SlideShare a Scribd company logo
1 of 19
Download to read offline
1
MATHEMATICS
E – Content
ON ANALYSIS
Vinay M. Raut
Assistant Professor
Shri Shivaji Science College,
Amravati
2
IMPROPER INTEGRAL
Content :
• Definition of proper and improper integral
• Converges of improper integral
• Types and Test T1 and T2 and comparison test
• Beta function and result
• Gamma function and result
Definition :
1. Proper Integral :
If
b
a
I f (x)dx= ∫
Here,
a) F:[a b] R,→ f(x) is bounded on a x b≤ ≤
b) f R[a b]∈ i.e.
b
a
f (x)dx∫ exists
c) f (x) may be discontinuous at any C [a b]∈ but f(c) ≠ ∞
then
b
a
f (x)dx∫ is called proper integral.
2. Improper Integral : An integral
b
a
f (x)dx∫ becomes an improper integral when
1. a = −∞ i.e. (lower limit)
Or 2. b = ∞ i.e. (upper limit)
Or 3. f (x) = ∞ for some x [a b]∈
First and second condition means b-a is not finite but third condition means of is not bounded on
[a b]
For ex.
1.
o
tanx x dx
−∞∫
2. 21
dx
x
∞
∫
3. sin x
e dx
∞
−∞∫
4.
1
1
dx
x−∫
Types of Improper Integral :
Improper integral is classify four types such that any improper integral can be either one of
them or sum of these integral.
Type I :
a
f (x)dx,f (x) c,a x ,a R
∞
∈ ≤ < ∞ ∈∫
Type II :
b
f(x)dx,f(x) c, x b,b R
−∞
∈ −∞ < ≤ ∈∫
3
Type III :
b b
a a
f (x)dx, f (x)dx,f (x) c,a x b
+
= ∈ ≤ ≤∫ ∫ where lim
a,b R andx a f (x)+
∈ → does not
exist or lim
x a f(x)+
→ = ∞
Type IV :
b b
a a
f(x)dx, f (x)dx,f (x) c,a x b, a,b R
−
= ∈ ≤ < ∈∫ ∫ and lim
x b f(x)−
→ does not exists
or lim
x b | f (x) |−
→ = ∞
For ex :
1 0 1
2 2 2 2 21 0 1
dx dx dx dx dx
x x x x x
∞ − − ∞
−∞ −∞ − +
= + + +∫ ∫ ∫ ∫ ∫ Here, R.H.S. is sum of improper integral type II,
IV, III and I
Convergent Integral
1. If
b
lim
a
b f (x)dx→∞ = =∫ l finite then we say that
a
f (x)dx
∞
∫ converges to l and we write
a
f (x)dx
∞
=∫ l
2. If the limit does not exists then the integral is divergent i.e.
b
lim
a
b f (x)dx or→∞ = ∞ − ∞ =∫
infinite then we say that
a
f (x)dx
∞
∫ diverges
For example -
Problem 1 : 3a
dx
x
∞
∫
Solution :
b2
b
lim lim3
3 1
1
dx x
b x dx b
x 2
−
∞
−
φ
 
= →∞ = →∞  
− 
∫ ∫
lim
2
1 1 1 1
b 0
2 2b 2
   
= →∞ − = =   ∞   
∵
finite=
31
dx
x
∞
∴∫ is convergent
Problem 2 :
1
dx
x
∞
∫
Solution :
b1/2
b
lim lim1/2
1 1
1
dx x
b x dx b
1/ 2x
∞
−  
= →∞ = →∞  
 
∫ ∫
lim
b 2 b 2 = →∞ − = ∞ 
1
dx
x
∞
∴∫ is divergent
Problem 3 :
0 0
lim
a
sindx a sin xdx
−∞
= → − ∞∫ ∫
[ ]lim
a 1 cos a= →−∞ − + = does not exists
0
sin xdx
−∞
∴∫ is divergent
Problem 4 : Solve on show that 2
dx
1 x
∞
−∞ +∫ is cgt. or dgt.
4
SPECIAL IMPROPER INTEGRAL OR TEST INTEGRAL
Theorem (1) (T1 - Test)
rx
1
0
T e .dx
∞
−
∫ converge if r 0> and divergent if r 0≤
Proof : Now
brx
b
rx
0
0
e
e .dx
r
−
−  
=  
− 
∫
rb rb
e 1 1 e
,r 0
r r r r
− −
 
= + = − ≠ 
− − 
Taking lim b → ∞ on both sides
b
lim limrx rb
0
1 1 1
b e .dx b e if r 0
r r r
− −
→∞ = − →∞ = >∫
if r 0= ∞ <
For case r 0=
b b
rx
0 0
e dx dx b−
= =∫ ∫
When b → ∞ then
b
rx
0
e dx−
→ ∞∫
Thus rx
0
1
e dx if r 0
r
∞
−
= >∫
if r 0= ∞ ≤
There rx
1
0
T e dx
∞
−
= ∫ converge to
1
r
if r 0> and diverge to ∞ if r 0≤
Theorem (2) (Test T2) :
2 Pa
dx
T
x
∞
= ∫ converges if P 1> and diverge if P 1≤ and a 0>
Proof : For a 0>
Now,
bP 1 1 p 1 p
b
pa
a
dx x b a
if P 1
x P 1 1 p 1 p
− + − −
 
