Class Review (3/13)

    Jong su, Kim
Velocity Gradient Tensor


         𝜕𝑢 𝑖              1   𝜕𝑢 𝑖   𝜕𝑢 𝑗       1     𝜕𝑢 𝑖   𝜕𝑢 𝑗
              =                     +        +   2     𝜕𝑥 𝑗
                                                            −
                                                              𝜕𝑥 𝑖
         𝜕𝑥 𝑗              2   𝜕𝑥 𝑗   𝜕𝑥 𝑖


                               𝑺 𝒊𝒋                        𝛀 𝒊𝒋

                           Symmetric                 Antisymmetric
                  The rate of deformation        The rate of rotation
𝑺 𝒊𝒋                                         𝛀 𝒊𝒋

       𝑛    𝑠      𝑠              Connected with dual vector
       𝑠    𝑛      𝑠                                                                  𝐴
                                   1                                        𝜕𝑣 𝑘
       𝑠    𝑠      𝑛   def. Ω 𝑗𝑖 = 2 𝜖 𝑖𝑗𝑘 𝑤 𝑘 ,            𝑤 𝑖 = 𝜖 𝑖𝑗𝑘
                                                                            𝜕𝑥 𝑗
                                                   𝐴
                                           𝜕𝑣 𝑘
s : Shear Strain             𝑤 𝑖 = 𝜖 𝑖𝑗𝑘               = 𝜖 𝑖𝑗𝑘 Ω 𝑗𝑘
                                           𝜕𝑥 𝑗
n : Normal Strain
                       𝜖 𝑖𝑙𝑚 𝑤 𝑖 = 𝜖 𝑖𝑙𝑚 𝜖 𝑖𝑗𝑘 Ω 𝑗𝑘 = 𝛿 𝑖𝑗 𝛿    𝑚𝑘    − 𝛿 𝑙𝑘 𝛿   𝑚𝑗   Ωjk
                                                   = Ω 𝑙𝑚 − Ω          𝑚𝑙

                                                   = 2Ω 𝑙𝑚

                                                   1
                                       Ω 𝑙𝑚 =           𝜖 𝑖𝑙𝑚 𝑤 𝑖
                                                   2
Irrotational & Strainy
                𝑣1 = 𝑥1 ,                    𝑣2 = −𝑥2                                    𝑣1 = 𝑥2 ,            𝑣2 = 𝑥1

                1 0                                       0   0                           0 1                          0       0
     𝑆 𝑖𝑗 =          ,                        Ω 𝑖𝑗 =                            𝑆 𝑖𝑗 =        ,               Ω 𝑖𝑗 =
                0 −1                                      0   0                           1 0                          0       0
                            40
                                                                                                     3
                            30

                            20                                                                       2

                            10
                                                                                                     1
                                0
-3         -2         -1            0            1        2       3
                           -10                                                                       0
                                                                                -3       -2   -1          0      1         2       3
                           -20
                                                                                                     -1
                           -30

                           -40                                                                       -2
                                        40
                                                                                                     -3
                                        30

                                        20

                                        10
                                                                          Just rotating coordinate
                                         0                                The rate of deformation is recalculated
      -3         -2        -1                0       1        2       3
                                    -10
                                                                          The rate of rotation is same.
                                    -20

                                    -30

                                    -40
Simple Shear flow


                                 1                       1
                             0                      0
                    𝑆 𝑖𝑗 =       2 ,    Ω 𝑖𝑗 =           2
                             1                       1
                                 0               −       0
                             2                       2


                             Rotational & Strainy
𝑣 𝜃 = 𝐶𝑟,        𝑣𝑟 = 0                             𝑣 𝜃 = 𝐶/𝑟,    𝑣𝑟 = 0

                    Solid body rotation




Rotational & Not Strainy                              Irrootational & Strainy

     𝜕                                                            𝜔 = 0,
  𝜔=     𝑟𝐶𝑟 = 2C ≠ 0,                                                 𝐶
     𝜕𝑟                                                    𝜖 𝑟𝜃   =− 2≠0
        𝜖 𝑟𝜃 = 0                                                      𝑟


