 1 (ω ) − 1 = 2 KKR: ⋅ P∫ dω ' π 0 ω ' −ω 2 2 2ω ∞ ε 1 (ω ') − 1 ε 2 (ω ) = − ⋅ P∫ dω ' π 0 ω ' −ω 2 2 ∆σ 1 (ω ') ∞ consistency check: ∆ε 1 (ω ) = 8 ⋅ P ∫ 2 dω ' 0 ω ' −ω 2
  • 11. Normal incidenceReflectivity by normal incidence reflectivity Incident light ‫ܧ‬଴௜ sin ߱‫ݐ‬ ߶௥ r Ei Reflected light ‫ܧ‬଴௥ sinሺ߱‫ ݐ‬൅ ߶௥ ሻ 2 E0 r ~2 r R= =r Er E0 i 2 ~ = ε − 1 = R (ω ) exp{iφ (ω )} r ε +1 r ∞ 2ω ln R (ω ' ) KKR: φr (ω ) = − ∫ ω 2 − ω ' 2 dω ' π 0
  • 12. Outline Outline • spectroscopic ellipsometry - basic principles and experimental implementation
  • 13. Analogy with electric circuit electric circuit admittance Analogy with impedance Lissajous figure a b resistance & reactance (complex impedance) X Y Z = R+iωL R Vmaxsinωt ϕ Imaxsin(ωt-ϕ) L Vmax Imax ϕ= arctan(ωL/R)= = arcSin(a/b) Time
  • 14. Polarization of light Electrodynamics of Solids ࡱ-field vector ࡱ = ࡱ࢞ + ࡱ࢟ Y Linear polarization phase delay ߮=0 X Y Curcular polarization phase delay ߮=ߨ/2 X Y Elliptical polarization Ψ ‫ܧ‬௫ phase delay ߮=0.35·2ߨ X ‫ܧ‬௬
  • 15. Spectroscopic ellipsometry Sample Analyzer near Brewster angle Polaryzer tan ߠ஻ = ݊௧ ⁄݊௜
  • 16. Spectroscopic ellipsometry Sample Analyzer near Brewster angle Polaryzer tan ߠ஻ = ݊௧ ⁄݊௜ ϕ
  • 17. Spectroscopic ellipsometry Detector: 2,0 Elliptically polarized light determined by: Intensity 1. Relative phase shift, ∆= ∆௣ − ∆௦ ; ௥೛ 2. Relative attenuation, tan Ψ = 1,0 ௥ೞ Sample 0,0 0 90 180 270 360 Analyzer angle (Ai ) Analyzer I(Ai)/I0 = 1 + α sin(2Ai) + β cos(2Ai) 1+ߙ tan Ψ = tan ܲ , Polaryzer 1−ߙ ̃ ‫ݎ‬௣ (߱) ߚ ෤ ߩ ߱ = = tan Ψ(߱) ݁ ௜∙୼(ఠ) cos Δ = ̃ ‫ݎ‬௦ (߱) 1 − ߙଶ 1 + tan Ψ(߱) ∙ ݁ ௜∆(ఠ) ଶ Ψ(߱) ൠ ⇒ ߝ̃ ߱ = (sin ߮)ଶ +(sin ߮)ଶ (tan ߮)ଶ Δ(߱) 1 − tan Ψ(߱) ∙ ݁ ௜∆(ఠ)
  • 18. Spectroscopic ellipsometry Paul Drude ellipsometer ~ 1890 2007
  • 19. ANKA Synchrotron, Karlsruhebeamline at ANKA IR IT IR-1 beamline Y.-L. Mathis, B. Gasharova, D. Moss Current: 80 -180 mA lifetime: 12-23 hours
  • 20. ANKA Synchrotron, Karlsruhebeamline at ANKA IR IT IR-1 beamline Y.-L. Mathis, B. Gasharova, D. Moss 1.5 Magnetic Field [T] Magnetic profile 1.0 of a dipole 0.5 Edge and dipole Spatial distribution radiation in the visible from the edge at 0.0 3 m from the source (calculated for 100µm) 1.0m 0.5 0.0 -0.5 -1.0 Position on particle trajectory [m] Photons/s/.1%bw/mm^2 x10 40 150 20 at λ=10 µm y [mm] 100 0 -20 50 -40mm 9 0 -40mm -20 0 20 40 x [mm]
  • 21. wide-band spectroscopic ellipsometry THz to UV Ellipsometry: from ANKA Synchrotron edge radiation 1m 10m 100m 1 eV 6.2 0.2 THz 1 2 far-IR mid-IR near-IR UV 10 100 1000 10000 cm-1 near-IR to deep-UV far-IR homebuilt ellipsometer spectroscopic at ANKA IR1- beam line, ellipsometer (VASE) @ Karlsruhe IT Woollam Co., @ MPI-FKF IR homebuilt ellipsometer based on Bruker 66v/S FTIR spectrometer, @ MPI-FKF
