SlideShare a Scribd company logo
ENGINEERING MECHANICS
Unit – V
Rigid Body Dynamics
by
S.Thanga Kasi Rajan
Assistant Professor
Department of Mechanical Engineering
Kamaraj College of Engineering & Technology,
Virudhunagar – 626001.
Tamil Nadu, India
Email : stkrajan@gmail.com
Kinematics of Rigid Bodies
A rigid body has size that is not negligible and does not deform
(distance between two points on body is constant). (Idealisation)
Rigid body motion involves translation and/or rotation
Types of Rigid Body Plane Motion
Translation: - No rotation of any line in the body
- All points in body have same velocity and acceleration
- No relative motion between any two particles
Rectilinear translation
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 2
Translation
Every line segment on the body remains parallel to its original direction
during the motion
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 3
Fixed-axis rotation:
- All points move in circular paths about axis of rotation
Curvilinear translation
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 4
Rotation about fixed axis
All particles of the body move along circular paths
except those which lie on the axis of rotation
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 5
General plane motion
Combination of translation and rotation
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 6
General plane motion
- Both translation and rotation occur
- Distances between particles are fixed
Note: We will consider plane motion only.
- Relative motion of one particle to another will
always be a circular motion
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 7
General Plane Motion is the summation of a Translation and a Rotation
Consider the motion of the rigid bar AB:
General Motion
B1
B2
A1 A2
Rotation about A
A2
B’1
B2
We could break this motion down another way:
General Motion
B1
B2
A1 A2
Translation with B
B1
B2
A1
A’1
Rotation about B
A’1
A2
B2
A1 A2
B1 B’1
Translation with A
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 8
Rigid Bodies:
Why are Rigid Bodies so different from Particles?
- Size negligible compared to motion
Particles:
mg
N
F
- All forces act through center of gravity
- Neglect rotation about center of gravity
R2R1
F
mg
- Points of application, and lines of
action of forces are important
- Rotation and Moments about center of
gravity are important
Rigid Bodies Vs Particles
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 9
Types of rigid body planar motion
Translation – only linear direction
Rotational about fixed axis – rotational motion
General plane motion – consists of both linear and rotational motion
Rigid-Body Motion
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 10
Example
Rectilinear translation Rotation about a fixed axis
Curvilinear translation
General plane motion
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 11
Translation
ABAB /rrr 
Position
AB
AB
ABAB
const
dtd
vv
.r
/rvv
/
/



Velocity
Acceleration
AB aa 
All points move with same velocity and acceleration
14/12/2014S. ThangaKasiRajan, stkrajan@gmail.com12
Summary
• Time dependent acceleration
dt
ds
v 
)(ts
2
2
dt
sd
dt
dv
a 
dvvdsa 
• Constant acceleration
tavv c 0
2
00
2
1
tatvss c
)(2 0
2
0
2
ssavv c 
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 13
Rotation About a Fixed axis
Angular Position ( q )
Defined by the angle q measured between a fixed
reference line and r
Measured in rad
Angular Displacement
Measured as dq
Vector quantity
Measured in radians or revolutions
1 rev = 2 p rad
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 14
q
q
 
dt
d
Angular velocity ( )
“the time rate of change in the angular position”
q

 
dt
d
Angular acceleration
“the time rate of change of the angular velocity”
q
q
  2
2
dt
d
 = f(q)
q dd 
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 15
Constant Angular Acceleration
)(2 0
2
0
2
qq  c
tc  0
2
00
2
1
tt cqq 
14/12/2014S. ThangaKasiRajan, stkrajan@gmail.com16
Comparison
)(2
2
1
0
2
0
2
2
00
0
qq
qq




c
c
c
tt
t
dt
ds
v )(ts 2
2
dt
sd
dt
dv
a 
dvvdsa 
tavv c 0
2
00
2
1
tatvss c
)(2 0
2
0
2
ssavv c 
dt
dq
  2
2
dt
d
dt
d q
 
q dd 
)(tq
14/12/2014S. ThangaKasiRajan, stkrajan@gmail.com17
Motion of Point P
Prxv 
Position :
qrs The arc-length is
Is defined by the position vector r
tv
dt
ds
 ( )qr
dt
d
 r
dt
dq
 r
Velocity
“tangent to the path”
14/12/2014S. ThangaKasiRajan, stkrajan@gmail.com18
Acceleration
ta
dt
d
 ( )r
dt
d

