ARTERIAL BLOOD GAS
ANALYSIS
Sasidharan, junior resident
Department of Pediatrics
Moderator : Dr. Ramesh Kumar
INTRODUCTION
• ABG is a routine investigation to monitor acid base balance in
patients
• It provides information about
- oxygenation
- acid base balance
- adequacy of ventilation
It helps in making a diagnosis ,assessing severity and titrating the
treatment
INDICATIONS OF ABG
clinical features of :
• Respiratory failure ( acute or chronic )
• Suspected metabolic acidosis
1. Renal failure
2. Cardiac failure
3. Hyperglycemic states associated with diabetes
 To assess ventilation and acid
base abnormalities in a ventilated patient
TECHNIQUE
• Preferred artery - RADIAL
• Arterial catheter can be left in place if repeated samples are required
• Needle size - 20 -26 G
• Angle - < 30 degrees
• 0.05 ml of heparin for 1 ml of
blood
- careful with excess heparin ( its weak acid and can alter ABG
values )
PRECAUTIONS
• Pull the syringe slowly to avoid air bubbles
• Air bubbles can alter paO2 by 30 mmHg
• Cap the needle immediately after sampling
• Store the sample if delay in processing is anticipated
Normal ABG values
• pH 7.35 – 7.45
• PCO2 35 – 45 mmHg
• PO2 80 – 100 mmHg
• HCO3 22 – 26 mmol/L
• BE -2 - +2
• SaO2 >95%
STEPWISE APPROACH OF ABG ANALYSIS
• STEP 1
Is the pH outside the normal range?
Acidemic – pH<7.35
Alkalemic – pH > 7.45
• STEP 2
Is the respiratory (PaCO2) or the metabolic (HCO3 -) component
abnormal?
Respiratory component alters the arterial paCO2 ( normal range
35-45)
Metabolic component alters the serum HCO3 (normal range 20-
26)
STEP 3
If its respiratory problem, is it acute or chronic.
This depends on pH
Acute respiratory acidosis – pH decrease = 0.08 * (paCO2
– 40)/10
Chronic respiratory acidosis – pH decrease = 0.03 * (
paCO2 – 40 )/10
Acute respiratory alkalosis – pH increase = 0.08 * ( 40 –
paCO2)/10
Chronic respiratory alkalosis – pH increase = 0.03 * ( 40-
paCO2) / 10
STEP 4
For respiratory component is metabolic component
adequate?
Respiratory acidosis :
Acute : for every 10 increase in CO2 , HCO3 will increase by
1
Chronic : for every 10 increase in CO2 , HCO3 will increase
by 3.5
Respiratory alkalosis :
Acute : for every 10 decrease in CO2, HCO3 will decrease by
2
Chronic : for every 10 decrease in CO2, HCO3 will decrease
by 4
STEP 5
If it’s a metabolic disorder, assess compensation by
respiratory system.
Metabolic acidosis : use winter’s formula: [(1.5 * HCO3 )
+ 8 ]± 2
CO2 concentration should be within this limits.
Metabolic alkalosis : For every 10 increase in HCO3 , CO2
increases by 7
If pH is <7.35 and CO2 more than 55, then it means
respiratory acidosis is co-existing
STEP 6
Anion gap calculation:
If its metabolic acidosis , calculate anion gap
AG = Na – ( HCO3 + Cl)
Normal AG : 12 ± 4
If > 12 = high anion gap acidosis
If < 12 = non anion gap acidosis
DELTA RATIO
<0.4 – pure Normal anion gap metabolic acidosis
0.4 to 0.8 – mixed normal anion gap with high anion
gap metabolic acidosis
0.8 to 2.0 – pure high anion gap metabolic acidosis
> 2.0 – mixed high anion gap metabolic acidosis with
metabolic alkalosis ( or pre existing compensated
respiratory alkalosis)
Case scenario
• A 6 year old male child k/ c/o ckd presented with complaints of
Loose stools 15- 20 episodes x 1 day
no blood in stool. Stool watery in consistency.
Past history of k/c/o ckd on CAPD.
Clinical examination
• O/E Child was irritable,lethargic
• Vitals
• PR-142/min CP/PP – ++/+- cold peripheries +
• RR-22/min
• SpO2 – 99 %
• BP – 69/ 37 mm Hg
• CFT – 4 sec
• Signs of dehydration :
• Sunken eyes +, dry tongue+, skin turgor release prolonged
• CVS – S1S2 normal.No murmur
• RS- B/L air entry equal.No added sounds
• P/A – Soft, no organomegaly
• CNS- E4V4M6
• RBS- 116mg/dl
• pH- 7.29
• pCO2-25.8
• paO2- 47.2
• HCO3- 12.3
• BE- -12.3
• Na- 135
• K-3.8
• Cl- 97
• AG- 25.5
Step 1 acidosis or alkalosis?
pH- 7.29---- ACIDOSIS.