= = − ≠ 
− + − − 
∫
1 P 1 P 1 P
b
lim lim
Pa
dx b a a
b b
x 1 P 1 P 1 P
− − −
→∞ = →∞ − = −
− − −∫
(if 1 P 0 i.e. P 1)− < >
if 1 P 0 i.e.P 1= ∞ − > <
For ( )
b b
pa a
dx dx
P 1 asx 1
x x
= = =∫ ∫
( )
b
a
log x log b log a= = − = ∞ (asb )→ ∞
Thus
1 p
Pa
dx a
if P 1
x P 1
−
∞
= − >
−∫
if P 1= ∞ ≤
2 Pa
dx
T
x
∞
∴ = ∫ converges to
1 P
a
1 P
−
−
−
if P 1> and diverges to if P 1+∞ ≤
5
Theorem (3) : (Comparison test 1)
Let f (x), g(x) C, a x∈ ≤ < ∞ and 0 f (x) g(x) X a≤ ≤ ∨ ≥
1
a a
CT : g(x)dx convergen f (x)dx converges i.e.
∞ ∞
⇒ <∞∫ ∫
2
a a
CT : f (x)dx g(x)dx
∞ ∞
= ∞⇒ =∞∫ ∫
[Comparison test T2] (or) If one converges then other and if one diverges then other
Proof : Given
1. f (x),g(x) C,a x∈ ≤ < ∞
2. f (x) g(x) x a≤ ∨ ≥
3.
a
g(x)dx
∞
∫ Convergent
To prove :
a
f (x)dx
∞
∫ converges i.e. < ∞
From (3)
a
g(x)dx
∞
∫ is cgt.
b
lim
a
b g(x)dx FiniteLimit =A(Says)∴ →∞ =∫ …………(1)
From (1) f (x)andg(x) C∈
∴ they are continuous on [a b]
∴ they are integrate on [a b] (by thm)
From (2) we have
b b
a a
0 f (x)dx g(x)dx≤ ≤∫ ∫ …………(A)
Let
b
a
(b) f (x)φ = ∫ …………(2)
For 1 2b b<
2 1b b
2 1
a a
(b ) (b ) f (x)dx t(x)dxφ − φ = −∫ ∫
2
1
b a
a b
f (x)dx f (x)dx= +∫ ∫
2
1
b
b
f(x)dx= ∫
0 (asf (x) 0given)≥ ≥
2 1 1 2(b ) (b ) an b b⇒ φ ≥ φ <
∴ By definition of m.I. (b)φ is m.I. (also from equation [A])
b b
lim lim
a a
0 b f (x)dx b g(x)dx≤ →∞ ≤ →∞∫ ∫
lim lim
b f (x)dx b g(x)dx A⇒ →∞ ≤ →∞ = (by equation [A])
(b)is bounded∴φ
Thus (b)ism.I.andboundedφ
∴ by thm it is convergent
a
f (x)dx
∞
⇒ ∫ is convergent
6
To prove second result (CT2)
Lei 0
a
f (x) g(x) V x a and f (x)dx
∞
≤ ≤ ≥ = ∞∫ (given)
Assume the contrary that
a
g(x)dx
∞
∫ is convergent
Then by CT1
a
f (x)dx
∞
∫ is convergent
But this is contradiction to hypothesis
a
f (x)dx
∞
= ∞∫
Hence the assumption
a
g(x)dx
∞
∫ is cgt i.e. wrong.
a
g(x)dx
∞
∴∫ is dgt.
i.e.
a
g(x)dx
∞
= ∞∫
Corollary (1) let f (x) C, a x∈ ≤ < ∞ and
a
f (x) dx
∞
< ∞∫ then
a
f (x)dx
∞
∫ converges
Proof : Given
1. Lef f (x) C, a x∈ ≤ <∞
2.
a
f (x) dx
∞
< ∞∫
To prove :
a
f (x)dx
∞
∫ is cgt.
We know that O f(x) f(x) 2 F(x)≤ − ≤ and
a
2 f (x) dx
∞
∫ is cgt. (by given 2) ∴ By comparison test
a
f (x) f (x) dx
∞
 − ∫ is cgt. …………(3)
From (2) and (3)
( )a a
f (x) dz f (x) f (x) dx
∞ ∞
 − −
  ∫ ∫ i.e. cgt.
a a a
f (x) dx f (x) dx f (x)dx
∞ ∞ ∞
− +∫ ∫ ∫ is cgt.
a
f (x)dx
∞
∫ is cgt.
EXAMPLES
(By using test T1 – T2 and comparison test)
Example 1 : Test the integral for convergence
2
8
2 7
x
dx
x 1+
∫
Solution : Let
2
2 7
x
I dx
x 1
∞
=
+
∫
Here 2 x≤ <∞
Now 7 7
x 1 x+ >
7
7 7
1 1
x 1 x
<
+
(taking reciprocal)
7/27
1 1
xx 1
<
+
(taking square root)
Multiply by x2
on both sides
2
3/27
x 1
xx 1
<
+
( )7 32
2 2
− =∵
2
3/27
x 1
0
xx 1
< <
+
( )x 2≥∵ …………(1)
Here 3/22
1
dx
x
∞
∫ is cgt. by T2-test (asP 3/ 2 1)= >
∴ By comparison test (by equation 1)
2
2 7
x
dx
x 1
∞
+
∫ is cgt.
Example 2 : Test the convergence of
2
27
x 1
dx
x 1
∞
−
−
+∫
Solution : Lef
2
27
x 1
I .dx
x 1
∞
−
−
=
+∫
2 2
1
2 27 1
x 1 x 1
dx dx
x 1 x 1
∞
−
− −
= +
+ +∫ ∫ (break limit) ............(1)
In equation (1) the first integral is proper integral and has finite value i.e. cgt. Now consider.
( )22
2 21 1
x 1 2x 1
dx dx
x 1 x 1
∞ ∞ + −−
=
+ +∫ ∫
21 1
1
1dx 2 dx
x 1
∞ ∞
= −
+∫ ∫
( )1
1 1
(x) 2 tan x
∞∞ −
= −
1 1
( 1) 2 tan tan 1− −
 = ∞ − − ∞ − 
1 2( / 2 / 4)= ∞ − − π −π
2
21
x 1
dx
x 1
∞ −
= ∞
+∫
2
21
x 1
dx
x 1
∞ −
+∫ is dgt.
Example 3 : Test convergence of 2
1
sin x dx
∞
−
∫
Solution : Let 2
1
I sinx dx
∞
−
= ∫
We know that
sin for any 0ϑ θ≥
2 2
sin x x− −
≤ ( x 1)≥∵
8
2
2
1
0 sin x
x
−
< ≤ ( 1 x )≤ <∞∵
Here 21
1
dx
x
∞
∫ is cgt. by T2 – test (as P 2 1)= >
∴ By comparison test 2
1
sin x dx
∞
−
∫ is cgt.
Example 4 : Test the convergence of
2
27
x 1
dx
x 1
∞
−
−
+∫
Solution : Let
2
27
x 1
I dx
x 1
∞
−
−
=
+∫
2 2
1
2 27 1
x 1 x
dx dx
x 1 x 1
∞
−
− −
= +
+ +∫ ∫ …………(1)
Here, the 1st
integral on R.H.S. of equation (1) i.e.
2
1
27
x 1
dx
x 1−
−
+∫ is proper integral and has finite value
(i.e. cgt.)
Now consider second integral
2 2
2 21 1
x 1 (x 1) 2
dx dx
x 1 x 1
∞ ∞− + −
=
+ +∫ ∫
( )2
1
1 2 / x 1 dx
∞
= − +∫
1
1 1(x) 2(tan x)∞ − ∞
= −
1 1
( 1) 2(tan tan 1)− −
= ∞ − − ∞ −
1 2( / 2 / 4)= ∞ − − π − π = ∞
then
2
21
x 1
dx
x 1
∞ −
+∫ is dgt.
Example 5 : Show that 22
cosx
dx
x(log x)
∞
∫ converges absolutely
Solution : Let 22
cox x
I dx
x(logx)
∞
= ∫
Now, 2 2
cosx 1
0
x(logx) x(logx)
≤ ≤ ( )cosx 1≤∵
2 2
cosx 1
0
x(logx) x(logx)
≤ ≤ ( x 2)≥∵
Consider
R
lim
2 22 2
1 1
dx b dx
x(logx) x(logx)
∞
= →∞∫ ∫
R
lim 2
2
1
b (logx) dx
x
−  
= →∞  
 
∫
b1
lim
2
(log x)
b
1
−
 
= →∞ 
− 
(Put log x t 1/ xdx dt)= ⇒ =
9
b
lim
2
1
b
log x
 
= − →∞  
 
lim 1 1
b
logb log2
 
= − →∞ − 
 
1
0
log 2
 
= − − 
 
1
0
 
= 
∞ 
1
finite
log2
= = …………(2)
∴ from equation (1) and (2) and by comparison test we get 22
cosx
dx
x(logx)
∞
∫ is cgt.
22
cox
dx
x(logr)
∞
∫ is absolutely cgt.
Example 6 : Test the convergence of x
1
log x.e dx
∞
−
∫
Solution :
R
limx x
1 1
log x.e dx b logx.e dx
∞
− −
= →∞∫ ∫ (Integrate by parts)
( )
x
bblim x
1 1
1 e
b log x.e / 1 . .dx
x 1
−
− 
= →∞ − − 
− 
∫
x
bblim limx
1 1
e
b logx,e b dx
x
−
−
 = − →∞ + →∞  ∫
x
b
lim limb
1
e
b logb.e 0 b dx
x
−
−
 = − →∞ − + →∞  ∫
x
b
lim
1
e
(0) b dx
x
−
= − + →∞∫
x
b
limx
1
e
logxe dx b dx
x
−
−
= →∞∫
x
1
e
dx
x
−
∞
= ∫ …………(1)
Here 1 x≤ < ∞
1/x 1≤
-x -x
e /x e≤
x
xe
0 e
x
−
−
≤ ≤ but x
1
e
∞
−
∫ is cgt.
by test T1 integral (as r 1 0)= >
∴ by comparison test we get
x
1
e
dx
x
−
∞
∫ is cgt. …………(2)
from equation (1) and (2) we get
x
1
logx . e dx
∞
−
∫ is cgt.
10
Theorem : (limit test for convergences)
Let i) f (x) C, a x∈ ≤ <∞
ii) lim
x f(x) A, P 1, A R→∞ = > ∈
Them prove that
a
f (x) dx
∞
< ∞∫
(i.e.
a
f(x)dx
∞
∫ is absolutely cgt.)
Proof : we have
i) f (x) C, a x∈ ≤ <∞
ii) lim P
x x .f (x) P, P 1, A R→∞ = > ∈
since lim P
x x . f(x) A→∞ =
lim P
x x f (x) A∴ →∞ = (taking mod on both sides)
lim P
x x .f (x) A⇒ →∞ = (by definition of limit)
⇒ For given 1⇒∈= (say) there exist a +ve integer b such that
P
x b x .f(x) A 1≥ ⇒ − <
P
x f (x) 1 A⇒ < +
P
1 A
f (x)
x
+
⇒ <
P
1 A
0 f (x)
x
+
∴ ≤ < and P1
1
dx
x
∞
∫ is cgt. has P 1> (given) by T2 – test integral
∴ By comparison test we get
a
f (x) dx
∞
∫ is cgt.
a
f(n) dx
∞
⇒∫ absolutely cgt.
Statement :
Let i) f (x) C, a x∈ ≤ <∞
ii) lim
x f (x) A 0→∞ = ≠
= ±∞
Then prove that
a
f (x)dx
∞
∫ diverges and the test fails if A 0=
Example 7 : Show that
0 3
cosx
dx
1 x
∞
+
∫ converges
Solution :
0 3
cosx
I dx
1 x
∞
=
+
∫
0 3/2 3
cosx
x 1/ x 1
∞
=
+
∫
11
Here,
3/2 3
cosx
f (x) C, 0 x
x 1/ x 1
= ∈ ≤ <∞
+
(By applying limit test taking P = 5/4)
lim lim5/4 5/4
3/2 3
cosx
x x f (x) x x .
x 1/ x 1
→∞ = →∞
+
5
P 1
4
 