dt
d
r

 r
r
an
2


r
r 2
)(
 r2

Direction of an is always toward O
“rate of change in the velocity’s magnitude”
“rate of change in the velocity’s direction”
a 22
rt aa  ( ) ( )222
 rr  42
  r
Motion of Point P
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 19
2211 rrS qq 
2211 rr  
2211 rra  
r1 r2
s , v, a
r1
r2
14/12/2014S. ThangaKasiRajan, stkrajan@gmail.com20
Rest
at = 4t m/s2
=?
q=?
ra tP )(
2
/20
)2.0()4(
sradt
t




t
dt
d
20


sradt
dttd
t
/10
20
2
0 0

 



2
10 t
dt
d

q

radt
dttd
t
3
0 0
2
33.3
10

 
q
q
q
Problem 1
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 21
Problem 2
Cable C has a constant acceleration of
225 mm/s2 and an initial velocity of 300
mm/s, both directed to the right.
Determine (a) the number of revolutions
of the pulley in 2 s, (b) the velocity and
change in position of the load B after 2 s,
and (c) the acceleration of the point D on
the rim of the inner pulley at t = 0.
SOLUTION:
• Due to the action of the cable, the
tangential velocity and acceleration of
D are equal to the velocity and
acceleration of C. Calculate the initial
angular velocity and acceleration.
• Apply the relations for uniformly
accelerated rotation to determine the
velocity and angular position of the
pulley after 2 s.
• Evaluate the initial tangential and
normal acceleration components of D.
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com
Problem 2
SOLUTION:
• The tangential velocity and acceleration of D are equal to the
velocity and acceleration of C.
( ) ( )
( )
( )
srad4
75
300
smm300
0
0
00
00



r
v
rv
vv
D
D
CD



( )
( )
( ) 2
srad3
3
225
2/225



r
a
ra
smmaa
tD
tD
CtD



• Apply the relations for uniformly accelerated rotation to
determine velocity and angular position of pulley after 2 s.
( )( ) srad10s2srad3srad4 2
0  t
( )( ) ( )( )
rad14
s2srad3s2srad4 22
2
12
2
1
0

 tt q
( ) revsofnumber
rad2
rev1
rad14 






p
N rev23.2N
( )( )
( )( )rad14mm125
srad10mm125


q

ry
rv
B
B
m75.1
sm25.1


B
B
y
v

14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 23
Problem 2
• Evaluate the initial tangential and normal acceleration
components of D.
( ) 
2
smm225CtD aa

( ) ( )( ) 222
0 smm1200srad4mm57  DnD ra
( ) ( )  22
smm1200smm225 nDtD aa

Magnitude and direction of the total acceleration,
( ) ( )
22
22
1200225 
 nDtDD aaa
2
smm1220Da
( )
( )
225
1200
tan


tD
nD
a
a

 4.79
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com
Problem 3
The double gear rolls on the
stationary lower rack: the velocity of
its center is 1.2 m/s.
Determine (a) the angular velocity of
the gear, and (b) the velocities of the
upper rack R and point D of the gear.
SOLUTION:
• The displacement of the gear center in
one revolution is equal to the outer
circumference. Relate the translational
and angular displacements. Differentiate
to relate the translational and angular
velocities.
• The velocity for any point P on the gear
may be written as
Evaluate the velocities of points B and D.
APAAPAP rkvvvv

 
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 25
Problem 3
SOLUTION:
• The displacement of the gear center in one revolution is
equal to the outer circumference.
For xA > 0 (moves to right),  < 0 (rotates clockwise).
q
p
q
p 1
22
rx
r
x
A
A 
Differentiate to relate the translational and angular
velocities.
m0.150
sm2.1
1
1


r
v
rv
A
A


( )kk

srad8 
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 26
Problem 3
• For any point P on the gear, APAAPAP rkvvvv