  • 22. wide-band spectroscopic ellipsometry THz to UV Ellipsometry: from ANKA Synchrotron edge radiation 1m 10m 100m 1 eV 6.2 0.2 THz 1 2 far-IR mid-IR near-IR UV 10 100 1000 10000 cm-1 near-IR to deep-UV far-IR homebuilt ellipsometer spectroscopic at ANKA IR1- beam line, ellipsometer (VASE) @ Karlsruhe IT Woollam Co., @ MPI-FKF IR homebuilt ellipsometer based on Bruker 66v/S FTIR spectrometer, @ MPI-FKF
  • 23. Outline Outline • advantages of ellipsometry - i) exact numerical inversion, no Kramers-Kronig transformation, allows for K-K consistency check ii) no reference measurements, very accurate and highly reproducible iii) oblique and variable angle of incidence, very sensitive to thin-film properties
  • 24. Outline Outline • advantages of ellipsometry - illustrative examples - i) exact numerical inversion, no i) superconductivity-induced Kramers-Kronig transformation, transfer of the spectral weight in allows for K-K consistency check high temperature cuprate SCs
  • 25. Kramers-Kronig consistency check ∆σ 1Exp (ω ') ∞ ∆ε 1Exp (ω0 ) ∆ε KK (ω0 ) = 8 ⋅ P ∫ 2 2 dω ' 0 ω ' −ω0 1 This additional constraint unique to ellipsometry allows one to determine with high accuracy changes in the spectral weight in the extrapolation region beyond the experimentally accessible spectral range: hω < 10 meV ......... hω > 6.6 eV
  • 26. T-dependent Drude ω pl π e 2 nb 2 SW Drude = = 8 2 mb σDC γ (T1 ) > γ (T2 ) γ2 σ1 (ω) = σ DC T1 > T2 ω2 + γ 2 0 ω pl 2 ε1 (ω) = ε ∞ − 2 2 -20 ε1 ω +γ -40 0.0 0.5 1.0 1.5 2.0 hν (eV)
  • 27. T-dependent Drude SW ω pl π e 2 nb 2 SW Drude = = 8 2 mb electron correlation effects σDC UHB Daniel Khomslii’s lecture 0 nb = f (T ) ≠ const -20 mb ε1 -40 0.0 0.5 1.0 1.5 2.0 hν (eV)
  • 28. Kramers-Kronig consistency check 1.2 1.0 σ1,A- σ1,B 0.8 A ωp= 1.5 eV ∆σ1 (10 Ω cm ) 6 SWA-SWB -1 0.6 -1 +0.1 % γΑ = 0.05 eV 3 σ1 (10 Ω cm ) -1 0.4 -0.25 % 4 γB = 0.06 eV -1 B 0.2 3 0.0 2 -0.2 0.00 0.02 0.04 0.06 0.08 photon energy (eV) 0 0.00 0.05 0.10 0.15 0.20 0.0 photon energy (eV) -0.5 ∆σ (ω ') ∞ ε1,A- ε1,B ∆ε 1 (ω0 ) = 8 ⋅ P ∫ 2 1 2 dω ' -1.0 ∆ε1 0 ω ' −ω0 -1.5 SWA-SWB +0.1 % -2.0 -0.25 % 0.18 0.21 0.24 0.27 photon energy (eV)
  • 29. in-plane Ba2Sr2CaCu2Oin-plane Ba2Sr2CaCu2O8 8 Tc=91 K Tc = 91 K 6000 10 K 100K 200 K σ1 (Ω cm ) 4000 -1 0 -1 2000 -1000 ε1b 10 K 0 100 K 0.01 0.1 -2000 200 K Photon energy (eV) -3000 0.01 0.1 Photon energy (eV)