= > 
 
lim
1/4 3
cosx
x
x 1 1/ x
= →∞
+
0= r 1
D 0 as 0
 
→ = 
∞ 
∵
∴ Limit for
0
f (x) dx
∞
∫ is cgt.
0 3
cosx
dx
1 x
∞
⇒
+
∫ is cgt.
0 3
cosx
dx
1 x
∞
⇒
+
∫ is absolutely cgt.
Example 8 : Show by limit test
0 2
dx
1 2x
∞
= ∞
+
∫
Solution :
Let 20
dx
I
1 2x
∞
=
+∫
Here 2
1
f (x) C, 0 x
1 2x
= ∈ ≤ <∞
+
lim lim
2
x
x x.f (x) x
1 2x
→∞ = →∞
+
lim lim
2 2
x 1
x x
x 1/ x 2 1/ x 2
= →∞ = →∞
+ +
1
2
=
∴ by limit test (here P = 1)
0
f (x)dx
∞
∫ is dgt.
0
f (x)dx
∞
⇒ = ∞∫
12
BETA – GAMMA FUNCTION
Main application of this function is to solve improper integral.
Beta Function :
The integral
1
m 1 n 1
0
x (1 x) dx− −
−∫ with m 0, n 0> > is called Beta function of is denoted by
(mn)β
1
m 1 n 1
0
(mn) x (1 x) .dx− −
∴β = −∫
Prove symmetry property of Beta function
i.e. (mn) (n m)β =β
Proof : By definition
1
m 1 n 1
0
(mn) x (1 x) .dx− −
β = −∫
Put 1 x t dx dt− = ⇒ = −
And limit when x 0 t 1= ⇒ =
when x 1 t 0= ⇒ =
0
m 1 n 1
1
(mn) (1 t) .t ( dt)− −
∴β = − −∫ (Change the limit)
1
n 1 m 1
0
t (1 t) .dt− −
= −∫
1
n 1 m 1
0
x (1 x) .dx,− −
= −∫ (Change t to x)
(n m)= β (by definition)
(n m)= β
(mn) (nm)∴β = β
i.e. m n are interchangeable in beta function
Some Result :
1. Prove
m 1
m n0
x
(mn) .dx
(1 x)
−
∞
+
β =
+∫
Proof : By definition
1
m 1 n 1
0
(mn) x (1 x) .dx− −
β = −∫ …………(1)
Put 2
1 1
x dx .dt
1 t (1 t)
−
= ⇒ =
+ +
Limits when x 0 t= ⇒ = ∞
When x 1 t 0= ⇒ =
n 1
m 1 20
1 1 1
(mn) 1 . dt
(1 t) 1 t (1 t)
−
∞
−
− 
∴β = − 
+ + + 
∫ (by equation 1)
( )
n 1
m n0
t
.dt
1 t
−
∞
+
=
+
∫
n 1
m n0
x
dx
(1 x)
−
∞
+
=
+∫ (Change t to x)
n 1 m 1
m n m n0 0
x x
B(mn) dx dx
(1 x) (1 x)
− −
∞ ∞
+ +
∴ = =
+ +∫ ∫
13
2. Prove
/2
2m 1 2n 1
0
(mn) 2 sin cos .do
π
− −
β = θ θ∫
Proof : We have that
1
m 1 m 1
0
(mn) x (1 x) .dx− −
β = −∫
Put 2
x sin dx 2sin .cos .d= θ ⇒ = θ θ θ
Limit when x 0then 0= θ =
x 1then π/2= θ=
( )
/2 m 12 2n 1 2 n 1
0
(mn) sin cos [1 sin ] .2sin cos d
π − − −
∴β = θ − θ θ θ θ∫
/2
2m 1 2n 1
0
2 sin .cos .d
π
− −
= θ θ θ∫
/2
2m 1 2n 1
0
(mn) 2 sin .cos d
π
− −
∴β = θ θ θ∫
Gamma Function :
The integral x n 1
0
e .x . dx, n 0
∞
− −
>∫ is called a Gamma function.
It is denoted by n
Properties of Gamma function :
1. 1 1=
Proof : By definition x n 1
0
n e .x .dx, n 0
∞
− −
= >∫
Putting n 1=
x
0
1 e .dx
∞
−
∴ = ∫
b blim limx x
00
b e dx b e− −
 = →∞ = →∞ − ∫
lim limb 0 b
b e e b 1 e 1− −
   = →∞ − + = →∞ − =   
b
b
1 1
e 0
e
− 
= = = 
∞ 
2. Recurrence formula
n 1 n n+ =
Proof : By definition
b
limn x n x
0 0
n 1 x .e dx b x .e dx
∞
− −
+ = = →∞∫ ∫
( )
bblim n x n 1 x
0 0
b x e n.x ( e )dx− − − = →∞ − − −
  ∫
b
lim n b n 1 x
0
b b .e 0 n x .e .dx− − − = →∞ − + +
  ∫
b
lim n 1 x
0
0 b n x .e dx− −
= + →∞ ∫
n 1 x
0
n x .e dx
∞
− −
= ∫
n n= (by definition of gamma)
14
3. Prove n 1 n! for n 0, 1, 2,...+ = =
Proof : n 1 n n+ = by recurrence formula
n(n 1) n 1 if n 1 0= − − − > ( )n 1 n n+ =
n(n 1)(n 2) n 2 if n 2 0= − − − − >
n(n 1)(n 2) ...... 2 1 1= − − × ×
n(n 1)(n 2) ...... 2 1= − − × × × 1 1=∵
n!=
4. Prove n 1 kx
n0
n
x e dx
k
∞
− −
=∫ where n,k 0>
Proof : Put
t
x
k
=
dt
dx
k
=
Limits for
x 0 t 0= ⇒ =
x t= ∞⇒ = ∞
n 1 kx n 1 t n 1 t
n n0 0 0
dt 1 n
x .e dx (t/k) .e . t .e dt
k k k
∞ ∞ ∞
− − − − − −
= = =∫ ∫ ∫
Relation between Beta – Gamma Function :
The relation between beta and gamma function is stated as
m n
(mn)
m n
β =
+
Proof : We know that by definition
t m 1
0
m e .t dt
∞
− −
= ∫
Put 2
t x=
dt 2xdx∴ =
2
x 2m 2
0
m e x 2x dx
∞
− −
∴ = ∫
2
x 2m 1
0
m 2 e x dx
∞
− −
⇒ = ∫ …………(1)
y2 2n 1
0
n 2 e .y dy
∞
− −
∴ = ∫ …………(2)
( )( )2 2
x 2m 1 y 2n 1
0 0
m n 2 e .x .dx 2 e .y .dy
∞ ∞
− − − −
= ∫ ∫
2 2
(x y ) 2m 1 2n 1
0 0
4 e .x .y .dx dy
∞ ∞
− + − −
= ∫ ∫
Put, 2 2 2
x rcos , y rsin x y r , dx dy rdr d= θ = θ ⇒ + = = θ
and r varies from 0 to ∞
θ varies from 0 to π/2as show below
15
2π/2
r 2m 1 2n 1 2m 1 2n 1
0 0
m n 4 e r r .cos sin rdrd
∞
− − − − −
∴ = θ θ θ∫ ∫
( )( )2/2
2m 1 2n 1 r 2m 2n 1
0 0
2 cos sin d 2 e r dr
π ∞
− − + −
= θ θ θ∫ ∫
m n (mn) m n= β +
m n
B(mn)
m n
∴ =
+
/2
2m 1 2n 1
0
From equati
i
on (1) and e
2 cos )
r s
s
ult
n d (mn
π
− −
 
