SlideShare a Scribd company logo
Reliability-Based Design Optimization
     via a Cell Evolution Method


             陳奇中
         ctchen@fcu.edu.tw
          逢甲大學化工系
Outline
1. Introduction
2. Reliability-Based Design Optimization
    (RBDO)
   2.1 Problem formulation
   2.2 Traditional solution methods for RBDO
      - Double Loop
      - Single Loop
3. A Cell Evolution Method for RBDO
   3.1 Single objective optimization
   3.2 Multi-objective optimization
4. Design Examples
5. Conclusions
Introduction
              Deterministic Design Optimization
                  - no uncertainties involved in the design
          m in     f (d , p )
            d

s.t.
          g i (d , p )       0, i      1,  , n1
          h j (d , p )      0, j        1,  , n 2
              L              U
          d        d     d
w h ere
                                 T
d      d1 , d 2 , , d m             : d ecisio n variab les
                                 T
p      p1 , p 2 ,  , p l            : p aram eters
Uncertainties ?                Uncertainty
                                            is
                                       everywhere.
   Sources of uncertainties
       -   modeling errors
       -   physical parameter variations
       -   change of environments
       -   unknown dynamics
           …
                       uncertainties
Deterministic design                   Not reliable
Optimal Design Under Uncertainties

         m in        f ( x, d , p )
          x,d

s.t.
         g i ( x, d , p )       0, i   1,  , n1
         h j ( x, d , p )       0, j    1,  , n 2
             L              U      L             U
         x       x      x , d           d    d
w here
             d     d1 , d 2 , , d m :        determ inist ic d ecision variable

          x       x1 , x 2 ,  , x n :       u n certain decision variable

             p       p1 , p 2 ,  , p l :        u n certain param eters
Deterministic solution vs. Reliable solution

                                             Stochastic constraint


           Reliable solution




                               Deterministic optimum
                *




                                               Deb et al. (2009)
Stochastic Programming frameworks
- Here and Now (1/2)

   Optimal solution




                         Diwekar (2002)
Stochastic Programming frameworks
        - Wait and See (2/2)

                                     Distribution of optimal
                                             design




Objective function and constraints

                                               (Scenario)




                                            Diwekar (2002)
Reliability-Based Design Optimization
(RBDO)

        m in          f (d , μ x , μ p )
        d, μx

 s.t.
        P r G i (d , x , p )          0     Ri , i       1, ..., n1
        g j (d , μ x , μ p )         0, j       1, ..., n 2
            L                 U       L              U
        d             d     d , μx         μx      μx

where   x
                  n
                R ,        x ~ N μx ,σx ,
                 q
        p       R ,       p ~ N μp ,σp ,

        Pr( )         Probability function
         Ri           Design reliability
The failure probability and
      reliability index

  Pr Gi (d, x , p )              0                                     x ,p
                                                                               (x, p ) dxdp
                                                    Gi ( d , x ,p ) 0


            x ,p
                   (x, p )   joint probability density function

Reliability level      Ri        1   Pi

                             Pi      Pr G i ( d , x , p )       0
Failure probability



 First-order approximation                Pi                i



 Reliability index           i       Standard normal cumulative dist. Func.
Traditional solution methods for RBDO (1/2)
- Double-loop method




                                 Reliability analysis
                                      loop

 Optimization
     loop                        Reliability analysis
                                      loop


                                 Reliability analysis
                                      loop




                              Shan and Wang (2008)
Reliability analysis loop (inner loop)
     (1/2)
      A. RIA (reliability index approach)

                                                       Gj > 0
                         m in U                  MPP
                            U

                  s.t.
                          Gj U           0



                                         *
     N O T E : fo r reliab ility ,   U       j




NOTE: MPP denotes the “most probable point.”
Reliability analysis loop (inner loop)
          (2/2)
         B. PMA (performance measure approach)

                                                              Gj > 0

            m in G j ( U )

  s.t.       U                                          MPP
                       j

  w here
                   1
             j
                           Rj   " reliability index "

                  standard norm al density function
           U : U -space ,       ~ N (0, 1)

                                        *
N O T E : fo r reliab ility , G i U           0.
Traditional solution methods for RBDO (2/2)
- Single-loop method

 - convert inner reliability loop by using a deterministic
    optimization problem KKT optimality conditions
             m in     f (d , μ x , μ p )
             d ,μ x

      s.t.
             g i (d , x i , p i )           0, i    1, 2,  , n

                                    r                         x
                                                                  Gi
             xi        x        i
                                                          2                   2

                                                   x
                                                     Gi                p
                                                                         Gi

                                                                  Gi              approximation
                                 r                            p
             pi        p        i
                                                          2                   2

                                                   x
                                                     Gi                p
                                                                         Gi
                  L             U
             d        d     d
                  L                     U
             μX       μX        μX
Comparisons of
        RBDO Solution methods

        Method            Advantage              Disadvantage

      Double-loop          accuracy          long computation time



       Single-loop    computationally fast       less accuracy




Motivation: accuracy and computational efficiency?
                     New solution method ?
PMA-based RBDO problem

               m in     f (d , μ x , μ p )
               d, μx

    s.t.
                                                                                       Gj > 0
                   *           1
               Gi       FG i                 i
                                                        0, i        1, ..., n1
                                                                                 MPP
               g j (d , μ x , μ p )    0, j           1, ..., n 2
                    L              U    L                  U
               d        d      d , μx            μx      μx
where
        FG i   cumulative distribution function

               Calculated from PMA reliability optimization problem
           *
        Gi
Reliability-test cells
     - Determination of MPPs
x2


                                              G3 =0

                                     mpp 23


                        mpp 21
     G1 =0
                       mpp33       mpp 22


                     mpp32
             mpp31                 mpp13


                      mpp11
                                 mpp12


                      G2 =0

                                                      x1
A cell generation method

 ---   sampling method

Step 1: Sobol quasi-random sequence
          (Sobol, 1967; Bratley and Fox, 1988)



Step 2: Spherical parameterization method
            (Watson, 1983; Zayer et al., 2006)
Some template reliability-test
         cells (1/2) 2D cells in U-space


β          
        1, N    100                 β      
                                        1, N   1000




    β       
         3, N   100
                                    β      
                                        3, N   1000
Some template reliability-test
      cells (2/2) 3D cells in U-space



                                β      
                                     1, N    10000
β   1, N   1000




β      
    3, N   1000
                                 β       
                                      3, N    10000
A cell evolution
                                                                                               Start
                                                                                      Initialize cell population




                 algorithm
                                                                                                                 k = k+1


                                                                                Yes
                                                                                         Std.( F(Ɵ ) ≤
                                                                                                  )      ε   ?


                                                                                              No
                                                          Alleviate premature



    Cell generation
                                                               stagnation
                                                                                           RS Operation



+

A real-coded genetic algorithm                                                  No        For each paired
                                                                                          parents, r > λ ?



             (Chuang and Chen, 2011)                                                         Yes

    x2                                                         DRM Operation              DBX Operation



                                                  G3 =0

                                         mpp 23
                                                                                      Replacement Operation
                            mpp 21
         G1 =0
                           mpp33       mpp 22


                         mpp32
                 mpp31                 mpp13
                                                                                                                       No
                                                                                         Stop criteria met?
                          mpp11
                                     mpp12

                                                                                             Yes
                          G2 =0

                                                          x1                                    Stop
What is genetic algorithm (GA)?

   GA is a particular class of evolutionary algorithm
        Initially developed by Prof. John Holland
              "Adaptation in natural and artificial systems“, University of Michigan press, 1975

      Based on Darwin’s theory of evolution
            “Natural Selection” & “Survival of the fittest”

                 物競天擇                            適者生存 不適者淘汰

   Imitate the mechanism
     of biological evolution
        - Crossover
        - Mutation
        - Reprodution
Evolution in biology (1/3)
           Organisms produce a number of offspring similar
            to themselves but can have variations due to:
            (a) Crossover (Sexual reproduction )
                                   Parents                                           offspring




IMG from http://www.tulane.edu/~wiser/protozoology/notes/images/ciliate.gif
Ref. :http://www.cas.mcmaster.ca/~cs777/presentations/3_GO_Olesya_Genetic_Algorithms.pdf
Evolution in biology (2/3)

              (b) Mutations (Random changes in the DNA sequence)


                 Before                                                                    After




 IMG from http://offers.genetree.com/landing/images/mutation.png
IMG from http://www.tulane.edu/~wiser/protozoology/notes/images/ciliate.gif
Ref. :http://www.cas.mcmaster.ca/~cs777/presentations/3_GO_Olesya_Genetic_Algorithms.pdf
Evolution in biology (3/3)

              Some offspring survive, and produce next
               generations, and some don’t:




                                                     Ugobe Inc. Pelo


http://www.ugobe.com/Home.aspx
Ref. :http://www.cas.mcmaster.ca/~cs777/presentations/3_GO_Olesya_Genetic_Algorithms.pdf
Traditional GA
                         - binary-coded
            All variables of interest must be encoded as binary
             digits (genes) forming a string (chromosome).

       Gene – a single encoding of part of the solution space.