  • 30. in-plane Ba2Sr2CaCu2O8 (T>Tc) 8 exp N ∆ε1 0 ∆SW > 0 6 exp from ∆σ1 (0 < ω < 1.0 eV) as measured ∆σ1 (mΩ cm ) -2 100K 200K -1 extrapolated with with SW = SW 4 100K SW > SW 200K -4 -1 (by ≈ 1.5%) ∆ε1 SW head = − SW tail 2 -6 SW head > − SW tail -8 ∆T = 200 K - by ≈ 1.5% 100 K (0.007eV 2 ) 0 -10 0.00 0.02 0.04 0.06 0.08 0.10 0.1 0.2 0.3 0.4 0.5 Photon energy (eV) Photon energy (eV) ∆SW total > 0 SW 100 K = SW 200 K + 0.007 eV 2
  • 31. Perfect conductor ω plτ → ∞ σ0 σ0 ne2 purely reactive σ(ω) = = = 1 − iωτ iωτ iωm* Cooper pairs ms = 2m, es = 2e, ns = n / 2 1 ns es2 r 1 1 r j (ω) = E(ω) = E(ω) r iω ms iω µ0λ2 ms r r i ( kr⋅rr −ωt ) penetration depth λ= , E = E0e µ0ns es 2 r dj The first London equation: E = µ0λ2 r dt
  • 32. R.A. Ferrell, R.E. Glover, M. Tinkham 1958-1959 FGT-sum fule KKR 1 1 ε1 (ω) = − ⇒ σ1 (ω) = δ (ω) λL ω2 2 8λL 2 >6 ∆SC 1 λL 2 =8 ∫ ∆σ (ω)dω 0+ 1
  • 33. Optical response of NbN SC film J.Demsar et al., 2011 Mach-Zander interferometer with movable mirror: ω 1 1 σ 2 (ω) = − ε1 (ω) = σ1 (ω) = δ (ω) 4π 4π λL ω 2 8λL 2
  • 34. D-wave gap in cuprates
  • 35. in-plane Ba2Sr2CaCu2Oin-plane Ba2Sr2CaCu2O8 8 Tc=91 K Tc = 91 K 6000 10 K 100K 200 K σ1 (Ω cm ) 4000 -1 0 -1 2000 -1000 ε1b 10 K 0 100 K 0.01 0.1 -2000 200 K Photon energy (eV) -3000 0.01 0.1 Photon energy (eV)
  • 36. in-plane Ba2Sr2CaCu2O8 (T<Tc) ∆σ 1Exp (ω ') ∞ ∞ ∆ε 1 (ω ) = 2 2 + 8 ⋅ P ∫ 2 = 8 ∫ ∆σ 1Exp (ω ')dω ' ( FGT − sum rule) 1 1 dω ' with λLω 0+ ω ' −ω 2 λ2 L 0+ 8 exp ∆ε1 as measured 6 exp from ∆σ1 (0 < ω < 1.0 eV) extrapolated with ∆σ1 (mΩ cm ) 2 1/λ L=∆SW -1 ° with λL = 2300 Α 4 -1 ° λL = 2000 Α ∆ε1 2 ∆T = 100 K - 10 K 0 SC 0 ∆SW ≈0 0.00 0.02 0.04 0.06 0.08 0.10 Photon energy (eV) 0.1 0.2 0.3 0.4 0.5 Photon energy (eV) ∞ ≈ 8 ∫ ∆σ 1Intra (ω ')dω ' 1 λ2 L 0+
  • 37. in-plane Ba2Sr2CaCu2O8 (T<Tc) ∆σ 1Exp (ω ') ∞ ∞ ∆ε 1 (ω ) = 2 2 + 8 ⋅ P ∫ 2 = 8 ∫ ∆σ 1Exp (ω ')dω ' ( FGT − sum rule) 1 1 dω ' with λLω 0+ ω ' −ω 2 λ2 L 0+ 8 exp ∆ε1 as measured 6 exp from ∆σ1 (0 < ω < 1.0 eV) extrapolated with ∆σ1 (mΩ cm ) 2 1/λ L=∆SW+1% -1 ° with λL = 2300 Α 4 2 1/λ L=∆SW-1% -1 ° λL = 2000 Α ∆ε1 2 ∆T = 100 K - 10 K 0 SC 0 ∆SW ≈0 0.00 0.02 0.04 0.06 0.08 0.10 Photon energy (eV) 0.1 0.2 0.3 0.4 0.5 Photon energy (eV) ∞ = 8 ∫ ∆σ 1Intra (ω ')dω ' ± 0.5% (0.0008 eV 2 ) 1 λ2 L 0+
  • 38. SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8 in-plane Tc=91 K SW 100 K = SW 200 K + 0.007 eV 2 8 exp ∆ε1 (∆T=200K-100K) 6 exp ∆ε1 (∆T=100K-10K) 4 N ∆SW > 0 ∆ε1 2 0 SC ∆SW ν0 0.1 0.2 0.3 0.4 0.5 Photon energy (eV) ∞ = ∫ ∆σ 1Intra (ω ')dω ' ± 0.0008 eV 2 1 λ2 L 0+ H.J.A. Molegraaf & D. van der Marel, Science, 295, 2239 (2002)
  • 39. SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8 in-plane Tc=91 K Bi2212 H.J.A. Molegraaf & D. van der Marel, Science, 295, 2239 (2002)