 
 β

θ θ =

θ∫
Result : To prove
/2
2m 1 2n 1
0
2 sin sin d (mn)
π
− −
θ θ θ = β∫
Proof :
1
m 1 n 1
0
(mn) x (1 x) dx− −
β = −∫
Put 2
x sin= θ and solve it
Note : From
m n
(mn)
m n
β =
+
and
/2
2m 1 2n 1
0
(mn) 2 sin cos d
π
− −
β = θ θ θ∫
/2
2m 1 1n 1
0
1 m n
sin d cos d (mn)
2 2 m n
π
− −
∴ θ θ θ θ = β =
+
∫ …………(A)
If we put 2m 1 P and 2n 1 q− = − =
then
/2
P 2
0
p 1 q 1
2 2sin .cos d
p q 2
2
2
π
+ +
θ θ θ =
+ +
∫ …………(B)
Result : Prove 1/ 2 = π
Now by equation (A)
/2
2m 1 2n 1
0
m n
sin d .cos d
2 m n
π
− −
θ θ θ θ =
+
∫
Put m n 1/ 2= =
( )
/2 2
0
d / 2 2
π
θ = π∫ ( )1 1=∵
( )
2
/ 2 1/ 2 2π =
( )
2
1/ 2 1/ 2= π ⇒ = π
16
EXAMPLE
1.
7 6!
30
2(2!)(3!)2 3 4
= = ( )n 1 n!+ =∵
,
( )n (n 1)!= −
2. 4 x x 5 1
0 0
x .e dx e x dx 5 4! 24
∞ ∞
− − −
= = = =∫ ∫
3. 3 2x 2x 4 1
40 0
4 3! 3
x e dx e x dx
2 16 8
∞ ∞
− − −
= = = =∫ ∫
n 1 kx
n0
n
by x e dn
k
∞
− −
 
=  
 
∫
Prove
2
t 2n 1
0
n 2 e t dt
∞
− −
= ∫
Solution : We know that y n 1
0
n e y dy, n o
∞
− −
= >∫
Put 2
y t= (we take any variable)
dy 2dt⇒ =
2 2 2n 1
t 2 n 1 t t
0 0
n e (t ) 2t dt 2 e dt
−∞ ∞
− − −
∴ = =∫ ∫
Example : Prove : ( )
1 n 1
0
n log1/ x dx
−
= ∫
Solution : Put y logx= − and solve it
EVALUATE
1. Prove 1/4 x
0
x e dx
∞
−
∫
Solution : Put 2
x t dx 2tdt= ⇒ =
1/4
1/4 x t 2
0 0
x e dx e (t ) 2tdt
∞ ∞
− −
=∫ ∫
t 3/2
0
2 e t dt 2 5 / 2
∞
−
= =∫ (by definition)
2 3 / 2 1= +
( )2 3/ 2 3/ 2=
( ) ( )2 3/ 2 1/ 2 1 2 3/21/2 1/ 2 3/ 2= + = = π
( )as 1/ 2π =
2. Prove 3 x
0
x.e dx
∞
−
∫
Put 3 2
x t dx 3t dt= ⇒ = then
17
t 3 1/2 2 t 7/2
0 0
e (t ) .3t dt 3 e t dt 3 9 / 2
∞ ∞
− −
= = =∫ ∫
7 5 3 1 1 315
3 . . .
2 2 2 2 2 16
= × = π
3. Prove
1
0
dx
log n
= π
−
∫
4. Prove that
2 2
h x
0
e dx
24
∞
− π
=∫
5. Evaluate 1/ 2, 3 / 2, 5 / 2− − −
n 1
put n 1/ 2, 3 / 2, 5 / 2 in n
n
 +
= − − − =  
 
4 8
1/ 2 2 , 3 / 2 , 5 / 2
3 15
π − π
⇒ − = − π − = − =
6.
( )
3
70
x
dx
1 x
∞
+
∫
Solution :
3 4 1
7 4 30 0
x x 4 3 3! 2! 1
dx (4 3)
(1 x) (1 x) 6! 607
−
∞ ∞
+
= = β = = =
+ +∫ ∫
7.
1 1
3 3 4 1 4 1
0 0
4 4 3! 3!
x (1 x) dx x (1 x) dx (4 4)
7!8
− −
− = − = β = =∫ ∫
1/140=
8.
1/2 1
1/2 1/20 0
dx x
dx
(1 x)x(1 x)
−
∞ ∞
+
=
++
∫ ∫
1/ 2 1/ 2
(1/ 2 1/ 2)
1
= β = = π
9.
1 1
3/2 1 3/2 1
0 0
x (1 x) dx x (1 x) dx (3/2 3/2)− −
− = − = β∫ ∫
1
1/ 2
3 / 2 23 / 2
3 2! 8
π × π
π
= = =
10. Find (3, 1/2)β
Solution :
3 1/ 2 2! 1/ 2 16
(3, 1/ 2)
157 / 2 5/2 3/2 1/21/ 2
β = = =
× ×
18
Prove that
/2
0
tan .d
2
π π
θ θ =∫
Solution :
1/2/2 /2
1/2
0 0
tan .d (sin ) (cos ) .d
−π π
θ θ = θ θ θ∫ ∫
1/ 2 1 1/ 2 1 1/ 2 1 (1/ 2) 1
2
2 2 2
 + − + + − +
=  
 
3 / 4 1/ 4 1
1/ 4 1 1/4
22 1
= = −
1
2 sin / 4 2
π π
= =
π
Byusing n. 1 n
sin n
 π
− = 
π 
Ex. Prove the following result
1.
/2
2 4
0
2 1 4 1
2 2sin cos d
2 1 4 1
2
2
π
+ +
θ θ θ=
+ + +
∫
1 1 3 1 1
2 2 2 2 2
2 4
× ×
=
3
16(3!) 32
π π
= =
By using
/2
P 2
0
P 1 q 1
2 2sin d cos d
P q 2
2
2
π
 + +
 
 θ θ θ =
 + +
 
 
∫
Ex.
/2
6
0
sin d
π
θ θ∫
Solution :
/2
6 0
0
sin (cos) d
π
θ θ∫
5 3 1
1/ 2 1/ 2
6 1 6 1 10 1 2 2 22
22 2 2 4
× × ×
+ + ++
= =
15 5
16 (3!) 32
π π
= =
Ex.
/2 /2
0 0
d
sin d
sin
π πθ
θ θ
θ
∫ ∫
Solution : { }{ }/2 /2
1/2 0 1/2 0
0 0
(sin ) (cos ) d (sin ) (cos ) d
π π
−
θ θ θ θ θ θ∫ ∫
19
1/ 2 1 0 1 1/ 2 1 0 1
2 2 2 2.
1/ 2 1 1 1/ 2 1 1
2 2
2 2
− + + + +
=
− + + + + +
1/ 4 . 3 / 4 / 4
42 3 / 4 . 2 5 / 4 1/4 1/4
π π π π
= =
1
5 / 4 1/ 4
4
 
= 
 
∵
= π
Objective Questions :
1.
rx
0
e dx
∞
−
∫ converges if …………
2. rx
0
e dx
∞
−
∫ diverges if …………
3. pa
dx
x
∞
∫ converges if …………
4. pa
dx
x
∞
∫ diverges if …………
5. An Improper Integral of the type n 1 x
0
x .e dx,n 0
∞
− −
>∫ is called …………
6. n is denoted by
0
............
∞
∫ where n 0>
7. Recurrence formula for gamma function …………
8. Find the value of
1
2
−
= …………
9. An Improper Integral of the type
1
m 1 n 1
0
x (1 x) dx− −
−∫ is called …………
10. In Beta function m and n are inter changeable …………
11. Relation between Beta and Gamma function …………
*****

More Related Content

What's hot

Limits, continuity, and derivatives
Limits, continuity, and derivativesLimits, continuity, and derivatives
Limits, continuity, and derivativesnathaniel9agabao
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMatthew Leingang
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability Seyid Kadher
 
2.3 continuity
2.3 continuity2.3 continuity
2.3 continuitymath265
 
Applied Calculus Chapter 3 partial derivatives
Applied Calculus Chapter  3 partial derivativesApplied Calculus Chapter  3 partial derivatives
Applied Calculus Chapter 3 partial derivativesJ C
 
limits and continuity
limits and continuity limits and continuity
limits and continuity imran khan
 
Derivative power point
Derivative power pointDerivative power point
Derivative power pointbtmathematics
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcRiyandika Jastin
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculusitutor
 
IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION
IMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATIONIMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATION
IMPROPER INTEGRALS AND APPLICATION OF INTEGRATIONDrazzer_Dhruv
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivativesmath265
 
L19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functionsL19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functionsJames Tagara
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationSunny Chauhan
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinatesEmiey Shaari
 