       Chromosome – a string of genes that represent a solution.
              1          gene


            1 1 0 1 0                     chromosome




IMG from http://static.howstuffworks.com/gif/cell-dna.jpg
Real-coded GA (RCGA)

            All genes in chromosome are real numbers
             - suitable for most systems.
             - genes are directly real values during genetic
                  operations.
             - the length of chromosomes is shorter than that in
                 binary-coded, so it can be easily performed.
             1.1        gene

            1.1 0.1 15                10       0.12

                      chromosome
IMG from http://static.howstuffworks.com/gif/cell-dna.jpg
The cell evolution method
- Survival and elimination of cells according to their
   fitness
Illustrative examples
                                                    - Example 1                            (Liang et al., 2004)

                                                                                                  Results Comparison
                                                                               Methods            DLP/PMAa          Single loopb      The Proposed
        m in f                                1               2             Design variables
                                                                                   1                3.4391             3.4391             3.4391
Pr G i ( x )         0         Ri , i             1, 2 , 3                         2
                                                                                                    3.2866             3.2864             3.2866
                         2
                      x1 x 2
G1 x            1
                         20                                                Objective function
                                              2                        2
                         x1     x2        5              x1   x 2 12
G2 x            1
                                30                            120                f μ                6.7257             6.7255             6.7257
                               80
G3 x            1        2
                                                                              Constraints
                      x1       8 x2       5
                                                                                G1( x )                0                  0                  0
0       i
                10, i 1, 2                                                      G2(x)                  0                  0                  0
    1       2
                    0.3,                                                        G3(x )               -0.5              -0.5097            -0.5096
                1
    j
                    Rj         3,     j       1, 2, 3                         CPU time (s)            138               8.89               11.76
                                                                            aResults   are from Du and Chen [8]. bResults are from Liang et al. [7].
MPP determination using
 different sampling numbers
                              MPP points
Sampling
 Number        MPP1                MPP2                MPP3

   50      (2.6173, 2.9168)    (3.7578, 2.4438)    (4.0812, 3.9152)


  100      (2.6168, 2.9179)    (3.7573, 2.4446)    (4.0807, 3.9161)


  500      (2.6179, 2.9182)   (3.7581, 2.4450)    (4.0819, 3.9165)


  1000     (2.6179, 2.9182)   (3.7581, 2.4450)    (4.0819, 3.9165)


  5000     (2.6179, 2.9182)   (3.7581, 2.4450)    (4.0819, 3.9165)


 10000     (2.6179, 2.9182)   (3.7581, 2.4450)    (4.0819, 3.9165)
Obtained solution cells with
different reliability indices (0,1,2,3)
                   Example 4.1
    10


     9


     8


     7


     6
2




     5


     4


     3


     2


     1


     0
      0   2    4                 6   8   10
                        1
Illustrative examples
                                - Example 2

                                                                                 Reliability index, β      1       2
                    m in f                                   1
                                                                                  0    (0%)             7.7883   1.7928
                                                                                  0.5 (69.146%)         7.4476   2.1224
Pr Gi (x)             0        Ri ,       i           1, 2 , 3
                          2
                      x x21

                                                                                   1   (84.134%)        7.1146   2.4269
G1 x            1
                          20
                                                  2                          2
                          x1    x2        5                  x1   x2    12
G2 x            1                                                                 1.5 (93.319%)         3.2346   2.6961
                                30                                120

G3 x            1         2
                               80                                                  2 (97.725%)          3.2949   2.8974
                      x   1
                               8 x2           5
                                                                                  2.5 (99.379%)         3.3634   3.0941
                                                                                   3 (99.875%)          3.4391   3.2866
0       i
                10,        i   1, 2

    1       2
                    0.3,
                1
    j
                    Rj         3,     j           1, 2, 3
Solution cells with different
reliability indices (0, 0.5, 1, 1.5, 3)
                     Example 4.2
    10


     9


     8


     7


     6
2




     5


     4


     3


     2


     1


     0
      0   2      4                 6   8   10
                          1
The dramatic change of the reliable
             solution with respect to reliability
             indices
     8                                                         6


                                                                         Reliability index
                                                                          0   (0%)
     7
                                                                          0.5 (69.146%)

                                                               4          1   (84.134%)

                                                                          1.5 (93.319%)
     6



                                                                    μ2
μ1                                                                        2 (97.725%)
     5                                                                   2.5 (99.379%)
                                                               2
                                                                          3 (99.875%)

     4                                                                    4 (99.996%)

                                                                          5 (99.999%)

     3                                                          0
         0   0.5   1   1.5   2       2.5   3   3.5   4   4.5   5

                                 β
Multi-objective reliability-based
            design optimization


       m in        f1 d , μ x , μ p , f 2 d , μ x , μ p ,  , f k d , μ x , μ p

s.t.
       Pr ( G i ( d , x , p )             0)   Ri , i     1, 2,  , n1
        g j (d ,      x
                          ,       p
                                      )   0, j       1, 2,  , n 2
            L                     U                      n
        d        d            d                  x      R ,   x ~ N μx ,σx ,
            L                         U
       μx        μx           μx                 p
                                                         q
                                                        R ,   p ~ N μp ,σp ,
Concept of multi-objective
 optimization


90%
 Comfort




40%


           10 k   Cost (US$)   100 k
Concept of Pareto-optimal
          solutions: non-dominated
                                                        (Goldberg, 1989)


                         Feasible objective space
                                                    B dominate A
                                    A               C dominate A
                                                    B, C non-dominated
                     B
                                                    D, E non-dominated
f2




                                    Second level
                              C                     E dominate A, B, C
           D
                                                    D dominate A, B

                    E
     Pareto-optimal front


                               f1
How does multi-objective cell
       evolution algorithm work?
                          Non-dominated        Crowding distance          New
        Parents              sorting          sorting for each front   Population
           1
           2                 Front 1                 Front 1             Front 1



RCGA
                           Front 2                  Front 2             Front 2    N



           N        CAT     Front 3                  Front 3             Front 3

        Offspring
            1
            2
                                          Rejected

           
           N
An illustrative example
- Multi-objective RBDO                              (Deb et al., 2009)

           m in f 1          x1
                             1      x2
           m in f 2
                                  x1
    s.t.
           Pr ( G i ( d , x , p )        0)        Ri , i   1, 2
           G1          x2        9 x1      6
           G2           x2        9 x1 1
           0.1         1
                             1,0               2
                                                      5
                   0.03 ,                1.28 , 2.0 , 3.0
Pareto front for the RBDO problem

    10
                                                      =   0
                                                      =   1.28
     9
                                                      =   2
                                                      =   3
     8


     7


     6


     5
2
f




     4


     3


     2


     1


     0
     0.1    0.2   0.3   0.4   0.5   0.6   0.7   0.8              0.9
                              f
                               1
Solutions for the RBDO problem
    2.5
                                                                  =   0
                                                                  =   3
                                                                  =   1.28
                                                                  =   2
     2




    1.5
2
X




     1




    0.5




     0
          0     0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9          1
                                        X
                                         1
Reliability-based design optimization
Applications in Chemical Engineering



  1. Steam pipe design
  2. Design of a bio-process
  3. Heat sink design
Steam pipe design (Ho and Chan, 2011)

                                                                     Min. cost
                                       2            2
                                    ( r2           r1 )
       m in f
                                           4
s.t.                                                                                                                   Surrounding temperature T

       Pr G r1 , r2                        0            Rj                                                                       T2
       h eq r1 , r2 , K                    0
       0 .0 4          r1       0 .0 6 5 m , 0 .0 7 5                      r2     0 .1 2 m                                        T1
                 2 K T1                        T2                                                     4       4   r1
       h eq :                                              h 2 r2          T2     T          2 r2 C T 2   T
                       ln r2 / r1                                                                                                             Steam
                K
       h                NuD
                2 r2
                                                                                         2                        r2
                                                                      1/ 6
                                                          0 .3 8 7 R a D
       NuD                  0 .6                                                8 / 27
                                                                       9 /16
                                               1        0 .5 5 9 /
                                                               3
                       g B (T 2                T )( 2 r2 )
       RaD
                                           v
                            2                                              8
       B                                   , C            5 .6 7 1 0
                 T2             T
Reliable solutions
                                   -3
                               x 10
                         9.8


                         9.7


                         9.6


                         9.5
Optimal function value




                         9.4


                         9.3


                         9.2


                         9.1


                          9


                         8.9
                               0        0.5   1       1.5       2   2.5   3
                                                  Reliability
Design of a bio-process
(Holland, 1975)
        m ax P f
        m ax P f / t B S f
 s.t.
        Pr ( G i ( d , x, p )       0)      Ri , i   1~ 4
         G1 : 5      tB        15
         G 2 : 20         S0     50
                                                       C ells   G lu cos e   O xygen         M ore cells
         G 3 : 50         K La      300                                         C ells
                                                       G lu cos e   O xygen              G luconolactone
         G 4 : 0.0 5           X0     1.0
                                                       G luconolactone       W ater         G luconic A cid
Reliable solutions
Design of cylindrical heat sinks
- in-line (Khan et al., 2004)