  • 40. SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8 in-plane Tc=91 K Bi2212 Y123 H.J.A. Molegraaf & D. van der Marel, Science, 295, 2239 (2002)
  • 41. Conclusions Science, 304, 708 (2004)
  • 42. Outline Outline • advantages of ellipsometry - illustrative examples - ii) no reference measurements, very ii) superconductivity-induced optical accurate and highly reproducible anomalies and iron pnictide superconductors
  • 43. Iron arsenide superconductors Ba lattice structure multiband electronic structure Fe As superconductivity Ba0.68K0.32Fe2As2 Tc=38.5 K
  • 44. SC-reduced absorption in visible ω ∆ ! ħω > 200∆SCmax
  • 46. inter-band excitations: LDAexcitations: LDA assignment inter-band assignment A.N. Yaresko Γ M
  • 47. SC-induced anomalies in visible (single-band BCS) ! Ν ouSC ≡ Ν ouNS 2∆ A.L. Dobryakov et al., Optics Communications 105, 309 (1994)
  • 48. SC-reduced absorption in visible (Ba1-xKxFeAs) ! Ν ouSC < Ν ouNS ∆Εg 0.5 eV
  • 49. SC-induced lowering of the chemical potential Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969) 1 ∆ SC 2 µ SC ≈ µN − 4 µN ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV 2
  • 50. SC-induced lowering of the chemical potential Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969) 1 ∆ SC 2 µ SC ≈ µN − 4 µN ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV 2 Multi band BCS: ∆iSC ≠ ∆ jSC   j→  ⇒ nSC = nN + ∆nSC i i i µ = µ = µ SC  i j  • self-consistent treatment of a variable chemical potential at the SC transition is required
  • 51. SC-induced inter-band charge transfer Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969) 1 ∆ SC 2 µ SC ≈ µN − 4 µN ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV 2 Multi band BCS: ∆iSC ≠ ∆ jSC   j→  ⇒ nSC = nN + ∆nSC i i i µ = µ = µ SC  i j  Two el’s subsystems in cuprates: D. I. Khomskii and F.V. Kusmartsev, PRB 46 (1992) N CuO2 ∆2 µ SC = µ N − N CuO2 + N chain 4µ N  N CuO2 ∆2  nSC =n N 1 +  ~ 1% CuO2 CuO2  N CuO + N chain 4µ N 2   2 
  • 52. SC-induced inter-band charge transfer Fe3dxz,zy+Fe3dxy ∆SC < ∆SC  h e  nh < nh SC N ⇒ mh < me h  ∆F SC (0) > ∆ SC / ε F * * 2  Fe3dxy
  • 53. Conclusions Ba0.68K0.32Fe2As2 - SC-reduced absorption in visible: • assigned to excitations from As-px,y/Fe-dz2 to Fe-dyz,zx and Fe-dxy states • charge transfer between the Fe-dyz,zx and Fe-dxy bands below Tc could explain the optical anomaly • self-consistent treatment of a variable chemical potential at the SC transition is required • in the presence of large Fe-As bond polarizability it can potentially enhance superconductivity in iron pnictides.