Lattices AND Hasse Diagrams
Lattices AND Hasse DiagramsLattices AND Hasse Diagrams
Lattices AND Hasse DiagramsDebarati Das
 
What is analytic functions
What is analytic functionsWhat is analytic functions
What is analytic functionsTarun Gehlot
 
Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.pptJaysonFabela1
 

What's hot (20)

Limits, continuity, and derivatives
Limits, continuity, and derivativesLimits, continuity, and derivatives
Limits, continuity, and derivatives
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
2.3 continuity
2.3 continuity2.3 continuity
2.3 continuity
 
Applied Calculus Chapter 3 partial derivatives
Applied Calculus Chapter  3 partial derivativesApplied Calculus Chapter  3 partial derivatives
Applied Calculus Chapter 3 partial derivatives
 
limits and continuity
limits and continuity limits and continuity
limits and continuity
 
Derivative power point
Derivative power pointDerivative power point
Derivative power point
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 
IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION
IMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATIONIMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATION
IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
 
L19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functionsL19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functions
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates
 
Lattices AND Hasse Diagrams
Lattices AND Hasse DiagramsLattices AND Hasse Diagrams
Lattices AND Hasse Diagrams
 
What is analytic functions
What is analytic functionsWhat is analytic functions
What is analytic functions
 
Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.ppt
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 

Similar to Improper integral

Roots equations
Roots equationsRoots equations
Roots equationsoscar
 
Roots equations
Roots equationsRoots equations
Roots equationsoscar
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxOchiriaEliasonyait
 
limits and continuity
limits and continuitylimits and continuity
limits and continuityElias Dinsa
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Kuan-Lun Wang
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusChit Laplana
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptxPlanningHCEGC
 
Appendex c
Appendex cAppendex c
Appendex cswavicky
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsA Jorge Garcia
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 

Similar to Improper integral (20)

Roots equations
Roots equationsRoots equations
Roots equations
 
Roots equations
Roots equationsRoots equations
Roots equations
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
 
Derivatives
DerivativesDerivatives
Derivatives
 
limits and continuity
limits and continuitylimits and continuity
limits and continuity
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Ece3075 a 8
Ece3075 a 8Ece3075 a 8
Ece3075 a 8
 
Equivariance
EquivarianceEquivariance
Equivariance
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
The integral
The integralThe integral
The integral
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
 
Appendex c
Appendex cAppendex c
Appendex c
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
 
Limit and continuity
Limit and continuityLimit and continuity
Limit and continuity
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 

Recently uploaded

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 

Recently uploaded (20)