      Thermal analysis
                                                                                            1
      R hs      Rm              R fin s                                 R fin
                                                                                  h fin A fin   fin
                 tb
      Rm                                                                          tanh( m H )
                kA
                                                                            fin
                                     1                                                mH
      R fin s                                                                        1
                            N                          1                R bp                           Nussult Number correlation
                   Rc            R fin              Rbp                           hbp Abp
                                                                                                                    h fin D
                  1                                                               4 h fin              N u fin
                                                                                                                                         1/ 2
                                                                                                                                  C1 R e D P r
                                                                                                                                                      1/ 3

      Rc                                                                m                                               kf
                h c Ac                                                             kD                                                                    0.785        0.212
                                                                                                                 [0.2        exp( 0.55S T )]S T                  S   L
                                                                                                      C1                                        0.5
                                                                                                                                  (S T    1)
  Friction factor correlation
                                               4 5 .7 8
  f        K 1{0 .2 3 3
                                  (S T            1)
                                                       1 .1
                                                              ReD
                                                                    }                            Mass balance
                        ST         1                   0 .0 5 5 3
  K1       1 .0 0 9 (                  )
                                           1 .0 9 / R e D
                                                                                                  
                                                                                                  m   U app N T S T HD
                        S   L
                                   1
Design of cylindrical heat sinks
     - staggered (Khan et al., 2004)
            Thermal analysis                                                                   1
                                                                       R fin
          R hs      Rm        R fin s                                                h fin A fin   fin


                     tb                                                              tan h ( m H )
          Rm                                                               fin
                    kA                                                                   mH
                                        1                                               1
          R fin s                                                      Rbp
                             N                  1                                   hb p Ab p
                       Rc        R fin         Rbp
                                                                                     4 h fin
                                                                       m
                      1                                                               kD
          Rc
                    h c Ac
                                                                                                          Nussult Number correlation
    Friction factor correlation                                    Mass balance
                                                                                                                      h fin D                     1/ 2           1/ 3
                                                                                                         N u fin                        C1 R e D P r
                                                            1.29
                                                                                                                          kf
                          13.1/ S T            0.68 / S T
f     K 1 (378.6 / S T                ) / ReD                                                                                               0 .5 9 1         0 .0 5 3
                                                                   
                                                                   m             U app N T S T HD                              0.61S T             S     L
                      S   L                           0.0807
                                                                                                         C1                     0 .5
K1    1.175(               0.3124
                                    )       0.5 R e D                                                              (S T    1)          (1   2 exp( 1.09 S T ) )
                 S T Re    D
Heat sink performance variations under
                                            change of environmental temperature
                                                    (in-line arrangement)
                          -3               For in-line H=0.01m U app=2 m/s N=7x7
                   x 10                                                                                                       x 10
                                                                                                                                     -3              For in-line H=0.01m D=0.001m N=7x7
             2.5                                                                                                         5
                                                                                         Tamb=300 K                                                                                              Tamb=300 K
                                                                                         Tamb=320 K                                                                                              Tamb=320 K
                                                                                         Tamb=340 K                     4.5                                                                      Tamb=340 K



                                                                                                                         4
              2
Sgen (W/K)




                                                                                                                        3.5




                                                                                                           Sgen (W/K)
                                                                                                                         3

             1.5
                                                                                                                        2.5



                                                                                                                         2


              1
              1.4              1.6   1.8         2          2.2        2.4         2.6   2.8           3                1.5
                                                                                                                              1           1.5   2   2.5      3         3.5         4   4.5   5    5.5         6
                                                          D (m)                                x 10
                                                                                                      -3
                                                                                                                                                                 U         (m/s)
                                                                                                                                                                     app
Heat sink performance variations under
                                        change of environmental temperature
                                              (staggered arrangement)

                          -3               For staggered H=0.01m U app=2 m/s N=7x7
                   x 10                                                                                                          x 10
                                                                                                                                        -3             For staggered H=0.01m D=0.001 m N=7x7
             3.5                                                                                                            5
                                                                                           Tamb=300 K                                                                                              Tamb=300K
                                                                                           Tamb=320 K                                                                                              Tamb=320K
                                                                                           Tamb=340 K                                                                                              Tamb=340K
                                                                                                                           4.5
              3



                                                                                                                            4
             2.5
Sgen (W/K)




                                                                                                              Sgen (W/K)
                                                                                                                           3.5

              2

                                                                                                                            3


             1.5
                                                                                                                           2.5



              1                                                                                                             2
                   1           1.2   1.4    1.6     1.8       2      2.2      2.4    2.6    2.8           3                      1           1.5   2   2.5      3        3.5       4    4.5    5    5.5        6
                                                            D (m)                                 x 10
                                                                                                         -3
                                                                                                                                                                     U app (m/s)
Heat sink performance variations under
                                   un-uniform heat transfer between fins

                                                                                                                         x 10
                                                                                                                                -3         For staggered H=0.006m N=5x5
                 x 10
                        -3                 For in-line H=0.006m N=5x5                                              6.5
             8                                                                                                                                                                  Uapp=2
                                                                                      Uapp=2
                                                                                                                                                                                Uapp=4
                                                                                      U     =4                      6
                                                                                          app                                                                                   Uapp=6
                                                                                      Uapp=6
             7
                                                                                                                   5.5


                                                                                                                    5
             6




                                                                                                      Sgen (W/K)
                                                                                                                   4.5
Sgen (W/K)




             5
                                                                                                                    4


             4
                                                                                                                   3.5


                                                                                                                    3

             3
                                                                                                                   2.5


             2                                                                                                      2
             160             180   200   220     240   260          280   300   320             340                 200              250       300             350        400        450
                                                 熱傳係數 NuDfin                                                                                     熱 傳 係 數 NuDfin




                                         in-line                                                                                           staggered
RBDO problem formulation
                         Single objective

                              Q                    
                                                   m P
         m in    
                 S gen   (
                                      2
                                      ) Rhs                         Entropy generation rate
                             T am b                T am b
    s.t. Pr     Gi   X         0          Ri , i     1~ 9



                                                       6     H (m m )     12
                                                       1    D (m m )     3
                                                       1    U app ( m / s )    6
                                                       5    N       20
                                                              0.1




Cell population size 100、max. gen.100、
Sampling no. 10000
Reliable solutions
                                   (in-line)


   β            0       0.5       1       1.5       2       2.5       3       3.5
   N           18       18       13       11       10        8        7        6
  H(m)      0.0080   0.0072   0.0091   0.0097   0.0096   0.0119   0.0120   0.0120


  D(m)      0.0010   0.0010   0.0013   0.0015   0.0016   0.0020   0.0022   0.0026


  Uapp          1        1    1.1791   1.5281   1.8884   2.0699   2.4012   2.7829
  (m/s)
Sgen(W/K)   0.0535   0.0555   0.0578   0.0696   0.0727   0.0830   0.0929   0.1060
  X 100
Reliable solutions
                                (staggered)



   β            0       0.5       1       1.5       2       2.5       3       3.5
   N           17       17       17       17       13       11        9        9
  H(m)      0.0080   0.0076   0.0073   0.0070   0.0091   0.0105   0.0120   0.0120
  D(m)      0.0010   0.0010   0.0010   0.0010   0.0013   0.0016   0.0019   0.0019
  Uapp          1        1        1        1        1        1        1    1.0824
  (m/s)
Sgen(W/K)   0.0472   0.0479   0.0480   0.0495   0.0532   0.0567   0.0629   0.0646
  X 100
Optimal entropy generation rate
                                with respect to reliability indices

                     -4                                                          -4
                  x 10                                                        x 10
             12                                                         6.5



             11


                                                                         6
             10



             9
Sgen (W/K)




                                                           Sgen (W/K)
                                                                        5.5

             8



             7
                                                                         5


             6



             5                                                          4.5
              0           0.5   1   1.5   2    2.5   3   3.5               0          0.5   1    1.5   2    2.5   3   3.5




                                     in-line                                                    staggered
Heat dispersion comparisons
                       (in-line; air velocity 0.7m/s)




Deterministic design                  Reliable design with β=3

(322.2 < T< 329.9)                       (314.5 < T< 318.1)
Heat dispersion comparisons
                   (staggered; air velocity 0.7m/s)




Deterministic design               Reliable design with β=3

(321.0 < T< 323.6)                     (312.3 < T< 315.9)
RBDO problem formulation
                                   Multi-objective

                                           Q       2       
                                                            m P
                           S gen       (            ) Rhs                   Entropy generation rate
               m in                        T am b           T am b
                               C ost         V olu m e       $              Cost

            s.t.      Pr   G   j
                                   X            0       Rj , j       1~ 9


                                                                             6      H (m m )     12
                                                                             1     D (m m )     3
                                                                             1     U app ( m / s )    6
                                                                             5     N       20

                                                                                     0.1



Cell population size 100、max. gen.100、
Sampling no. 10000
Obtained Pareto front of the reliable design
                    (in-line)
              1.4
                                                                            Deterministic
                                                                             = 1.28
             1.35
                                                                             = 3

              1.3


             1.25


              1.2
Cost (NTD)




             1.15


              1.1


             1.05


               1


             0.95


              0.9
                    0   0.005   0.01   0.015      0.02       0.025   0.03   0.035       0.04
                                               Sgen (W /K)
Obtained Pareto front of the reliable design
              (staggered)

             2.2
                                                                             D eterministic
                                                                               = 1.28
                                                                               = 3
              2



             1.8



             1.6
Cost (NTD)




             1.4



             1.2



              1



             0.8
                   0   0.005   0.01   0.015   0.02    0.025   0.03   0.035     0.04      0.045
                                               Sgen (W /K)
Results comparison

                         in-line
              Deterministic design      Reliable design (β=3)
 Solutions    min Sgen     min. cost     min Sgen    min. cost
 Sgen(W/K)     0.0040       0.0363       0.0101       0.0396
Cost (NTD)      1.31         0.93          1.05        0.90


                        staggered
             Deterministic design      Reliable design (β=3)
Solutions
             min Sgen     min. cost     min Sgen    min. cost
Sgen(W/K)     0.0018       0.0078       0.0035       0.0423
Cost (NTD)     2.07         1.09         1.49         0.90
Conclusions
 Single- and multi-objective cell evolution
  methods have been developed for reliability-
  based design optimization.