                1     𝜕𝑟𝑣 𝜃   𝜕𝑣 𝑟                 1    𝜕 𝑣𝜃   1 𝜕𝑣 𝑟
          𝜔=                −      ,      𝜖 𝑟𝜃 =     𝑟⋅      +
                𝑟      𝜕𝑟     𝜕𝜃                   2    𝜕𝑟 𝑟   𝑟 𝜕𝜃

Stress Tensor & Rotation Tensor

  • 1.
  • 2.
    Velocity Gradient Tensor 𝜕𝑢 𝑖 1 𝜕𝑢 𝑖 𝜕𝑢 𝑗 1 𝜕𝑢 𝑖 𝜕𝑢 𝑗 = + + 2 𝜕𝑥 𝑗 − 𝜕𝑥 𝑖 𝜕𝑥 𝑗 2 𝜕𝑥 𝑗 𝜕𝑥 𝑖 𝑺 𝒊𝒋 𝛀 𝒊𝒋 Symmetric Antisymmetric The rate of deformation The rate of rotation
  • 3.
    𝑺 𝒊𝒋 𝛀 𝒊𝒋 𝑛 𝑠 𝑠 Connected with dual vector 𝑠 𝑛 𝑠 𝐴 1 𝜕𝑣 𝑘 𝑠 𝑠 𝑛 def. Ω 𝑗𝑖 = 2 𝜖 𝑖𝑗𝑘 𝑤 𝑘 , 𝑤 𝑖 = 𝜖 𝑖𝑗𝑘 𝜕𝑥 𝑗 𝐴 𝜕𝑣 𝑘 s : Shear Strain 𝑤 𝑖 = 𝜖 𝑖𝑗𝑘 = 𝜖 𝑖𝑗𝑘 Ω 𝑗𝑘 𝜕𝑥 𝑗 n : Normal Strain 𝜖 𝑖𝑙𝑚 𝑤 𝑖 = 𝜖 𝑖𝑙𝑚 𝜖 𝑖𝑗𝑘 Ω 𝑗𝑘 = 𝛿 𝑖𝑗 𝛿 𝑚𝑘 − 𝛿 𝑙𝑘 𝛿 𝑚𝑗 Ωjk = Ω 𝑙𝑚 − Ω 𝑚𝑙 = 2Ω 𝑙𝑚 1 Ω 𝑙𝑚 = 𝜖 𝑖𝑙𝑚 𝑤 𝑖 2
  • 4.
    Irrotational & Strainy 𝑣1 = 𝑥1 , 𝑣2 = −𝑥2 𝑣1 = 𝑥2 , 𝑣2 = 𝑥1 1 0 0 0 0 1 0 0 𝑆 𝑖𝑗 = , Ω 𝑖𝑗 = 𝑆 𝑖𝑗 = , Ω 𝑖𝑗 = 0 −1 0 0 1 0 0 0 40 3 30 20 2 10 1 0 -3 -2 -1 0 1 2 3 -10 0 -3 -2 -1 0 1 2 3 -20 -1 -30 -40 -2 40 -3 30 20 10 Just rotating coordinate 0 The rate of deformation is recalculated -3 -2 -1 0 1 2 3 -10 The rate of rotation is same. -20 -30 -40
  • 5.
    Simple Shear flow 1 1 0 0 𝑆 𝑖𝑗 = 2 , Ω 𝑖𝑗 = 2 1 1 0 − 0 2 2 Rotational & Strainy
  • 6.
    𝑣 𝜃 =𝐶𝑟, 𝑣𝑟 = 0 𝑣 𝜃 = 𝐶/𝑟, 𝑣𝑟 = 0 Solid body rotation Rotational & Not Strainy Irrootational & Strainy 𝜕 𝜔 = 0, 𝜔= 𝑟𝐶𝑟 = 2C ≠ 0, 𝐶 𝜕𝑟 𝜖 𝑟𝜃 =− 2≠0 𝜖 𝑟𝜃 = 0 𝑟 1 𝜕𝑟𝑣 𝜃 𝜕𝑣 𝑟 1 𝜕 𝑣𝜃 1 𝜕𝑣 𝑟 𝜔= − , 𝜖 𝑟𝜃 = 𝑟⋅ + 𝑟 𝜕𝑟 𝜕𝜃 2 𝜕𝑟 𝑟 𝑟 𝜕𝜃