 
Velocity of the upper rack is equal to
velocity of point B:
( ) ( ) ( )
( ) ( )ii
jki
rkvvv ABABR



sm8.0sm2.1
m10.0srad8sm2.1


 
( )ivR

sm2
Velocity of the point D:
( ) ( ) ( )iki
rkvv ADAD


m150.0srad8sm2.1 
 
( ) ( )
sm697.1
sm2.1sm2.1


D
D
v
jiv

14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 27
Slider Crank Mechanism
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 28
Slider Crank Mechanism consists of
1. Crank shaft – Pure Rotation
2. Connecting rod – Both Translation and
Rotation
3. Piston – Pure Rotation
The motion of Connecting rod depends on
motion of crank shaft
Similarly the motion of piston depends on
motion of connecting rod.
Slider Crank MechanismSlider Crank Mechanism
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 29
Slider Crank Mechanism
Motion of Crank AB
VB = VA + VB/A
here VA = 0 because A is fixed
therefore
VB = VB/A
= rAB . ωAB
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 30
Slider Crank Mechanism
Motion of Connecting Rod:
When crank rotates in clockwise direction, connecting rod rotates in anticlockwise direction.
Also VC/B is perpendicular to the axis of the connecting rod
Apply sine and
cosine rule to find
the magnitude
and direction the
velocity of each
component
Problem 4
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 31
In the reciprocating engine shown in the figure, the crank AB has a constant angular
velocity of 2000 rpm. For the crank position indicated determine
i). Angular velocity of Crank AB
ii). Angular Velocity of the Connecting Rod BC
iii). Velocity of Piston
Problem 4
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 32
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 33
Problem 4
Problem 4
14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 34
References
1. Ferdinand P Beer & E.Russell Johnston “VECTOR MECHANICS FOR
ENGINEERS STATICS & Dynamics”, (Ninth Edition) Tata McGraw Hill
Education Private Limited, New Delhi.
2. Engineering Mechanics – Statics & Dynamics by S.Nagan,
M.S.Palanichamy, Tata McGraw-Hill (2001).
02/01/2017 S.ThangaKasiRajan, stkrajan@gmail.com 35
Thank you
Any Queries contact
S.Thanga Kasi Rajan
Assistant Professor
Department of Mechanical Engineering
Kamaraj College of Engineering & Technology,
Virudhunagar – 626001.
Tamil Nadu, India
Email : stkrajan@gmail.com
02/01/2017 S.ThangaKasiRajan, stkrajan@gmail.com 36

More Related Content

What's hot

Introduction to mechanics
Introduction to mechanicsIntroduction to mechanics
Rigid body equilibrium
Rigid body equilibriumRigid body equilibrium
Rigid body equilibrium
Taral Soliya
 
Engineering mechanics by A.Vinoth Jebaraj
Engineering mechanics by A.Vinoth JebarajEngineering mechanics by A.Vinoth Jebaraj
Engineering mechanics by A.Vinoth Jebaraj
Vinoth Jebaraj A
 
Scalars & vectors
Scalars & vectorsScalars & vectors
Scalars & vectors
KhanSaif2
 
D alemberts principle
D alemberts principleD alemberts principle
D alemberts principle
Pralhad Kore
 
Force vectors
Force vectorsForce vectors
Force vectors
Yasir Hashmi
 
Introduction to Vectors
Introduction to VectorsIntroduction to Vectors
Introduction to Vectors
M.T.H Group
 
Ch 9 Rotational Dynamics
Ch 9 Rotational DynamicsCh 9 Rotational Dynamics
Ch 9 Rotational Dynamics
Scott Thomas
 
Moment of inertia concepts in Rotational Mechanics
Moment of inertia concepts in Rotational MechanicsMoment of inertia concepts in Rotational Mechanics
Moment of inertia concepts in Rotational Mechanics
physicscatalyst
 
Introduction to mechanics
Introduction to mechanicsIntroduction to mechanics
Introduction to mechanics
KhanSaif2
 
Dynamics
DynamicsDynamics
Dynamics
nlahoud
 
Vector Addition
Vector AdditionVector Addition
Vector Additionrinisma5
 
5.8 rectilinear motion
5.8 rectilinear motion5.8 rectilinear motion
5.8 rectilinear motiondicosmo178
 
Kinematics(class)
Kinematics(class)Kinematics(class)
Kinematics(class)
Deepanshu Lulla
 
work energy theorem and kinetic energy
work energy theorem and kinetic energywork energy theorem and kinetic energy
work energy theorem and kinetic energy
Kharen Adelan
 
Applied mechanics
Applied mechanicsApplied mechanics
Applied mechanics
Pralhad Kore
 
deflection of beam
deflection of beamdeflection of beam
deflection of beam
Karan Patel
 

What's hot (20)

Introduction to mechanics
Introduction to mechanicsIntroduction to mechanics
Introduction to mechanics
 
Kinetics of particle
Kinetics of particleKinetics of particle
Kinetics of particle
 