 Simulation results reveal that the proposed
  method is able to achieve accurate solution for
  RBDO without sacrificing computational
  efficiency.

 Application examples indicate the proposed cell
  evolution method is a promising approach to
  chemical process design under uncertainties.
Reliability-Based Design Optimization Using a Cell Evolution Method ~陳奇中教授演講投影片

More Related Content

What's hot

FDM Numerical solution of Laplace Equation using MATLAB
FDM Numerical solution of Laplace Equation using MATLABFDM Numerical solution of Laplace Equation using MATLAB
FDM Numerical solution of Laplace Equation using MATLAB
Aya Zaki
 
Mechanics of Materials 8th Edition Hibbeler Solutions Manual
Mechanics of Materials 8th Edition Hibbeler Solutions ManualMechanics of Materials 8th Edition Hibbeler Solutions Manual
Mechanics of Materials 8th Edition Hibbeler Solutions Manual
qitiwe
 
Dynamics lecture5
Dynamics lecture5Dynamics lecture5
Dynamics lecture5
Mike Polsit
 
HELIOCENTRIC and GEOCENTRIC Systems
HELIOCENTRIC and GEOCENTRIC SystemsHELIOCENTRIC and GEOCENTRIC Systems
HELIOCENTRIC and GEOCENTRIC Systems
TechWorksLab Private Limited
 
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdfHibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
TomCosta18
 
Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1
Muhammad Waqas
 
Strength of materials
Strength of materialsStrength of materials
Strength of materials
Reyam AL Mousawi
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beams
Mahdi Damghani
 
Solucion semana 16
Solucion semana 16Solucion semana 16
Solucion semana 16
Steven Jimenez
 
Unit 5 rigid body dynamics
Unit 5 rigid body dynamicsUnit 5 rigid body dynamics
Unit 5 rigid body dynamics
THANGA KASI RAJAN S
 
Applications of numerical methods in civil engineering
Applications of numerical methods in civil engineeringApplications of numerical methods in civil engineering
Applications of numerical methods in civil engineering
ওমর ফারুক
 
Stress Tensor & Rotation Tensor
Stress Tensor & Rotation TensorStress Tensor & Rotation Tensor
Stress Tensor & Rotation TensorJongsu "Liam" Kim
 
Calculus III
Calculus IIICalculus III
Calculus III
Laurel Ayuyao
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
Susana I. F.
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)Babu Rao
 
3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer
Nhan Tran
 
Solution of matlab chapter 6
Solution of matlab chapter 6Solution of matlab chapter 6
Solution of matlab chapter 6
AhsanIrshad8
 
Ch4 presentation
Ch4 presentationCh4 presentation
Ch4 presentation
Charoenyut Dechwayukul
 
Non linear static analysis of plate using Nastran Sol106
Non linear static analysis of plate using Nastran Sol106Non linear static analysis of plate using Nastran Sol106
Non linear static analysis of plate using Nastran Sol106
shailesh patil
 

What's hot (20)

FDM Numerical solution of Laplace Equation using MATLAB
FDM Numerical solution of Laplace Equation using MATLABFDM Numerical solution of Laplace Equation using MATLAB
FDM Numerical solution of Laplace Equation using MATLAB
 
Mechanics of Materials 8th Edition Hibbeler Solutions Manual
Mechanics of Materials 8th Edition Hibbeler Solutions ManualMechanics of Materials 8th Edition Hibbeler Solutions Manual
Mechanics of Materials 8th Edition Hibbeler Solutions Manual
 
Dynamics lecture5
Dynamics lecture5Dynamics lecture5
Dynamics lecture5
 
HELIOCENTRIC and GEOCENTRIC Systems
HELIOCENTRIC and GEOCENTRIC SystemsHELIOCENTRIC and GEOCENTRIC Systems
HELIOCENTRIC and GEOCENTRIC Systems
 
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdfHibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
 
Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1
 
Strength of materials
Strength of materialsStrength of materials
Strength of materials
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beams
 
Solucion semana 16
Solucion semana 16Solucion semana 16
Solucion semana 16
 
Unit 5 rigid body dynamics
Unit 5 rigid body dynamicsUnit 5 rigid body dynamics
Unit 5 rigid body dynamics
 
Applications of numerical methods in civil engineering
Applications of numerical methods in civil engineeringApplications of numerical methods in civil engineering
Applications of numerical methods in civil engineering
 
Stress Tensor & Rotation Tensor
Stress Tensor & Rotation TensorStress Tensor & Rotation Tensor
Stress Tensor & Rotation Tensor
 
FEM
FEMFEM
FEM
 
Calculus III
Calculus IIICalculus III
Calculus III
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)
 
3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer
 
Solution of matlab chapter 6
Solution of matlab chapter 6Solution of matlab chapter 6
Solution of matlab chapter 6
 
Ch4 presentation
Ch4 presentationCh4 presentation
Ch4 presentation
 
Non linear static analysis of plate using Nastran Sol106
Non linear static analysis of plate using Nastran Sol106Non linear static analysis of plate using Nastran Sol106
Non linear static analysis of plate using Nastran Sol106
 

Viewers also liked

程序控制的第一堂課_從騎腳踏車談起 ~陳奇中教授演講投影片
程序控制的第一堂課_從騎腳踏車談起 ~陳奇中教授演講投影片程序控制的第一堂課_從騎腳踏車談起 ~陳奇中教授演講投影片
程序控制的第一堂課_從騎腳踏車談起 ~陳奇中教授演講投影片Chyi-Tsong Chen
 
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片Chyi-Tsong Chen
 
認識化工~陳奇中教授演講投影片
認識化工~陳奇中教授演講投影片認識化工~陳奇中教授演講投影片
認識化工~陳奇中教授演講投影片Chyi-Tsong Chen
 
大學經營與治校理念_陳奇中教授金大演講投影片
大學經營與治校理念_陳奇中教授金大演講投影片大學經營與治校理念_陳奇中教授金大演講投影片
大學經營與治校理念_陳奇中教授金大演講投影片Chyi-Tsong Chen
 
蒸餾原理
蒸餾原理蒸餾原理
蒸餾原理5045033
 
創意研發專論:創意規則 ~陳奇中教授演講投影片
創意研發專論:創意規則 ~陳奇中教授演講投影片創意研發專論:創意規則 ~陳奇中教授演講投影片
創意研發專論:創意規則 ~陳奇中教授演講投影片Chyi-Tsong Chen
 
Data Driven Process Optimization Using Real-Coded Genetic Algorithms ~陳奇中教授演講投影片
Data Driven Process Optimization Using Real-Coded Genetic Algorithms ~陳奇中教授演講投影片Data Driven Process Optimization Using Real-Coded Genetic Algorithms ~陳奇中教授演講投影片
Data Driven Process Optimization Using Real-Coded Genetic Algorithms ~陳奇中教授演講投影片Chyi-Tsong Chen
 
MATLAB教學經驗分享~陳奇中教授演講投影片
MATLAB教學經驗分享~陳奇中教授演講投影片MATLAB教學經驗分享~陳奇中教授演講投影片
MATLAB教學經驗分享~陳奇中教授演講投影片Chyi-Tsong Chen
 
程序控制的最後一堂課_ 美好的人生就從今天起 ~陳奇中教授演講投影片
程序控制的最後一堂課_ 美好的人生就從今天起 ~陳奇中教授演講投影片程序控制的最後一堂課_ 美好的人生就從今天起 ~陳奇中教授演講投影片
程序控制的最後一堂課_ 美好的人生就從今天起 ~陳奇中教授演講投影片Chyi-Tsong Chen
 
化工與我_學思紀行~陳奇中教授演講投影片
化工與我_學思紀行~陳奇中教授演講投影片化工與我_學思紀行~陳奇中教授演講投影片
化工與我_學思紀行~陳奇中教授演講投影片Chyi-Tsong Chen
 
matlab simulink مكتبة العناصر المستمرة
  matlab simulink مكتبة العناصر المستمرة  matlab simulink مكتبة العناصر المستمرة
matlab simulink مكتبة العناصر المستمرة
Hasan Edrees
 
IEET工程教育認證經驗分享~陳奇中教授演講投影片
IEET工程教育認證經驗分享~陳奇中教授演講投影片IEET工程教育認證經驗分享~陳奇中教授演講投影片
IEET工程教育認證經驗分享~陳奇中教授演講投影片Chyi-Tsong Chen
 