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 

Improper integral

  • 1. 1 MATHEMATICS E – Content ON ANALYSIS Vinay M. Raut Assistant Professor Shri Shivaji Science College, Amravati
  • 2. 2 IMPROPER INTEGRAL Content : • Definition of proper and improper integral • Converges of improper integral • Types and Test T1 and T2 and comparison test • Beta function and result • Gamma function and result Definition : 1. Proper Integral : If b a I f (x)dx= ∫ Here, a) F:[a b] R,→ f(x) is bounded on a x b≤ ≤ b) f R[a b]∈ i.e. b a f (x)dx∫ exists c) f (x) may be discontinuous at any C [a b]∈ but f(c) ≠ ∞ then b a f (x)dx∫ is called proper integral. 2. Improper Integral : An integral b a f (x)dx∫ becomes an improper integral when 1. a = −∞ i.e. (lower limit) Or 2. b = ∞ i.e. (upper limit) Or 3. f (x) = ∞ for some x [a b]∈ First and second condition means b-a is not finite but third condition means of is not bounded on [a b] For ex. 1. o tanx x dx −∞∫ 2. 21 dx x ∞ ∫ 3. sin x e dx ∞ −∞∫ 4. 1 1 dx x−∫ Types of Improper Integral : Improper integral is classify four types such that any improper integral can be either one of them or sum of these integral. Type I : a f (x)dx,f (x) c,a x ,a R ∞ ∈ ≤ < ∞ ∈∫ Type II : b f(x)dx,f(x) c, x b,b R −∞ ∈ −∞ < ≤ ∈∫
  • 3. 3 Type III : b b a a f (x)dx, f (x)dx,f (x) c,a x b + = ∈ ≤ ≤∫ ∫ where lim a,b R andx a f (x)+ ∈ → does not exist or lim x a f(x)+ → = ∞ Type IV : b b a a f(x)dx, f (x)dx,f (x) c,a x b, a,b R − = ∈ ≤ < ∈∫ ∫ and lim x b f(x)− → does not exists or lim x b | f (x) |− → = ∞ For ex : 1 0 1 2 2 2 2 21 0 1 dx dx dx dx dx x x x x x ∞ − − ∞ −∞ −∞ − + = + + +∫ ∫ ∫ ∫ ∫ Here, R.H.S. is sum of improper integral type II, IV, III and I Convergent Integral 1. If b lim a b f (x)dx→∞ = =∫ l finite then we say that a f (x)dx ∞ ∫ converges to l and we write a f (x)dx ∞ =∫ l 2. If the limit does not exists then the integral is divergent i.e. b lim a b f (x)dx or→∞ = ∞ − ∞ =∫ infinite then we say that a f (x)dx ∞ ∫ diverges For example - Problem 1 : 3a dx x ∞ ∫ Solution : b2 b lim lim3 3 1 1 dx x b x dx b x 2 − ∞ − φ   = →∞ = →∞   −  ∫ ∫ lim 2 1 1 1 1 b 0 2 2b 2     = →∞ − = =   ∞    ∵ finite= 31 dx x ∞ ∴∫ is convergent Problem 2 : 1 dx x ∞ ∫ Solution : b1/2 b lim lim1/2 1 1 1 dx x b x dx b 1/ 2x ∞ −   = →∞ = →∞     ∫ ∫ lim b 2 b 2 = →∞ − = ∞  1 dx x ∞ ∴∫ is divergent Problem 3 : 0 0 lim a sindx a sin xdx −∞ = → − ∞∫ ∫ [ ]lim a 1 cos a= →−∞ − + = does not exists 0 sin xdx −∞ ∴∫ is divergent Problem 4 : Solve on show that 2 dx 1 x ∞ −∞ +∫ is cgt. or dgt.
  • 4. 4 SPECIAL IMPROPER INTEGRAL OR TEST INTEGRAL Theorem (1) (T1 - Test) rx 1 0 T e .dx ∞ − ∫ converge if r 0> and divergent if r 0≤ Proof : Now brx b rx 0 0 e e .dx r − −   =   −  ∫ rb rb e 1 1 e ,r 0 r r r r − −   = + = − ≠  − −  Taking lim b → ∞ on both sides b lim limrx rb 0 1 1 1 b e .dx b e if r 0 r r r − − →∞ = − →∞ = >∫ if r 0= ∞ < For case r 0= b b rx 0 0 e dx dx b− = =∫ ∫ When b → ∞ then b rx 0 e dx− → ∞∫ Thus rx 0 1 e dx if r 0 r ∞ − = >∫ if r 0= ∞ ≤ There rx 1 0 T e dx ∞ − = ∫ converge to 1 r if r 0> and diverge to ∞ if r 0≤ Theorem (2) (Test T2) : 2 Pa dx T x ∞ = ∫ converges if P 1> and diverge if P 1≤ and a 0> Proof : For a 0> Now, bP 1 1 p 1 p b pa a dx x b a if P 1 x P 1 1 p 1 p − + − −   = = − ≠  − + − −  ∫ 1 P 1 P 1 P b lim lim Pa dx b a a b b x 1 P 1 P 1 P − − − →∞ = →∞ − = − − − −∫ (if 1 P 0 i.e. P 1)− < > if 1 P 0 i.e.P 1= ∞ − > < For ( ) b b pa a dx dx P 1 asx 1 x x = = =∫ ∫ ( ) b a log x log b log a= = − = ∞ (asb )→ ∞ Thus 1 p Pa dx a if P 1 x P 1 − ∞ = − > −∫ if P 1= ∞ ≤ 2 Pa dx T x ∞ ∴ = ∫ converges to 1 P a 1 P − − − if P 1> and diverges to if P 1+∞ ≤
  • 5. 5 Theorem (3) : (Comparison test 1) Let f (x), g(x) C, a x∈ ≤ < ∞ and 0 f (x) g(x) X a≤ ≤ ∨ ≥ 1 a a CT : g(x)dx convergen f (x)dx converges i.e. ∞ ∞ ⇒ <∞∫ ∫ 2 a a CT : f (x)dx g(x)dx ∞ ∞ = ∞⇒ =∞∫ ∫ [Comparison test T2] (or) If one converges then other and if one diverges then other Proof : Given 1. f (x),g(x) C,a x∈ ≤ < ∞ 2. f (x) g(x) x a≤ ∨ ≥ 3. a g(x)dx ∞ ∫ Convergent To prove : a f (x)dx ∞ ∫ converges i.e. < ∞ From (3) a g(x)dx ∞ ∫ is cgt. b lim a b g(x)dx FiniteLimit =A(Says)∴ →∞ =∫ …………(1) From (1) f (x)andg(x) C∈ ∴ they are continuous on [a b] ∴ they are integrate on [a b] (by thm) From (2) we have b b a a 0 f (x)dx g(x)dx≤ ≤∫ ∫ …………(A) Let b a (b) f (x)φ = ∫ …………(2) For 1 2b b< 2 1b b 2 1 a a (b ) (b ) f (x)dx t(x)dxφ − φ = −∫ ∫ 2 1 b a a b f (x)dx f (x)dx= +∫ ∫ 2 1 b b f(x)dx= ∫ 0 (asf (x) 0given)≥ ≥ 2 1 1 2(b ) (b ) an b b⇒ φ ≥ φ < ∴ By definition of m.I. (b)φ is m.I. (also from equation [A]) b b lim lim a a 0 b f (x)dx b g(x)dx≤ →∞ ≤ →∞∫ ∫ lim lim b f (x)dx b g(x)dx A⇒ →∞ ≤ →∞ = (by equation [A]) (b)is bounded∴φ Thus (b)ism.I.andboundedφ ∴ by thm it is convergent a f (x)dx ∞ ⇒ ∫ is convergent
  • 6. 6 To prove second result (CT2) Lei 0 a f (x) g(x) V x a and f (x)dx ∞ ≤ ≤ ≥ = ∞∫ (given) Assume the contrary that a g(x)dx ∞ ∫ is convergent Then by CT1 a f (x)dx ∞ ∫ is convergent But this is contradiction to hypothesis a f (x)dx ∞ = ∞∫ Hence the assumption a g(x)dx ∞ ∫ is cgt i.e. wrong. a g(x)dx ∞ ∴∫ is dgt. i.e. a g(x)dx ∞ = ∞∫ Corollary (1) let f (x) C, a x∈ ≤ < ∞ and a f (x) dx ∞ < ∞∫ then a f (x)dx ∞ ∫ converges Proof : Given 1. Lef f (x) C, a x∈ ≤ <∞ 2. a f (x) dx ∞ < ∞∫ To prove : a f (x)dx ∞ ∫ is cgt. We know that O f(x) f(x) 2 F(x)≤ − ≤ and a 2 f (x) dx ∞ ∫ is cgt. (by given 2) ∴ By comparison test a f (x) f (x) dx ∞  − ∫ is cgt. …………(3) From (2) and (3) ( )a a f (x) dz f (x) f (x) dx ∞ ∞  − −   ∫ ∫ i.e. cgt. a a a f (x) dx f (x) dx f (x)dx ∞ ∞ ∞ − +∫ ∫ ∫ is cgt. a f (x)dx ∞ ∫ is cgt. EXAMPLES (By using test T1 – T2 and comparison test) Example 1 : Test the integral for convergence 2 8 2 7 x dx x 1+ ∫ Solution : Let 2 2 7 x I dx x 1 ∞ = + ∫ Here 2 x≤ <∞ Now 7 7 x 1 x+ >