Step 2
Metabolic or respiratory?
pCO2-25.8 and HCO3- 12.3.0 – METABOLIC
Step 3 Compensation?
paCO2 has decreased i.e. same direction change.
So compensation present.
Is the blood gas report
internally consistent?
{ [24*paCO2/HCO3]- 40 } *
0.01
here, { 24(25.8/12.3) -40 } *
0.01= 0.11
Subtracting this value from 7.4,
pH expected= 7.29
step 4 Is compensation adequate?
WINTER’S FORMULA (paCO2= 1.5*HCO3 + 8 +/- 2)
Here, 1.5x12.3 + 8 +/- 2= 26.25 +/ - 2 = 24.25- 28.25
Here Pco2 – 25.8 Adequate compensation present.
Step 5 Calculate anion gap
AG= 129-(97+12.3)= 19.7
HIGH ANION GAP METABOLIC ACIDOSIS PRESENT
Step 7 Calculate delta AG and delta HCO3
Delta AG= 7.7. delta HCO3= 11.7
Delta AG/ delta HCO3= 7.7/11.7 = 0.65
Mixed HAGMA, NAGMA.
interpretation
• There is metabolic acidosis
• Adequate compensation- acute- by respiratory alkalosis
• Values are internally consistent.
• There is HAGMA with NAGMA
• Probable cause is chronic renal failure causing high anion gap
metabolic acidosis with dehydration secondary to diarrhoea causing
normal anion gap metabolic acidosis.
Blood gas analysis after treatment
VBG DAY 1 DAY 2 DAY 3
pH 7.29 7.168 7.25
PCO2 25.8 31.8 23.5
PO2 47.2 49.5 45.1
HCO3 12.3 11.3 10.2
BE -12.3 -16.0 -15.4
Na 129 128 131.2
K 3.5 3.8 3.66
Cl 97 96 99
AG 19.7 20.7 21.8
THANK YOU

Sasi ARTERIAL BLOOD GAS ANALYSIS

  • 1.
    ARTERIAL BLOOD GAS ANALYSIS Sasidharan,junior resident Department of Pediatrics Moderator : Dr. Ramesh Kumar
  • 2.
    INTRODUCTION • ABG isa routine investigation to monitor acid base balance in patients • It provides information about - oxygenation - acid base balance - adequacy of ventilation It helps in making a diagnosis ,assessing severity and titrating the treatment
  • 3.
    INDICATIONS OF ABG clinicalfeatures of : • Respiratory failure ( acute or chronic ) • Suspected metabolic acidosis 1. Renal failure 2. Cardiac failure 3. Hyperglycemic states associated with diabetes  To assess ventilation and acid base abnormalities in a ventilated patient
  • 4.
    TECHNIQUE • Preferred artery- RADIAL • Arterial catheter can be left in place if repeated samples are required • Needle size - 20 -26 G • Angle - < 30 degrees • 0.05 ml of heparin for 1 ml of blood - careful with excess heparin ( its weak acid and can alter ABG values )
  • 5.
    PRECAUTIONS • Pull thesyringe slowly to avoid air bubbles • Air bubbles can alter paO2 by 30 mmHg • Cap the needle immediately after sampling • Store the sample if delay in processing is anticipated
  • 6.
    Normal ABG values •pH 7.35 – 7.45 • PCO2 35 – 45 mmHg • PO2 80 – 100 mmHg • HCO3 22 – 26 mmol/L • BE -2 - +2 • SaO2 >95%
  • 7.
    STEPWISE APPROACH OFABG ANALYSIS • STEP 1 Is the pH outside the normal range? Acidemic – pH<7.35 Alkalemic – pH > 7.45 • STEP 2 Is the respiratory (PaCO2) or the metabolic (HCO3 -) component abnormal? Respiratory component alters the arterial paCO2 ( normal range 35-45) Metabolic component alters the serum HCO3 (normal range 20- 26)
  • 9.
    STEP 3 If itsrespiratory problem, is it acute or chronic. This depends on pH Acute respiratory acidosis – pH decrease = 0.08 * (paCO2 – 40)/10 Chronic respiratory acidosis – pH decrease = 0.03 * ( paCO2 – 40 )/10 Acute respiratory alkalosis – pH increase = 0.08 * ( 40 – paCO2)/10 Chronic respiratory alkalosis – pH increase = 0.03 * ( 40- paCO2) / 10
  • 10.