當mit遇見MIT_波士頓見聞分享~陳奇中教授演講投影片
當mit遇見MIT_波士頓見聞分享~陳奇中教授演講投影片當mit遇見MIT_波士頓見聞分享~陳奇中教授演講投影片
當mit遇見MIT_波士頓見聞分享~陳奇中教授演講投影片Chyi-Tsong Chen
 
Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片
Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片
Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片Chyi-Tsong Chen
 
Ch 06 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 06 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 06 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 06 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Chyi-Tsong Chen
 
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Chyi-Tsong Chen
 
Ch 03 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 03 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 03 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 03 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Chyi-Tsong Chen
 
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Chyi-Tsong Chen
 
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Chyi-Tsong Chen
 
Ch 04 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 04 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 04 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 04 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Chyi-Tsong Chen
 

Viewers also liked (20)

程序控制的第一堂課_從騎腳踏車談起 ~陳奇中教授演講投影片
程序控制的第一堂課_從騎腳踏車談起 ~陳奇中教授演講投影片程序控制的第一堂課_從騎腳踏車談起 ~陳奇中教授演講投影片
程序控制的第一堂課_從騎腳踏車談起 ~陳奇中教授演講投影片
 
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
 
認識化工~陳奇中教授演講投影片
認識化工~陳奇中教授演講投影片認識化工~陳奇中教授演講投影片
認識化工~陳奇中教授演講投影片
 
大學經營與治校理念_陳奇中教授金大演講投影片
大學經營與治校理念_陳奇中教授金大演講投影片大學經營與治校理念_陳奇中教授金大演講投影片
大學經營與治校理念_陳奇中教授金大演講投影片
 
蒸餾原理
蒸餾原理蒸餾原理
蒸餾原理
 
創意研發專論:創意規則 ~陳奇中教授演講投影片
創意研發專論:創意規則 ~陳奇中教授演講投影片創意研發專論:創意規則 ~陳奇中教授演講投影片
創意研發專論:創意規則 ~陳奇中教授演講投影片
 
Data Driven Process Optimization Using Real-Coded Genetic Algorithms ~陳奇中教授演講投影片
Data Driven Process Optimization Using Real-Coded Genetic Algorithms ~陳奇中教授演講投影片Data Driven Process Optimization Using Real-Coded Genetic Algorithms ~陳奇中教授演講投影片
Data Driven Process Optimization Using Real-Coded Genetic Algorithms ~陳奇中教授演講投影片
 
MATLAB教學經驗分享~陳奇中教授演講投影片
MATLAB教學經驗分享~陳奇中教授演講投影片MATLAB教學經驗分享~陳奇中教授演講投影片
MATLAB教學經驗分享~陳奇中教授演講投影片
 
程序控制的最後一堂課_ 美好的人生就從今天起 ~陳奇中教授演講投影片
程序控制的最後一堂課_ 美好的人生就從今天起 ~陳奇中教授演講投影片程序控制的最後一堂課_ 美好的人生就從今天起 ~陳奇中教授演講投影片
程序控制的最後一堂課_ 美好的人生就從今天起 ~陳奇中教授演講投影片
 
化工與我_學思紀行~陳奇中教授演講投影片
化工與我_學思紀行~陳奇中教授演講投影片化工與我_學思紀行~陳奇中教授演講投影片
化工與我_學思紀行~陳奇中教授演講投影片
 
matlab simulink مكتبة العناصر المستمرة
  matlab simulink مكتبة العناصر المستمرة  matlab simulink مكتبة العناصر المستمرة
matlab simulink مكتبة العناصر المستمرة
 
IEET工程教育認證經驗分享~陳奇中教授演講投影片
IEET工程教育認證經驗分享~陳奇中教授演講投影片IEET工程教育認證經驗分享~陳奇中教授演講投影片
IEET工程教育認證經驗分享~陳奇中教授演講投影片
 
當mit遇見MIT_波士頓見聞分享~陳奇中教授演講投影片
當mit遇見MIT_波士頓見聞分享~陳奇中教授演講投影片當mit遇見MIT_波士頓見聞分享~陳奇中教授演講投影片
當mit遇見MIT_波士頓見聞分享~陳奇中教授演講投影片
 
Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片
Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片
Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片
 
Ch 06 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 06 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 06 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 06 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 
Ch 03 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 03 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 03 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 03 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 
Ch 04 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 04 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 04 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 04 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 

Similar to Reliability-Based Design Optimization Using a Cell Evolution Method ~陳奇中教授演講投影片

Probabilistic Retrieval
Probabilistic RetrievalProbabilistic Retrieval
Probabilistic Retrieval
otisg
 
Nonparametric Density Estimation
Nonparametric Density EstimationNonparametric Density Estimation
Nonparametric Density Estimationjachno
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slidesCVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slideszukun
 
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...grssieee
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo method
SSA KPI
 
Presentation cm2011
Presentation cm2011Presentation cm2011
Presentation cm2011antigonon
 
Presentation cm2011
Presentation cm2011Presentation cm2011
Presentation cm2011
antigonon
 
CMA-ES with local meta-models
CMA-ES with local meta-modelsCMA-ES with local meta-models
CMA-ES with local meta-modelszyedb
 
Metric Embeddings and Expanders
Metric Embeddings and ExpandersMetric Embeddings and Expanders
Metric Embeddings and Expanders
Grigory Yaroslavtsev
 
Probabilistic Retrieval TFIDF
Probabilistic Retrieval TFIDFProbabilistic Retrieval TFIDF
Probabilistic Retrieval TFIDF
DKALab
 
PIMRC 2012
PIMRC 2012PIMRC 2012
PIMRC 2012
Sudipta Kundu
 
Multidisciplinary Design Optimization of Supersonic Transport Wing Using Surr...
Multidisciplinary Design Optimization of Supersonic Transport Wing Using Surr...Multidisciplinary Design Optimization of Supersonic Transport Wing Using Surr...
Multidisciplinary Design Optimization of Supersonic Transport Wing Using Surr...
Masahiro Kanazaki
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
STAIR Lab, Chiba Institute of Technology
 
Slides2 130201091056-phpapp01
Slides2 130201091056-phpapp01Slides2 130201091056-phpapp01
Slides2 130201091056-phpapp01Deb Roy
 
Bayesian case studies, practical 2
Bayesian case studies, practical 2Bayesian case studies, practical 2
Bayesian case studies, practical 2Robin Ryder
 
Quantization
QuantizationQuantization
Quantizationwtyru1989
 
Global illumination techniques for the computation of hight quality images in...
Global illumination techniques for the computation of hight quality images in...Global illumination techniques for the computation of hight quality images in...
Global illumination techniques for the computation of hight quality images in...
Frederic Perez
 

Similar to Reliability-Based Design Optimization Using a Cell Evolution Method ~陳奇中教授演講投影片 (20)

Probabilistic Retrieval
Probabilistic RetrievalProbabilistic Retrieval
Probabilistic Retrieval
 
Nonparametric Density Estimation
Nonparametric Density EstimationNonparametric Density Estimation
Nonparametric Density Estimation
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slidesCVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
 
YSC 2013
YSC 2013YSC 2013
YSC 2013
 
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo method
 
Presentation cm2011
Presentation cm2011Presentation cm2011
Presentation cm2011
 
Presentation cm2011
Presentation cm2011Presentation cm2011
Presentation cm2011
 
CMA-ES with local meta-models
CMA-ES with local meta-modelsCMA-ES with local meta-models
CMA-ES with local meta-models
 
Metric Embeddings and Expanders
Metric Embeddings and ExpandersMetric Embeddings and Expanders
Metric Embeddings and Expanders
 
Pr1
Pr1Pr1
Pr1
 
Probabilistic Retrieval TFIDF
Probabilistic Retrieval TFIDFProbabilistic Retrieval TFIDF
Probabilistic Retrieval TFIDF
 
PIMRC 2012
PIMRC 2012PIMRC 2012
PIMRC 2012
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
Multidisciplinary Design Optimization of Supersonic Transport Wing Using Surr...
Multidisciplinary Design Optimization of Supersonic Transport Wing Using Surr...Multidisciplinary Design Optimization of Supersonic Transport Wing Using Surr...
Multidisciplinary Design Optimization of Supersonic Transport Wing Using Surr...
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
 
Slides2 130201091056-phpapp01
Slides2 130201091056-phpapp01Slides2 130201091056-phpapp01
Slides2 130201091056-phpapp01
 
Bayesian case studies, practical 2
Bayesian case studies, practical 2Bayesian case studies, practical 2
Bayesian case studies, practical 2
 
Quantization
QuantizationQuantization
Quantization
 
Global illumination techniques for the computation of hight quality images in...
Global illumination techniques for the computation of hight quality images in...Global illumination techniques for the computation of hight quality images in...
Global illumination techniques for the computation of hight quality images in...
 