  • 7. 7 7 7 1 1 x 1 x < + (taking reciprocal) 7/27 1 1 xx 1 < + (taking square root) Multiply by x2 on both sides 2 3/27 x 1 xx 1 < + ( )7 32 2 2 − =∵ 2 3/27 x 1 0 xx 1 < < + ( )x 2≥∵ …………(1) Here 3/22 1 dx x ∞ ∫ is cgt. by T2-test (asP 3/ 2 1)= > ∴ By comparison test (by equation 1) 2 2 7 x dx x 1 ∞ + ∫ is cgt. Example 2 : Test the convergence of 2 27 x 1 dx x 1 ∞ − − +∫ Solution : Lef 2 27 x 1 I .dx x 1 ∞ − − = +∫ 2 2 1 2 27 1 x 1 x 1 dx dx x 1 x 1 ∞ − − − = + + +∫ ∫ (break limit) ............(1) In equation (1) the first integral is proper integral and has finite value i.e. cgt. Now consider. ( )22 2 21 1 x 1 2x 1 dx dx x 1 x 1 ∞ ∞ + −− = + +∫ ∫ 21 1 1 1dx 2 dx x 1 ∞ ∞ = − +∫ ∫ ( )1 1 1 (x) 2 tan x ∞∞ − = − 1 1 ( 1) 2 tan tan 1− −  = ∞ − − ∞ −  1 2( / 2 / 4)= ∞ − − π −π 2 21 x 1 dx x 1 ∞ − = ∞ +∫ 2 21 x 1 dx x 1 ∞ − +∫ is dgt. Example 3 : Test convergence of 2 1 sin x dx ∞ − ∫ Solution : Let 2 1 I sinx dx ∞ − = ∫ We know that sin for any 0ϑ θ≥ 2 2 sin x x− − ≤ ( x 1)≥∵
  • 8. 8 2 2 1 0 sin x x − < ≤ ( 1 x )≤ <∞∵ Here 21 1 dx x ∞ ∫ is cgt. by T2 – test (as P 2 1)= > ∴ By comparison test 2 1 sin x dx ∞ − ∫ is cgt. Example 4 : Test the convergence of 2 27 x 1 dx x 1 ∞ − − +∫ Solution : Let 2 27 x 1 I dx x 1 ∞ − − = +∫ 2 2 1 2 27 1 x 1 x dx dx x 1 x 1 ∞ − − − = + + +∫ ∫ …………(1) Here, the 1st integral on R.H.S. of equation (1) i.e. 2 1 27 x 1 dx x 1− − +∫ is proper integral and has finite value (i.e. cgt.) Now consider second integral 2 2 2 21 1 x 1 (x 1) 2 dx dx x 1 x 1 ∞ ∞− + − = + +∫ ∫ ( )2 1 1 2 / x 1 dx ∞ = − +∫ 1 1 1(x) 2(tan x)∞ − ∞ = − 1 1 ( 1) 2(tan tan 1)− − = ∞ − − ∞ − 1 2( / 2 / 4)= ∞ − − π − π = ∞ then 2 21 x 1 dx x 1 ∞ − +∫ is dgt. Example 5 : Show that 22 cosx dx x(log x) ∞ ∫ converges absolutely Solution : Let 22 cox x I dx x(logx) ∞ = ∫ Now, 2 2 cosx 1 0 x(logx) x(logx) ≤ ≤ ( )cosx 1≤∵ 2 2 cosx 1 0 x(logx) x(logx) ≤ ≤ ( x 2)≥∵ Consider R lim 2 22 2 1 1 dx b dx x(logx) x(logx) ∞ = →∞∫ ∫ R lim 2 2 1 b (logx) dx x −   = →∞     ∫ b1 lim 2 (log x) b 1 −   = →∞  −  (Put log x t 1/ xdx dt)= ⇒ =
  • 9. 9 b lim 2 1 b log x   = − →∞     lim 1 1 b logb log2   = − →∞ −    1 0 log 2   = − −    1 0   =  ∞  1 finite log2 = = …………(2) ∴ from equation (1) and (2) and by comparison test we get 22 cosx dx x(logx) ∞ ∫ is cgt. 22 cox dx x(logr) ∞ ∫ is absolutely cgt. Example 6 : Test the convergence of x 1 log x.e dx ∞ − ∫ Solution : R limx x 1 1 log x.e dx b logx.e dx ∞ − − = →∞∫ ∫ (Integrate by parts) ( ) x bblim x 1 1 1 e b log x.e / 1 . .dx x 1 − −  = →∞ − −  −  ∫ x bblim limx 1 1 e b logx,e b dx x − −  = − →∞ + →∞  ∫ x b lim limb 1 e b logb.e 0 b dx x − −  = − →∞ − + →∞  ∫ x b lim 1 e (0) b dx x − = − + →∞∫ x b limx 1 e logxe dx b dx x − − = →∞∫ x 1 e dx x − ∞ = ∫ …………(1) Here 1 x≤ < ∞ 1/x 1≤ -x -x e /x e≤ x xe 0 e x − − ≤ ≤ but x 1 e ∞ − ∫ is cgt. by test T1 integral (as r 1 0)= > ∴ by comparison test we get x 1 e dx x − ∞ ∫ is cgt. …………(2) from equation (1) and (2) we get x 1 logx . e dx ∞ − ∫ is cgt.
  • 10. 10 Theorem : (limit test for convergences) Let i) f (x) C, a x∈ ≤ <∞ ii) lim x f(x) A, P 1, A R→∞ = > ∈ Them prove that a f (x) dx ∞ < ∞∫ (i.e. a f(x)dx ∞ ∫ is absolutely cgt.) Proof : we have i) f (x) C, a x∈ ≤ <∞ ii) lim P x x .f (x) P, P 1, A R→∞ = > ∈ since lim P x x . f(x) A→∞ = lim P x x f (x) A∴ →∞ = (taking mod on both sides) lim P x x .f (x) A⇒ →∞ = (by definition of limit) ⇒ For given 1⇒∈= (say) there exist a +ve integer b such that P x b x .f(x) A 1≥ ⇒ − < P x f (x) 1 A⇒ < + P 1 A f (x) x + ⇒ < P 1 A 0 f (x) x + ∴ ≤ < and P1 1 dx x ∞ ∫ is cgt. has P 1> (given) by T2 – test integral ∴ By comparison test we get a f (x) dx ∞ ∫ is cgt. a f(n) dx ∞ ⇒∫ absolutely cgt. Statement : Let i) f (x) C, a x∈ ≤ <∞ ii) lim x f (x) A 0→∞ = ≠ = ±∞ Then prove that a f (x)dx ∞ ∫ diverges and the test fails if A 0= Example 7 : Show that 0 3 cosx dx 1 x ∞ + ∫ converges Solution : 0 3 cosx I dx 1 x ∞ = + ∫ 0 3/2 3 cosx x 1/ x 1 ∞ = + ∫
  • 11. 11 Here, 3/2 3 cosx f (x) C, 0 x x 1/ x 1 = ∈ ≤ <∞ + (By applying limit test taking P = 5/4) lim lim5/4 5/4 3/2 3 cosx x x f (x) x x . x 1/ x 1 →∞ = →∞ + 5 P 1 4   = >    lim 1/4 3 cosx x x 1 1/ x = →∞ + 0= r 1 D 0 as 0   → =  ∞  ∵ ∴ Limit for 0 f (x) dx ∞ ∫ is cgt. 0 3 cosx dx 1 x ∞ ⇒ + ∫ is cgt. 0 3 cosx dx 1 x ∞ ⇒ + ∫ is absolutely cgt. Example 8 : Show by limit test 0 2 dx 1 2x ∞ = ∞ + ∫ Solution : Let 20 dx I 1 2x ∞ = +∫ Here 2 1 f (x) C, 0 x 1 2x = ∈ ≤ <∞ + lim lim 2 x x x.f (x) x 1 2x →∞ = →∞ + lim lim 2 2 x 1 x x x 1/ x 2 1/ x 2 = →∞ = →∞ + + 1 2 = ∴ by limit test (here P = 1) 0 f (x)dx ∞ ∫ is dgt. 0 f (x)dx ∞ ⇒ = ∞∫
  • 12. 12 BETA – GAMMA FUNCTION Main application of this function is to solve improper integral. Beta Function : The integral 1 m 1 n 1 0 x (1 x) dx− − −∫ with m 0, n 0> > is called Beta function of is denoted by (mn)β 1 m 1 n 1 0 (mn) x (1 x) .dx− − ∴β = −∫ Prove symmetry property of Beta function i.e. (mn) (n m)β =β Proof : By definition 1 m 1 n 1 0 (mn) x (1 x) .dx− − β = −∫ Put 1 x t dx dt− = ⇒ = − And limit when x 0 t 1= ⇒ = when x 1 t 0= ⇒ = 0 m 1 n 1 1 (mn) (1 t) .t ( dt)− − ∴β = − −∫ (Change the limit) 1 n 1 m 1 0 t (1 t) .dt− − = −∫ 1 n 1 m 1 0 x (1 x) .dx,− − = −∫ (Change t to x) (n m)= β (by definition) (n m)= β (mn) (nm)∴β = β i.e. m n are interchangeable in beta function Some Result : 1. Prove m 1 m n0 x (mn) .dx (1 x) − ∞ + β = +∫ Proof : By definition 1 m 1 n 1 0 (mn) x (1 x) .dx− − β = −∫ …………(1) Put 2 1 1 x dx .dt 1 t (1 t) − = ⇒ = + + Limits when x 0 t= ⇒ = ∞ When x 1 t 0= ⇒ = n 1 m 1 20 1 1 1 (mn) 1 . dt (1 t) 1 t (1 t) − ∞ − −  ∴β = −  + + +  ∫ (by equation 1) ( ) n 1 m n0 t .dt 1 t − ∞ + = + ∫ n 1 m n0 x dx (1 x) − ∞ + = +∫ (Change t to x) n 1 m 1 m n m n0 0 x x B(mn) dx dx (1 x) (1 x) − − ∞ ∞ + + ∴ = = + +∫ ∫