    STEP 4 For respiratorycomponent is metabolic component adequate? Respiratory acidosis : Acute : for every 10 increase in CO2 , HCO3 will increase by 1 Chronic : for every 10 increase in CO2 , HCO3 will increase by 3.5 Respiratory alkalosis : Acute : for every 10 decrease in CO2, HCO3 will decrease by 2 Chronic : for every 10 decrease in CO2, HCO3 will decrease by 4
  • 11.
    STEP 5 If it’sa metabolic disorder, assess compensation by respiratory system. Metabolic acidosis : use winter’s formula: [(1.5 * HCO3 ) + 8 ]± 2 CO2 concentration should be within this limits. Metabolic alkalosis : For every 10 increase in HCO3 , CO2 increases by 7 If pH is <7.35 and CO2 more than 55, then it means respiratory acidosis is co-existing
  • 12.
    STEP 6 Anion gapcalculation: If its metabolic acidosis , calculate anion gap AG = Na – ( HCO3 + Cl) Normal AG : 12 ± 4 If > 12 = high anion gap acidosis If < 12 = non anion gap acidosis
  • 13.
    DELTA RATIO <0.4 –pure Normal anion gap metabolic acidosis 0.4 to 0.8 – mixed normal anion gap with high anion gap metabolic acidosis 0.8 to 2.0 – pure high anion gap metabolic acidosis > 2.0 – mixed high anion gap metabolic acidosis with metabolic alkalosis ( or pre existing compensated respiratory alkalosis)
  • 15.
    Case scenario • A6 year old male child k/ c/o ckd presented with complaints of Loose stools 15- 20 episodes x 1 day no blood in stool. Stool watery in consistency. Past history of k/c/o ckd on CAPD.
  • 16.
    Clinical examination • O/EChild was irritable,lethargic • Vitals • PR-142/min CP/PP – ++/+- cold peripheries + • RR-22/min • SpO2 – 99 % • BP – 69/ 37 mm Hg • CFT – 4 sec • Signs of dehydration : • Sunken eyes +, dry tongue+, skin turgor release prolonged • CVS – S1S2 normal.No murmur • RS- B/L air entry equal.No added sounds • P/A – Soft, no organomegaly • CNS- E4V4M6 • RBS- 116mg/dl
  • 17.
    • pH- 7.29 •pCO2-25.8 • paO2- 47.2 • HCO3- 12.3 • BE- -12.3 • Na- 135 • K-3.8 • Cl- 97 • AG- 25.5 Step 1 acidosis or alkalosis? pH- 7.29---- ACIDOSIS. Step 2 Metabolic or respiratory? pCO2-25.8 and HCO3- 12.3.0 – METABOLIC Step 3 Compensation? paCO2 has decreased i.e. same direction change. So compensation present. Is the blood gas report internally consistent? { [24*paCO2/HCO3]- 40 } * 0.01 here, { 24(25.8/12.3) -40 } * 0.01= 0.11 Subtracting this value from 7.4, pH expected= 7.29
  • 18.
    step 4 Iscompensation adequate? WINTER’S FORMULA (paCO2= 1.5*HCO3 + 8 +/- 2) Here, 1.5x12.3 + 8 +/- 2= 26.25 +/ - 2 = 24.25- 28.25 Here Pco2 – 25.8 Adequate compensation present. Step 5 Calculate anion gap AG= 129-(97+12.3)= 19.7 HIGH ANION GAP METABOLIC ACIDOSIS PRESENT Step 7 Calculate delta AG and delta HCO3 Delta AG= 7.7. delta HCO3= 11.7 Delta AG/ delta HCO3= 7.7/11.7 = 0.65 Mixed HAGMA, NAGMA.
  • 19.
    interpretation • There ismetabolic acidosis • Adequate compensation- acute- by respiratory alkalosis • Values are internally consistent. • There is HAGMA with NAGMA • Probable cause is chronic renal failure causing high anion gap metabolic acidosis with dehydration secondary to diarrhoea causing normal anion gap metabolic acidosis.
  • 20.
    Blood gas analysisafter treatment VBG DAY 1 DAY 2 DAY 3 pH 7.29 7.168 7.25 PCO2 25.8 31.8 23.5 PO2 47.2 49.5 45.1 HCO3 12.3 11.3 10.2 BE -12.3 -16.0 -15.4 Na 129 128 131.2 K 3.5 3.8 3.66 Cl 97 96 99 AG 19.7 20.7 21.8
  • 21.