More from Chyi-Tsong Chen

[E-book at Google Play Books] Exercises Solution Manual for MATLAB Applicatio...
[E-book at Google Play Books] Exercises Solution Manual for MATLAB Applicatio...[E-book at Google Play Books] Exercises Solution Manual for MATLAB Applicatio...
[E-book at Google Play Books] Exercises Solution Manual for MATLAB Applicatio...
Chyi-Tsong Chen
 
[電子書-Google Play Books ] MATLAB在化工上之應用習題解答自學手冊 (2022).pdf
[電子書-Google Play Books ] MATLAB在化工上之應用習題解答自學手冊 (2022).pdf[電子書-Google Play Books ] MATLAB在化工上之應用習題解答自學手冊 (2022).pdf
[電子書-Google Play Books ] MATLAB在化工上之應用習題解答自學手冊 (2022).pdf
Chyi-Tsong Chen
 
[電子書-Google Play Books ] MATLAB程式設計與工程應用習題解答自學手冊 (2022).pdf
[電子書-Google Play Books ] MATLAB程式設計與工程應用習題解答自學手冊 (2022).pdf[電子書-Google Play Books ] MATLAB程式設計與工程應用習題解答自學手冊 (2022).pdf
[電子書-Google Play Books ] MATLAB程式設計與工程應用習題解答自學手冊 (2022).pdf
Chyi-Tsong Chen
 
[電子書-Google Play Books] MATLAB程式設計與工程應用 2022 目錄表.pdf
[電子書-Google Play Books] MATLAB程式設計與工程應用 2022 目錄表.pdf[電子書-Google Play Books] MATLAB程式設計與工程應用 2022 目錄表.pdf
[電子書-Google Play Books] MATLAB程式設計與工程應用 2022 目錄表.pdf
Chyi-Tsong Chen
 
[電子書-Google Play Books] MATLAB在化工上之應用 (2022修訂版) 目錄表.pdf
[電子書-Google Play Books] MATLAB在化工上之應用 (2022修訂版) 目錄表.pdf[電子書-Google Play Books] MATLAB在化工上之應用 (2022修訂版) 目錄表.pdf
[電子書-Google Play Books] MATLAB在化工上之應用 (2022修訂版) 目錄表.pdf
Chyi-Tsong Chen
 
[E-book at Google Play Books] MATLAB Applications in Chemical Engineering (20...
[E-book at Google Play Books] MATLAB Applications in Chemical Engineering (20...[E-book at Google Play Books] MATLAB Applications in Chemical Engineering (20...
[E-book at Google Play Books] MATLAB Applications in Chemical Engineering (20...
Chyi-Tsong Chen
 
Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Chyi-Tsong Chen
 
Intelligent Process Control Using Neural Fuzzy Techniques ~陳奇中教授演講投影片
Intelligent Process Control Using Neural Fuzzy Techniques ~陳奇中教授演講投影片Intelligent Process Control Using Neural Fuzzy Techniques ~陳奇中教授演講投影片
Intelligent Process Control Using Neural Fuzzy Techniques ~陳奇中教授演講投影片Chyi-Tsong Chen
 

More from Chyi-Tsong Chen (8)

[E-book at Google Play Books] Exercises Solution Manual for MATLAB Applicatio...
[E-book at Google Play Books] Exercises Solution Manual for MATLAB Applicatio...[E-book at Google Play Books] Exercises Solution Manual for MATLAB Applicatio...
[E-book at Google Play Books] Exercises Solution Manual for MATLAB Applicatio...
 
[電子書-Google Play Books ] MATLAB在化工上之應用習題解答自學手冊 (2022).pdf
[電子書-Google Play Books ] MATLAB在化工上之應用習題解答自學手冊 (2022).pdf[電子書-Google Play Books ] MATLAB在化工上之應用習題解答自學手冊 (2022).pdf
[電子書-Google Play Books ] MATLAB在化工上之應用習題解答自學手冊 (2022).pdf
 
[電子書-Google Play Books ] MATLAB程式設計與工程應用習題解答自學手冊 (2022).pdf
[電子書-Google Play Books ] MATLAB程式設計與工程應用習題解答自學手冊 (2022).pdf[電子書-Google Play Books ] MATLAB程式設計與工程應用習題解答自學手冊 (2022).pdf
[電子書-Google Play Books ] MATLAB程式設計與工程應用習題解答自學手冊 (2022).pdf
 
[電子書-Google Play Books] MATLAB程式設計與工程應用 2022 目錄表.pdf
[電子書-Google Play Books] MATLAB程式設計與工程應用 2022 目錄表.pdf[電子書-Google Play Books] MATLAB程式設計與工程應用 2022 目錄表.pdf
[電子書-Google Play Books] MATLAB程式設計與工程應用 2022 目錄表.pdf
 
[電子書-Google Play Books] MATLAB在化工上之應用 (2022修訂版) 目錄表.pdf
[電子書-Google Play Books] MATLAB在化工上之應用 (2022修訂版) 目錄表.pdf[電子書-Google Play Books] MATLAB在化工上之應用 (2022修訂版) 目錄表.pdf
[電子書-Google Play Books] MATLAB在化工上之應用 (2022修訂版) 目錄表.pdf
 
[E-book at Google Play Books] MATLAB Applications in Chemical Engineering (20...
[E-book at Google Play Books] MATLAB Applications in Chemical Engineering (20...[E-book at Google Play Books] MATLAB Applications in Chemical Engineering (20...
[E-book at Google Play Books] MATLAB Applications in Chemical Engineering (20...
 
Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 
Intelligent Process Control Using Neural Fuzzy Techniques ~陳奇中教授演講投影片
Intelligent Process Control Using Neural Fuzzy Techniques ~陳奇中教授演講投影片Intelligent Process Control Using Neural Fuzzy Techniques ~陳奇中教授演講投影片
Intelligent Process Control Using Neural Fuzzy Techniques ~陳奇中教授演講投影片
 

Recently uploaded

State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
CatarinaPereira64715
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 

Recently uploaded (20)