Moments
MomentsMoments
Moments
 
Rigid body equilibrium
Rigid body equilibriumRigid body equilibrium
Rigid body equilibrium
 
Engineering mechanics by A.Vinoth Jebaraj
Engineering mechanics by A.Vinoth JebarajEngineering mechanics by A.Vinoth Jebaraj
Engineering mechanics by A.Vinoth Jebaraj
 
Scalars & vectors
Scalars & vectorsScalars & vectors
Scalars & vectors
 
D alemberts principle
D alemberts principleD alemberts principle
D alemberts principle
 
Force vectors
Force vectorsForce vectors
Force vectors
 
Introduction to Vectors
Introduction to VectorsIntroduction to Vectors
Introduction to Vectors
 
Ch 9 Rotational Dynamics
Ch 9 Rotational DynamicsCh 9 Rotational Dynamics
Ch 9 Rotational Dynamics
 
Moments
MomentsMoments
Moments
 
Moment of inertia concepts in Rotational Mechanics
Moment of inertia concepts in Rotational MechanicsMoment of inertia concepts in Rotational Mechanics
Moment of inertia concepts in Rotational Mechanics
 
Introduction to mechanics
Introduction to mechanicsIntroduction to mechanics
Introduction to mechanics
 
Dynamics
DynamicsDynamics
Dynamics
 
Vector Addition
Vector AdditionVector Addition
Vector Addition
 
5.8 rectilinear motion
5.8 rectilinear motion5.8 rectilinear motion
5.8 rectilinear motion
 
Kinematics(class)
Kinematics(class)Kinematics(class)
Kinematics(class)
 
work energy theorem and kinetic energy
work energy theorem and kinetic energywork energy theorem and kinetic energy
work energy theorem and kinetic energy
 
Applied mechanics
Applied mechanicsApplied mechanics
Applied mechanics
 
deflection of beam
deflection of beamdeflection of beam
deflection of beam
 

Viewers also liked

Structure analysis assignment 4 centroid-moment of inertia
Structure analysis assignment 4 centroid-moment of inertiaStructure analysis assignment 4 centroid-moment of inertia
Structure analysis assignment 4 centroid-moment of inertia
The University of Lahore
 
M2 equilibrium of_rigid_bodies
M2 equilibrium of_rigid_bodiesM2 equilibrium of_rigid_bodies
M2 equilibrium of_rigid_bodieskochadaiyaan
 
Engineering Mechanics Presentation correction 2
Engineering Mechanics Presentation correction 2Engineering Mechanics Presentation correction 2
Engineering Mechanics Presentation correction 2Prof. S.Rajendiran
 
Dynamics of particles , Enginnering mechanics , murugananthan
Dynamics of particles , Enginnering mechanics , murugananthanDynamics of particles , Enginnering mechanics , murugananthan
Dynamics of particles , Enginnering mechanics , murugananthan
Murugananthan K
 
Engineering Mechanics made simple
Engineering Mechanics made simpleEngineering Mechanics made simple
Engineering Mechanics made simpleProf. S.Rajendiran
 
University problems on Engineering Mechanics solved in differrent way part II
University problems on Engineering Mechanics solved in differrent way part IIUniversity problems on Engineering Mechanics solved in differrent way part II
University problems on Engineering Mechanics solved in differrent way part IIProf. S.Rajendiran
 
Problem1 Engineering mechanics
Problem1 Engineering mechanicsProblem1 Engineering mechanics
Problem1 Engineering mechanics
Prof. S.Rajendiran
 
University problems on Engineering Mechanics solved in differrent way
University problems on Engineering Mechanics solved in differrent wayUniversity problems on Engineering Mechanics solved in differrent way
University problems on Engineering Mechanics solved in differrent wayProf. S.Rajendiran
 
Introduction to design
Introduction to designIntroduction to design
Introduction to design
THANGA KASI RAJAN S
 
Two mark question and answer on Engineering Mechanics
Two mark question and answer on Engineering MechanicsTwo mark question and answer on Engineering Mechanics
Two mark question and answer on Engineering MechanicsProf. S.Rajendiran
 
Diploma i em u iv centre of gravity & moment of inertia
Diploma i em u   iv centre of gravity & moment of inertiaDiploma i em u   iv centre of gravity & moment of inertia
Diploma i em u iv centre of gravity & moment of inertia
Rai University
 