  • 54. Outline Outline • advantages of ellipsometry - illustrative examples - iii) oblique and variable angle of iii) dimensionality-controlled incidence, very sensitive to collective charge and spin* order thin-film properties in nickel-oxide superlattices * combined with low-energy muons which serve as a sensitive local probe of the internal magnetic field distribution
  • 55. 2D e-gas in semiconductors Band Bending picture QHE v Klitzing 1980 FQHE H. Störmer 1984 Jochen Mannhart’s lecture
  • 56. Dimentionality control in oxides LaAlO3 “solid-state chemistry approach” wide-band-gap (~ 5eV) insulator LaNiO3 Ruddlesden–Popper (R–P) homologous paramagnetic series of Srn+1RunO3n+1 metal
  • 57. Why RNiO3? J.-S. Zhou, J.B. Goodenough et al., LaAlO3 PRL 84, 526 (2000) wide-band-gap (~ 5eV) insulator Ni3+ 3d7 t62ge1g ∆CF >> JH eg LaNiO3 S=1/2 W ~ EG~ JH ~ U paramagnetic t2g metal
  • 58. RNiO3-based Heterosctructures LaAlO3 wide-band-gap Possible 3D-to-2D- and interface- (~ 5eV) insulator induced “engineered” properties of correlated electrons: • metal- insulator transition with unusual magnetic and charge ordering • orbital reconstruction • multiferroicity G. Giovannetti et al., PRL 103, 156401 (2009) • superconductivity J. Chaloupka and G. Khaliullin, PRL 100, 016404 (2008) P. Hansmann et al., PRL 103, 016401 (2009) “… possible orbital occupancy analogous to the cuprates …” LaNiO3 paramagnetic metal
  • 59. Theory Experiment Perfect sample Real sample Technology Extrinsic properties Intrinsic properties (stacking faults, inter-diffusion (collective quantum phases) substrate contribution) high oxygen pressure PLD, MPI-FKF G. Cristiani and H.-U. Habermeier
  • 60. LaNiO3|LaAlO3 superlattices compressive tensile (001) LaSrAlO4 (001) SrTiO3 N = 4 u.c. x 10, d = 290 ± 10 Å N = 3 u.c. x 13, d = 312 ± 10 Å MF-MPI beam line @ANKA, A. Frano, E. Benckiser, P. Wochner
  • 61. Reciprocal-space maps N = 4 u.c. N = 2 u.c. N = 2 u.c. Alex Frano’s poster
  • 62. Reciprocal-space maps N = 4 u.c. N = 2 u.c. N = 2 u.c. TEM: MF-MPI StEM E. Detemple, W. Sigle, P. van Aken
  • 63. Theory Experiment Perfect sample Real sample Technology Extrinsic properties Intrinsic properties faults, inter-diffusion (stacking (collective quantum phases) contribution) substrate inevitable defects + local probes! vs. macro probes optical spectroscopy dc conductivity charge: (ellipsometry) and permittivity muon-SR magnetic spin: (slow muons) susceptibility AFM, charge order FM, ferroelectric, SC
  • 64. Charge dynamics via spectroscopic ellipsometry Y Ai sample detector E Es analyzer IrsI P Ep ϕ IrpI ~ ~ r p (ω ) polarizer ρ (ω ) = ~ = tan Ψ (ω )ei∆ (ω ) light source r s (ω ) oblique incidence - sensitive to thin-film properties intrinsic SL’s electrodynamics is not flawed by a substrate, contacts and extended defects