State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 

Reliability-Based Design Optimization Using a Cell Evolution Method ~陳奇中教授演講投影片

  • 1. Reliability-Based Design Optimization via a Cell Evolution Method 陳奇中 ctchen@fcu.edu.tw 逢甲大學化工系
  • 2. Outline 1. Introduction 2. Reliability-Based Design Optimization (RBDO) 2.1 Problem formulation 2.2 Traditional solution methods for RBDO - Double Loop - Single Loop 3. A Cell Evolution Method for RBDO 3.1 Single objective optimization 3.2 Multi-objective optimization 4. Design Examples 5. Conclusions
  • 3. Introduction Deterministic Design Optimization - no uncertainties involved in the design m in f (d , p ) d s.t. g i (d , p ) 0, i 1,  , n1 h j (d , p ) 0, j 1,  , n 2 L U d d d w h ere T d d1 , d 2 , , d m : d ecisio n variab les T p p1 , p 2 ,  , p l : p aram eters
  • 4. Uncertainties ? Uncertainty is everywhere.  Sources of uncertainties - modeling errors - physical parameter variations - change of environments - unknown dynamics … uncertainties Deterministic design Not reliable
  • 5. Optimal Design Under Uncertainties m in f ( x, d , p ) x,d s.t. g i ( x, d , p ) 0, i 1,  , n1 h j ( x, d , p ) 0, j 1,  , n 2 L U L U x x x , d d d w here d d1 , d 2 , , d m : determ inist ic d ecision variable x x1 , x 2 ,  , x n : u n certain decision variable p p1 , p 2 ,  , p l : u n certain param eters
  • 6. Deterministic solution vs. Reliable solution Stochastic constraint Reliable solution Deterministic optimum * Deb et al. (2009)
  • 7. Stochastic Programming frameworks - Here and Now (1/2) Optimal solution Diwekar (2002)
  • 8. Stochastic Programming frameworks - Wait and See (2/2) Distribution of optimal design Objective function and constraints (Scenario) Diwekar (2002)
  • 9. Reliability-Based Design Optimization (RBDO) m in f (d , μ x , μ p ) d, μx s.t. P r G i (d , x , p ) 0 Ri , i 1, ..., n1 g j (d , μ x , μ p ) 0, j 1, ..., n 2 L U L U d d d , μx μx μx where x n R , x ~ N μx ,σx , q p R , p ~ N μp ,σp , Pr( ) Probability function Ri Design reliability
  • 10. The failure probability and reliability index Pr Gi (d, x , p ) 0  x ,p (x, p ) dxdp Gi ( d , x ,p ) 0 x ,p (x, p ) joint probability density function Reliability level Ri 1 Pi Pi Pr G i ( d , x , p ) 0 Failure probability First-order approximation Pi i Reliability index i Standard normal cumulative dist. Func.
  • 11. Traditional solution methods for RBDO (1/2) - Double-loop method Reliability analysis loop Optimization loop Reliability analysis loop Reliability analysis loop Shan and Wang (2008)
  • 12. Reliability analysis loop (inner loop) (1/2) A. RIA (reliability index approach) Gj > 0 m in U MPP U s.t. Gj U 0 * N O T E : fo r reliab ility , U j NOTE: MPP denotes the “most probable point.”
  • 13. Reliability analysis loop (inner loop) (2/2) B. PMA (performance measure approach) Gj > 0 m in G j ( U ) s.t. U MPP j w here 1 j Rj " reliability index " standard norm al density function U : U -space , ~ N (0, 1) * N O T E : fo r reliab ility , G i U 0.
  • 14. Traditional solution methods for RBDO (2/2) - Single-loop method - convert inner reliability loop by using a deterministic optimization problem KKT optimality conditions m in f (d , μ x , μ p ) d ,μ x s.t. g i (d , x i , p i ) 0, i 1, 2,  , n r x Gi xi x i 2 2 x Gi p Gi Gi approximation r p pi p i 2 2 x Gi p Gi L U d d d L U μX μX μX
  • 15. Comparisons of RBDO Solution methods Method Advantage Disadvantage Double-loop accuracy long computation time Single-loop computationally fast less accuracy Motivation: accuracy and computational efficiency? New solution method ?
  • 16. PMA-based RBDO problem m in f (d , μ x , μ p ) d, μx s.t. Gj > 0 * 1 Gi FG i i 0, i 1, ..., n1 MPP g j (d , μ x , μ p ) 0, j 1, ..., n 2 L U L U d d d , μx μx μx where FG i cumulative distribution function Calculated from PMA reliability optimization problem * Gi
  • 17. Reliability-test cells - Determination of MPPs x2 G3 =0 mpp 23 mpp 21 G1 =0 mpp33 mpp 22 mpp32 mpp31 mpp13 mpp11 mpp12 G2 =0 x1
  • 18. A cell generation method --- sampling method Step 1: Sobol quasi-random sequence (Sobol, 1967; Bratley and Fox, 1988) Step 2: Spherical parameterization method (Watson, 1983; Zayer et al., 2006)
  • 19. Some template reliability-test cells (1/2) 2D cells in U-space β  1, N 100 β  1, N 1000 β  3, N 100 β  3, N 1000
  • 20. Some template reliability-test cells (2/2) 3D cells in U-space  β  1, N 10000 β 1, N 1000 β  3, N 1000 β  3, N 10000
  • 21. A cell evolution Start Initialize cell population algorithm k = k+1 Yes Std.( F(Ɵ ) ≤ ) ε ? No Alleviate premature Cell generation stagnation RS Operation + A real-coded genetic algorithm No For each paired parents, r > λ ? (Chuang and Chen, 2011) Yes x2 DRM Operation DBX Operation G3 =0 mpp 23 Replacement Operation mpp 21 G1 =0 mpp33 mpp 22 mpp32 mpp31 mpp13 No Stop criteria met? mpp11 mpp12 Yes G2 =0 x1 Stop
  • 22. What is genetic algorithm (GA)?  GA is a particular class of evolutionary algorithm Initially developed by Prof. John Holland "Adaptation in natural and artificial systems“, University of Michigan press, 1975 Based on Darwin’s theory of evolution “Natural Selection” & “Survival of the fittest” 物競天擇 適者生存 不適者淘汰  Imitate the mechanism of biological evolution - Crossover - Mutation - Reprodution
  • 23. Evolution in biology (1/3)  Organisms produce a number of offspring similar to themselves but can have variations due to: (a) Crossover (Sexual reproduction ) Parents offspring IMG from http://www.tulane.edu/~wiser/protozoology/notes/images/ciliate.gif Ref. :http://www.cas.mcmaster.ca/~cs777/presentations/3_GO_Olesya_Genetic_Algorithms.pdf
  • 24. Evolution in biology (2/3) (b) Mutations (Random changes in the DNA sequence) Before After IMG from http://offers.genetree.com/landing/images/mutation.png IMG from http://www.tulane.edu/~wiser/protozoology/notes/images/ciliate.gif Ref. :http://www.cas.mcmaster.ca/~cs777/presentations/3_GO_Olesya_Genetic_Algorithms.pdf
  • 25. Evolution in biology (3/3)  Some offspring survive, and produce next generations, and some don’t: Ugobe Inc. Pelo http://www.ugobe.com/Home.aspx Ref. :http://www.cas.mcmaster.ca/~cs777/presentations/3_GO_Olesya_Genetic_Algorithms.pdf
  • 26. Traditional GA - binary-coded  All variables of interest must be encoded as binary digits (genes) forming a string (chromosome). Gene – a single encoding of part of the solution space. Chromosome – a string of genes that represent a solution. 1 gene 1 1 0 1 0 chromosome IMG from http://static.howstuffworks.com/gif/cell-dna.jpg
  • 27. Real-coded GA (RCGA)  All genes in chromosome are real numbers - suitable for most systems. - genes are directly real values during genetic operations. - the length of chromosomes is shorter than that in binary-coded, so it can be easily performed. 1.1 gene 1.1 0.1 15 10 0.12 chromosome IMG from http://static.howstuffworks.com/gif/cell-dna.jpg
  • 28. The cell evolution method - Survival and elimination of cells according to their fitness
  • 29. Illustrative examples - Example 1 (Liang et al., 2004) Results Comparison Methods DLP/PMAa Single loopb The Proposed m in f 1 2 Design variables 1 3.4391 3.4391 3.4391 Pr G i ( x ) 0 Ri , i 1, 2 , 3 2 3.2866 3.2864 3.2866 2 x1 x 2 G1 x 1 20 Objective function 2 2 x1 x2 5 x1 x 2 12 G2 x 1 30 120 f μ 6.7257 6.7255 6.7257 80 G3 x 1 2 Constraints x1 8 x2 5 G1( x ) 0 0 0 0 i 10, i 1, 2 G2(x) 0 0 0 1 2 0.3, G3(x ) -0.5 -0.5097 -0.5096 1 j Rj 3, j 1, 2, 3 CPU time (s) 138 8.89 11.76 aResults are from Du and Chen [8]. bResults are from Liang et al. [7].
  • 30. MPP determination using different sampling numbers MPP points Sampling Number MPP1 MPP2 MPP3 50 (2.6173, 2.9168) (3.7578, 2.4438) (4.0812, 3.9152) 100 (2.6168, 2.9179) (3.7573, 2.4446) (4.0807, 3.9161) 500 (2.6179, 2.9182) (3.7581, 2.4450) (4.0819, 3.9165) 1000 (2.6179, 2.9182) (3.7581, 2.4450) (4.0819, 3.9165) 5000 (2.6179, 2.9182) (3.7581, 2.4450) (4.0819, 3.9165) 10000 (2.6179, 2.9182) (3.7581, 2.4450) (4.0819, 3.9165)
  • 31. Obtained solution cells with different reliability indices (0,1,2,3) Example 4.1 10 9 8 7 6 2 5 4 3 2 1 0 0 2 4 6 8 10 1