  • 13. 13 2. Prove /2 2m 1 2n 1 0 (mn) 2 sin cos .do π − − β = θ θ∫ Proof : We have that 1 m 1 m 1 0 (mn) x (1 x) .dx− − β = −∫ Put 2 x sin dx 2sin .cos .d= θ ⇒ = θ θ θ Limit when x 0then 0= θ = x 1then π/2= θ= ( ) /2 m 12 2n 1 2 n 1 0 (mn) sin cos [1 sin ] .2sin cos d π − − − ∴β = θ − θ θ θ θ∫ /2 2m 1 2n 1 0 2 sin .cos .d π − − = θ θ θ∫ /2 2m 1 2n 1 0 (mn) 2 sin .cos d π − − ∴β = θ θ θ∫ Gamma Function : The integral x n 1 0 e .x . dx, n 0 ∞ − − >∫ is called a Gamma function. It is denoted by n Properties of Gamma function : 1. 1 1= Proof : By definition x n 1 0 n e .x .dx, n 0 ∞ − − = >∫ Putting n 1= x 0 1 e .dx ∞ − ∴ = ∫ b blim limx x 00 b e dx b e− −  = →∞ = →∞ − ∫ lim limb 0 b b e e b 1 e 1− −    = →∞ − + = →∞ − =    b b 1 1 e 0 e −  = = =  ∞  2. Recurrence formula n 1 n n+ = Proof : By definition b limn x n x 0 0 n 1 x .e dx b x .e dx ∞ − − + = = →∞∫ ∫ ( ) bblim n x n 1 x 0 0 b x e n.x ( e )dx− − − = →∞ − − −   ∫ b lim n b n 1 x 0 b b .e 0 n x .e .dx− − − = →∞ − + +   ∫ b lim n 1 x 0 0 b n x .e dx− − = + →∞ ∫ n 1 x 0 n x .e dx ∞ − − = ∫ n n= (by definition of gamma)
  • 14. 14 3. Prove n 1 n! for n 0, 1, 2,...+ = = Proof : n 1 n n+ = by recurrence formula n(n 1) n 1 if n 1 0= − − − > ( )n 1 n n+ = n(n 1)(n 2) n 2 if n 2 0= − − − − > n(n 1)(n 2) ...... 2 1 1= − − × × n(n 1)(n 2) ...... 2 1= − − × × × 1 1=∵ n!= 4. Prove n 1 kx n0 n x e dx k ∞ − − =∫ where n,k 0> Proof : Put t x k = dt dx k = Limits for x 0 t 0= ⇒ = x t= ∞⇒ = ∞ n 1 kx n 1 t n 1 t n n0 0 0 dt 1 n x .e dx (t/k) .e . t .e dt k k k ∞ ∞ ∞ − − − − − − = = =∫ ∫ ∫ Relation between Beta – Gamma Function : The relation between beta and gamma function is stated as m n (mn) m n β = + Proof : We know that by definition t m 1 0 m e .t dt ∞ − − = ∫ Put 2 t x= dt 2xdx∴ = 2 x 2m 2 0 m e x 2x dx ∞ − − ∴ = ∫ 2 x 2m 1 0 m 2 e x dx ∞ − − ⇒ = ∫ …………(1) y2 2n 1 0 n 2 e .y dy ∞ − − ∴ = ∫ …………(2) ( )( )2 2 x 2m 1 y 2n 1 0 0 m n 2 e .x .dx 2 e .y .dy ∞ ∞ − − − − = ∫ ∫ 2 2 (x y ) 2m 1 2n 1 0 0 4 e .x .y .dx dy ∞ ∞ − + − − = ∫ ∫ Put, 2 2 2 x rcos , y rsin x y r , dx dy rdr d= θ = θ ⇒ + = = θ and r varies from 0 to ∞ θ varies from 0 to π/2as show below
  • 15. 15 2π/2 r 2m 1 2n 1 2m 1 2n 1 0 0 m n 4 e r r .cos sin rdrd ∞ − − − − − ∴ = θ θ θ∫ ∫ ( )( )2/2 2m 1 2n 1 r 2m 2n 1 0 0 2 cos sin d 2 e r dr π ∞ − − + − = θ θ θ∫ ∫ m n (mn) m n= β + m n B(mn) m n ∴ = + /2 2m 1 2n 1 0 From equati i on (1) and e 2 cos ) r s s ult n d (mn π − −      β  θ θ =  θ∫ Result : To prove /2 2m 1 2n 1 0 2 sin sin d (mn) π − − θ θ θ = β∫ Proof : 1 m 1 n 1 0 (mn) x (1 x) dx− − β = −∫ Put 2 x sin= θ and solve it Note : From m n (mn) m n β = + and /2 2m 1 2n 1 0 (mn) 2 sin cos d π − − β = θ θ θ∫ /2 2m 1 1n 1 0 1 m n sin d cos d (mn) 2 2 m n π − − ∴ θ θ θ θ = β = + ∫ …………(A) If we put 2m 1 P and 2n 1 q− = − = then /2 P 2 0 p 1 q 1 2 2sin .cos d p q 2 2 2 π + + θ θ θ = + + ∫ …………(B) Result : Prove 1/ 2 = π Now by equation (A) /2 2m 1 2n 1 0 m n sin d .cos d 2 m n π − − θ θ θ θ = + ∫ Put m n 1/ 2= = ( ) /2 2 0 d / 2 2 π θ = π∫ ( )1 1=∵ ( ) 2 / 2 1/ 2 2π = ( ) 2 1/ 2 1/ 2= π ⇒ = π
  • 16. 16 EXAMPLE 1. 7 6! 30 2(2!)(3!)2 3 4 = = ( )n 1 n!+ =∵ , ( )n (n 1)!= − 2. 4 x x 5 1 0 0 x .e dx e x dx 5 4! 24 ∞ ∞ − − − = = = =∫ ∫ 3. 3 2x 2x 4 1 40 0 4 3! 3 x e dx e x dx 2 16 8 ∞ ∞ − − − = = = =∫ ∫ n 1 kx n0 n by x e dn k ∞ − −   =     ∫ Prove 2 t 2n 1 0 n 2 e t dt ∞ − − = ∫ Solution : We know that y n 1 0 n e y dy, n o ∞ − − = >∫ Put 2 y t= (we take any variable) dy 2dt⇒ = 2 2 2n 1 t 2 n 1 t t 0 0 n e (t ) 2t dt 2 e dt −∞ ∞ − − − ∴ = =∫ ∫ Example : Prove : ( ) 1 n 1 0 n log1/ x dx − = ∫ Solution : Put y logx= − and solve it EVALUATE 1. Prove 1/4 x 0 x e dx ∞ − ∫ Solution : Put 2 x t dx 2tdt= ⇒ = 1/4 1/4 x t 2 0 0 x e dx e (t ) 2tdt ∞ ∞ − − =∫ ∫ t 3/2 0 2 e t dt 2 5 / 2 ∞ − = =∫ (by definition) 2 3 / 2 1= + ( )2 3/ 2 3/ 2= ( ) ( )2 3/ 2 1/ 2 1 2 3/21/2 1/ 2 3/ 2= + = = π ( )as 1/ 2π = 2. Prove 3 x 0 x.e dx ∞ − ∫ Put 3 2 x t dx 3t dt= ⇒ = then
  • 17. 17 t 3 1/2 2 t 7/2 0 0 e (t ) .3t dt 3 e t dt 3 9 / 2 ∞ ∞ − − = = =∫ ∫ 7 5 3 1 1 315 3 . . . 2 2 2 2 2 16 = × = π 3. Prove 1 0 dx log n = π − ∫ 4. Prove that 2 2 h x 0 e dx 24 ∞ − π =∫ 5. Evaluate 1/ 2, 3 / 2, 5 / 2− − − n 1 put n 1/ 2, 3 / 2, 5 / 2 in n n  + = − − − =     4 8 1/ 2 2 , 3 / 2 , 5 / 2 3 15 π − π ⇒ − = − π − = − = 6. ( ) 3 70 x dx 1 x ∞ + ∫ Solution : 3 4 1 7 4 30 0 x x 4 3 3! 2! 1 dx (4 3) (1 x) (1 x) 6! 607 − ∞ ∞ + = = β = = = + +∫ ∫ 7. 1 1 3 3 4 1 4 1 0 0 4 4 3! 3! x (1 x) dx x (1 x) dx (4 4) 7!8 − − − = − = β = =∫ ∫ 1/140= 8. 1/2 1 1/2 1/20 0 dx x dx (1 x)x(1 x) − ∞ ∞ + = ++ ∫ ∫ 1/ 2 1/ 2 (1/ 2 1/ 2) 1 = β = = π 9. 1 1 3/2 1 3/2 1 0 0 x (1 x) dx x (1 x) dx (3/2 3/2)− − − = − = β∫ ∫ 1 1/ 2 3 / 2 23 / 2 3 2! 8 π × π π = = = 10. Find (3, 1/2)β Solution : 3 1/ 2 2! 1/ 2 16 (3, 1/ 2) 157 / 2 5/2 3/2 1/21/ 2 β = = = × ×
  • 18. 18 Prove that /2 0 tan .d 2 π π θ θ =∫ Solution : 1/2/2 /2 1/2 0 0 tan .d (sin ) (cos ) .d −π π θ θ = θ θ θ∫ ∫ 1/ 2 1 1/ 2 1 1/ 2 1 (1/ 2) 1 2 2 2 2  + − + + − + =     3 / 4 1/ 4 1 1/ 4 1 1/4 22 1 = = − 1 2 sin / 4 2 π π = = π Byusing n. 1 n sin n  π − =  π  Ex. Prove the following result 1. /2 2 4 0 2 1 4 1 2 2sin cos d 2 1 4 1 2 2 π + + θ θ θ= + + + ∫ 1 1 3 1 1 2 2 2 2 2 2 4 × × = 3 16(3!) 32 π π = = By using /2 P 2 0 P 1 q 1 2 2sin d cos d P q 2 2 2 π  + +    θ θ θ =  + +     ∫ Ex. /2 6 0 sin d π θ θ∫ Solution : /2 6 0 0 sin (cos) d π θ θ∫ 5 3 1 1/ 2 1/ 2 6 1 6 1 10 1 2 2 22 22 2 2 4 × × × + + ++ = = 15 5 16 (3!) 32 π π = = Ex. /2 /2 0 0 d sin d sin π πθ θ θ θ ∫ ∫ Solution : { }{ }/2 /2 1/2 0 1/2 0 0 0 (sin ) (cos ) d (sin ) (cos ) d π π − θ θ θ θ θ θ∫ ∫
  • 19. 19 1/ 2 1 0 1 1/ 2 1 0 1 2 2 2 2. 1/ 2 1 1 1/ 2 1 1 2 2 2 2 − + + + + = − + + + + + 1/ 4 . 3 / 4 / 4 42 3 / 4 . 2 5 / 4 1/4 1/4 π π π π = = 1 5 / 4 1/ 4 4   =    ∵ = π Objective Questions : 1. rx 0 e dx ∞ − ∫ converges if ………… 2. rx 0 e dx ∞ − ∫ diverges if ………… 3. pa dx x ∞ ∫ converges if ………… 4. pa dx x ∞ ∫ diverges if ………… 5. An Improper Integral of the type n 1 x 0 x .e dx,n 0 ∞ − − >∫ is called ………… 6. n is denoted by 0 ............ ∞ ∫ where n 0> 7. Recurrence formula for gamma function ………… 8. Find the value of 1 2 − = ………… 9. An Improper Integral of the type 1 m 1 n 1 0 x (1 x) dx− − −∫ is called ………… 10. In Beta function m and n are inter changeable ………… 11. Relation between Beta and Gamma function ………… *****