  • 65. Isotropic film on isotropic substrate in vacuum ૚⁄૛ ଶ ଶ ૛ ߮௜ ܰ cos ߮ − ܰ − sin ࣐ ‫ݎ‬଴ଵ೛೛ = ૚⁄૛ 01 ܰ ଶ cos ߮ + ܰ ଶ − sin ࣐ ૛ d ܰ SL ଶ ଶ ૛ ૛ ૚⁄૛ 12 −݊ cos ߚ + ܰ ݊ − ࡺࡿ sin ࢼ ‫ݎ‬ଵଶ೛೛ = ૚⁄૛ ૛ ߚ௜ ݊ଶ cos ߚ +ܰ ݊ଶ − ࡺࡿ sin ࢼ ૛ ࡺ࢙ substrate ૚⁄૛ cos ߮ − ܰ ଶ − sin ࣐ ૛ ‫ݎ‬଴ଵೞೞ = ‫ݎ‬௣ (߱) ̃ cos ߮ + ܰ ଶ − sin ࣐ ૛ ૚⁄૛ ߩ ߱ = ෤ = tan Ψ(߱) ݁ ௜∙୼(ఠ) ‫ݎ‬௦ (߱) ̃ ૚⁄૛ ଶ ૛ ૛ −ࡺࡿ cos ߚ + ܰ − ࡺࡿ sin ࢼ ‫ݎ‬଴ଵ೛೛ + ‫ݎ‬ଵଶ೛೛ ݁ ି௜ଶఈ ‫ݎ‬ଵଶೞೞ = ૚⁄૛ ‫ݎ‬௣ (߱) = ̃ cos ߚ + ܰ ଶ − ࡺࡿ ૛ sin ࢼ ૛ 1 + ‫ݎ‬଴ଵ೛೛ ‫ݎ‬ଵଶ೛೛ ݁ ି௜ଶఈ ‫ݎ‬଴ଵೞೞ + ‫ݎ‬ଵଶೞೞ ݁ ି௜ଶఈ Snell‘s law: sin ߮ = ܰ௦ sin ߚ ‫ݎ‬௦ (߱) = ̃ 1 + ‫ݎ‬଴ଵೞೞ ‫ݎ‬ଵଶೞೞ ݁ ି௜ଶఈ ૚⁄૛ ௗ ଶ ૛ Phase thickness: ߙ = 2ߨ ܰ − sin ࣐ ఒ Known: ߩ ߱ , ߮, ࡺࡿ ෤ ߱ Unkown: ࡺ ߱ , ݀
  • 66. complex dielectric function of bare SLs numerical inversion Drude parameters: N = 4: ω p ≈ 1.10 eV , γ ≈ 87 meV m* = 10 N = 2: ω p ≈ 1.05 eV , γ ≈ 196 meV m V EF = 0.5eV , VF = 1.33 ⋅107 cm , l = F s 2π cγ o o mean free path: N = 4: l = 9.7 A, N = 2: l = 4.4 A
  • 67. from itinerant to localized electrons LaNiO3
  • 68. from itinerant to localized electrons LaNiO3
  • 69. from itinerant to localized electrons LaNiO3 ΔNeff=0.03 Effective number of electrons localized: ω ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′ 2m π e N Ni 0
  • 70. from itinerant to localized electrons LaNiO3 ΔNeff=0.03 Effective number of electrons localized: bulk NdNiO3 - ΔNeff=0.058 ω ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′ 2m T.Katsufuji, Y.Tokura et al., (1995): π e N Ni 0
  • 71. from itinerant to localized electrons LaNiO3 ΔNeff=0.03 Effective number of electrons localized: bulk NdNiO3 - ΔNeff=0.058 ω ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′ 2m T.Katsufuji, Y.Tokura et al., (1995): π e N Ni 0
  • 72. Metal – Insulator Transition (MIT) in LaNiO3 Continuing the analogy with bulk RNiO3 series, one would then expect another second-order transition due to the onset of antiferromagnetic ordering at TN < TMI in the N = 2 SLs, as in RNiO3 with small R (Lu through Sm).
  • 73. Low-Energy µSR measurements Rob Kiefl’s lecture Thomas Prokscha, Zaher Salman, Andreas Suter, Elvezio Morenzoni
  • 74. LaNiO3|LaAlO3 SLs : µ+ Spin Relaxation F (t ) − B (t ) BTF = 0 AZF (t ) = = aoG (t ) F (t ) + B(t ) G(t) is the Fourier transform of the field distribution averaged over all muon sites. Fast depolarization rate: Ni spins are AFM ordered
  • 75. LaNiO3|LaAlO3 SLs : µ+ Spin Rotation BTF=100 G The time evolution of the muon polarisation in a transverse field BTF is µ+ F (t ) − B(t ) ATF (t ) = = aoG (t ) cos(ω L t ) F (t ) + B (t ) where Larmor frequency ωL= γµBTF , γµ= 2π×13.55 MHz/kG
  • 76. LaNiO3|LaAlO3 SLs : µ+ Spin Rotation BTF > 0 The time evolution of the muon polarisation in a transverse field BTF is µ+ F (t ) − B(t ) ATF (t ) = = aoG (t ) cos(ω L t ) F (t ) + B (t ) where Larmor frequency ωL= γµBTF , γµ= 2π×13.55 MHz/kG BTF =100 Gauss BTF =1000 Gauss BTF =3000 Gauss
  • 77. LaNiO3|LaAlO3 SLs : charge and spin order
  • 78. LaNiO3|LaAlO3 SLs : charge and spin order
  • 79. LaNiO3|LaAlO3 SLs : charge and spin order
  • 81. SUMMARY i) superconductivity-induced transfer of the spectral weight in high temperature cuprate SCs ii) superconductivity-induced optical anomalies and iron-based pnictide superconductors iii) dimensionality-controlled collective charge and spin* order in nickel-oxide superlattices