  • 32. Illustrative examples - Example 2 Reliability index, β 1 2 m in f 1 0 (0%) 7.7883 1.7928 0.5 (69.146%) 7.4476 2.1224 Pr Gi (x) 0 Ri , i 1, 2 , 3 2 x x21 1 (84.134%) 7.1146 2.4269 G1 x 1 20 2 2 x1 x2 5 x1 x2 12 G2 x 1 1.5 (93.319%) 3.2346 2.6961 30 120 G3 x 1 2 80 2 (97.725%) 3.2949 2.8974 x 1 8 x2 5 2.5 (99.379%) 3.3634 3.0941 3 (99.875%) 3.4391 3.2866 0 i 10, i 1, 2 1 2 0.3, 1 j Rj 3, j 1, 2, 3
  • 33. Solution cells with different reliability indices (0, 0.5, 1, 1.5, 3) Example 4.2 10 9 8 7 6 2 5 4 3 2 1 0 0 2 4 6 8 10 1
  • 34. The dramatic change of the reliable solution with respect to reliability indices 8 6 Reliability index 0 (0%) 7 0.5 (69.146%) 4 1 (84.134%) 1.5 (93.319%) 6 μ2 μ1 2 (97.725%) 5 2.5 (99.379%) 2 3 (99.875%) 4 4 (99.996%) 5 (99.999%) 3 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 β
  • 35. Multi-objective reliability-based design optimization m in f1 d , μ x , μ p , f 2 d , μ x , μ p ,  , f k d , μ x , μ p s.t. Pr ( G i ( d , x , p ) 0) Ri , i 1, 2,  , n1 g j (d , x , p ) 0, j 1, 2,  , n 2 L U n d d d x R , x ~ N μx ,σx , L U μx μx μx p q R , p ~ N μp ,σp ,
  • 36. Concept of multi-objective optimization 90% Comfort 40% 10 k Cost (US$) 100 k
  • 37. Concept of Pareto-optimal solutions: non-dominated (Goldberg, 1989) Feasible objective space B dominate A A C dominate A B, C non-dominated B D, E non-dominated f2 Second level C E dominate A, B, C D D dominate A, B E Pareto-optimal front f1
  • 38. How does multi-objective cell evolution algorithm work? Non-dominated Crowding distance New Parents sorting sorting for each front Population 1 2 Front 1 Front 1 Front 1 RCGA  Front 2 Front 2 Front 2 N N CAT Front 3 Front 3 Front 3 Offspring 1 2 Rejected  N
  • 39. An illustrative example - Multi-objective RBDO (Deb et al., 2009) m in f 1 x1 1 x2 m in f 2 x1 s.t. Pr ( G i ( d , x , p ) 0) Ri , i 1, 2 G1 x2 9 x1 6 G2 x2 9 x1 1 0.1 1 1,0 2 5 0.03 , 1.28 , 2.0 , 3.0
  • 40. Pareto front for the RBDO problem 10 = 0 = 1.28 9 = 2 = 3 8 7 6 5 2 f 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 f 1
  • 41. Solutions for the RBDO problem 2.5 = 0 = 3 = 1.28 = 2 2 1.5 2 X 1 0.5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 X 1
  • 42. Reliability-based design optimization Applications in Chemical Engineering 1. Steam pipe design 2. Design of a bio-process 3. Heat sink design
  • 43. Steam pipe design (Ho and Chan, 2011) Min. cost 2 2 ( r2 r1 ) m in f 4 s.t. Surrounding temperature T Pr G r1 , r2 0 Rj T2 h eq r1 , r2 , K 0 0 .0 4 r1 0 .0 6 5 m , 0 .0 7 5 r2 0 .1 2 m T1 2 K T1 T2 4 4 r1 h eq : h 2 r2 T2 T 2 r2 C T 2 T ln r2 / r1 Steam K h NuD 2 r2 2 r2 1/ 6 0 .3 8 7 R a D NuD 0 .6 8 / 27 9 /16 1 0 .5 5 9 / 3 g B (T 2 T )( 2 r2 ) RaD v 2 8 B , C 5 .6 7 1 0 T2 T
  • 44. Reliable solutions -3 x 10 9.8 9.7 9.6 9.5 Optimal function value 9.4 9.3 9.2 9.1 9 8.9 0 0.5 1 1.5 2 2.5 3 Reliability
  • 45. Design of a bio-process (Holland, 1975) m ax P f m ax P f / t B S f s.t. Pr ( G i ( d , x, p ) 0) Ri , i 1~ 4 G1 : 5 tB 15 G 2 : 20 S0 50 C ells G lu cos e O xygen M ore cells G 3 : 50 K La 300 C ells G lu cos e O xygen G luconolactone G 4 : 0.0 5 X0 1.0 G luconolactone W ater G luconic A cid
  • 47. Design of cylindrical heat sinks - in-line (Khan et al., 2004) Thermal analysis 1 R hs Rm R fin s R fin h fin A fin fin tb Rm tanh( m H ) kA fin 1 mH R fin s 1 N 1 R bp Nussult Number correlation Rc R fin Rbp hbp Abp h fin D 1 4 h fin N u fin 1/ 2 C1 R e D P r 1/ 3 Rc m kf h c Ac kD 0.785 0.212 [0.2 exp( 0.55S T )]S T S L C1 0.5 (S T 1) Friction factor correlation 4 5 .7 8 f K 1{0 .2 3 3 (S T 1) 1 .1 ReD } Mass balance ST 1 0 .0 5 5 3 K1 1 .0 0 9 ( ) 1 .0 9 / R e D  m U app N T S T HD S L 1
  • 48. Design of cylindrical heat sinks - staggered (Khan et al., 2004) Thermal analysis 1 R fin R hs Rm R fin s h fin A fin fin tb tan h ( m H ) Rm fin kA mH 1 1 R fin s Rbp N 1 hb p Ab p Rc R fin Rbp 4 h fin m 1 kD Rc h c Ac Nussult Number correlation Friction factor correlation Mass balance h fin D 1/ 2 1/ 3 N u fin C1 R e D P r 1.29 kf 13.1/ S T 0.68 / S T f K 1 (378.6 / S T ) / ReD 0 .5 9 1 0 .0 5 3  m U app N T S T HD 0.61S T S L S L 0.0807 C1 0 .5 K1 1.175( 0.3124 ) 0.5 R e D (S T 1) (1 2 exp( 1.09 S T ) ) S T Re D
  • 49. Heat sink performance variations under change of environmental temperature (in-line arrangement) -3 For in-line H=0.01m U app=2 m/s N=7x7 x 10 x 10 -3 For in-line H=0.01m D=0.001m N=7x7 2.5 5 Tamb=300 K Tamb=300 K Tamb=320 K Tamb=320 K Tamb=340 K 4.5 Tamb=340 K 4 2 Sgen (W/K) 3.5 Sgen (W/K) 3 1.5 2.5 2 1 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 1.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 D (m) x 10 -3 U (m/s) app
  • 50. Heat sink performance variations under change of environmental temperature (staggered arrangement) -3 For staggered H=0.01m U app=2 m/s N=7x7 x 10 x 10 -3 For staggered H=0.01m D=0.001 m N=7x7 3.5 5 Tamb=300 K Tamb=300K Tamb=320 K Tamb=320K Tamb=340 K Tamb=340K 4.5 3 4 2.5 Sgen (W/K) Sgen (W/K) 3.5 2 3 1.5 2.5 1 2 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 D (m) x 10 -3 U app (m/s)
  • 51. Heat sink performance variations under un-uniform heat transfer between fins x 10 -3 For staggered H=0.006m N=5x5 x 10 -3 For in-line H=0.006m N=5x5 6.5 8 Uapp=2 Uapp=2 Uapp=4 U =4 6 app Uapp=6 Uapp=6 7 5.5 5 6 Sgen (W/K) 4.5 Sgen (W/K) 5 4 4 3.5 3 3 2.5 2 2 160 180 200 220 240 260 280 300 320 340 200 250 300 350 400 450 熱傳係數 NuDfin 熱 傳 係 數 NuDfin in-line staggered
  • 52. RBDO problem formulation Single objective Q  m P m in  S gen ( 2 ) Rhs Entropy generation rate T am b T am b s.t. Pr Gi X 0 Ri , i 1~ 9 6 H (m m ) 12 1 D (m m ) 3 1 U app ( m / s ) 6 5 N 20 0.1 Cell population size 100、max. gen.100、 Sampling no. 10000
  • 53. Reliable solutions (in-line) β 0 0.5 1 1.5 2 2.5 3 3.5 N 18 18 13 11 10 8 7 6 H(m) 0.0080 0.0072 0.0091 0.0097 0.0096 0.0119 0.0120 0.0120 D(m) 0.0010 0.0010 0.0013 0.0015 0.0016 0.0020 0.0022 0.0026 Uapp 1 1 1.1791 1.5281 1.8884 2.0699 2.4012 2.7829 (m/s) Sgen(W/K) 0.0535 0.0555 0.0578 0.0696 0.0727 0.0830 0.0929 0.1060 X 100
  • 54. Reliable solutions (staggered) β 0 0.5 1 1.5 2 2.5 3 3.5 N 17 17 17 17 13 11 9 9 H(m) 0.0080 0.0076 0.0073 0.0070 0.0091 0.0105 0.0120 0.0120 D(m) 0.0010 0.0010 0.0010 0.0010 0.0013 0.0016 0.0019 0.0019 Uapp 1 1 1 1 1 1 1 1.0824 (m/s) Sgen(W/K) 0.0472 0.0479 0.0480 0.0495 0.0532 0.0567 0.0629 0.0646 X 100
  • 55. Optimal entropy generation rate with respect to reliability indices -4 -4 x 10 x 10 12 6.5 11 6 10 9 Sgen (W/K) Sgen (W/K) 5.5 8 7 5 6 5 4.5 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5 in-line staggered
  • 56. Heat dispersion comparisons (in-line; air velocity 0.7m/s) Deterministic design Reliable design with β=3 (322.2 < T< 329.9) (314.5 < T< 318.1)
  • 57. Heat dispersion comparisons (staggered; air velocity 0.7m/s) Deterministic design Reliable design with β=3 (321.0 < T< 323.6) (312.3 < T< 315.9)
  • 58. RBDO problem formulation Multi-objective  Q 2  m P S gen ( ) Rhs Entropy generation rate m in T am b T am b C ost V olu m e $ Cost s.t. Pr G j X 0 Rj , j 1~ 9 6 H (m m ) 12 1 D (m m ) 3 1 U app ( m / s ) 6 5 N 20 0.1 Cell population size 100、max. gen.100、 Sampling no. 10000
  • 59. Obtained Pareto front of the reliable design (in-line) 1.4 Deterministic = 1.28 1.35 = 3 1.3 1.25 1.2 Cost (NTD) 1.15 1.1 1.05 1 0.95 0.9 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 Sgen (W /K)
  • 60. Obtained Pareto front of the reliable design (staggered) 2.2 D eterministic = 1.28 = 3 2 1.8 1.6 Cost (NTD) 1.4 1.2 1 0.8 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 Sgen (W /K)
  • 61. Results comparison in-line Deterministic design Reliable design (β=3) Solutions min Sgen min. cost min Sgen min. cost Sgen(W/K) 0.0040 0.0363 0.0101 0.0396 Cost (NTD) 1.31 0.93 1.05 0.90 staggered Deterministic design Reliable design (β=3) Solutions min Sgen min. cost min Sgen min. cost Sgen(W/K) 0.0018 0.0078 0.0035 0.0423 Cost (NTD) 2.07 1.09 1.49 0.90
  • 62. Conclusions  Single- and multi-objective cell evolution methods have been developed for reliability- based design optimization.  Simulation results reveal that the proposed method is able to achieve accurate solution for RBDO without sacrificing computational efficiency.  Application examples indicate the proposed cell evolution method is a promising approach to chemical process design under uncertainties.