2 d equilibrium-split
2 d equilibrium-split2 d equilibrium-split
2 d equilibrium-split
sharancm2009
 
Step by step Engineering Mechanics updated
Step by step Engineering Mechanics updatedStep by step Engineering Mechanics updated
Step by step Engineering Mechanics updatedProf. S.Rajendiran
 
Chapter4: Statics - Torques and equilibrium
Chapter4: Statics - Torques and equilibriumChapter4: Statics - Torques and equilibrium
Chapter4: Statics - Torques and equilibrium
Said Azar
 
Basics and statics of particles unit i - GE6253 PPT
Basics and statics of particles   unit i - GE6253 PPTBasics and statics of particles   unit i - GE6253 PPT
Basics and statics of particles unit i - GE6253 PPT
THANGA KASI RAJAN S
 

Viewers also liked (17)

Structure analysis assignment 4 centroid-moment of inertia
Structure analysis assignment 4 centroid-moment of inertiaStructure analysis assignment 4 centroid-moment of inertia
Structure analysis assignment 4 centroid-moment of inertia
 
M2 equilibrium of_rigid_bodies
M2 equilibrium of_rigid_bodiesM2 equilibrium of_rigid_bodies
M2 equilibrium of_rigid_bodies
 
Engineering Mechanics Presentation correction 2
Engineering Mechanics Presentation correction 2Engineering Mechanics Presentation correction 2
Engineering Mechanics Presentation correction 2
 
Dynamics of particles , Enginnering mechanics , murugananthan
Dynamics of particles , Enginnering mechanics , murugananthanDynamics of particles , Enginnering mechanics , murugananthan
Dynamics of particles , Enginnering mechanics , murugananthan
 
centroid
centroidcentroid
centroid
 
Engineering Mechanics made simple
Engineering Mechanics made simpleEngineering Mechanics made simple
Engineering Mechanics made simple
 
University problems on Engineering Mechanics solved in differrent way part II
University problems on Engineering Mechanics solved in differrent way part IIUniversity problems on Engineering Mechanics solved in differrent way part II
University problems on Engineering Mechanics solved in differrent way part II
 
Problem1 Engineering mechanics
Problem1 Engineering mechanicsProblem1 Engineering mechanics
Problem1 Engineering mechanics
 
University problems on Engineering Mechanics solved in differrent way
University problems on Engineering Mechanics solved in differrent wayUniversity problems on Engineering Mechanics solved in differrent way
University problems on Engineering Mechanics solved in differrent way
 
Introduction to design
Introduction to designIntroduction to design
Introduction to design
 
Two mark question and answer on Engineering Mechanics
Two mark question and answer on Engineering MechanicsTwo mark question and answer on Engineering Mechanics
Two mark question and answer on Engineering Mechanics
 
Diploma i em u iv centre of gravity & moment of inertia
Diploma i em u   iv centre of gravity & moment of inertiaDiploma i em u   iv centre of gravity & moment of inertia
Diploma i em u iv centre of gravity & moment of inertia
 
2 d equilibrium-split
2 d equilibrium-split2 d equilibrium-split
2 d equilibrium-split
 
Step by step Engineering Mechanics updated
Step by step Engineering Mechanics updatedStep by step Engineering Mechanics updated
Step by step Engineering Mechanics updated
 
Chapter4: Statics - Torques and equilibrium
Chapter4: Statics - Torques and equilibriumChapter4: Statics - Torques and equilibrium
Chapter4: Statics - Torques and equilibrium
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Basics and statics of particles unit i - GE6253 PPT
Basics and statics of particles   unit i - GE6253 PPTBasics and statics of particles   unit i - GE6253 PPT
Basics and statics of particles unit i - GE6253 PPT
 

Similar to Unit 5 rigid body dynamics

Dynamics chapter 4,20234 discuss about kinematics of rigid body .pdf
Dynamics chapter 4,20234 discuss about kinematics of rigid body .pdfDynamics chapter 4,20234 discuss about kinematics of rigid body .pdf
Dynamics chapter 4,20234 discuss about kinematics of rigid body .pdf
GemechisEdosa2
 
3.5) 12 rotational-motion-ii
3.5) 12 rotational-motion-ii3.5) 12 rotational-motion-ii
3.5) 12 rotational-motion-ii
GeaneCatane
 
Phys111_lecture09.ppt
Phys111_lecture09.pptPhys111_lecture09.ppt
Phys111_lecture09.ppt
hananeelbasri
 
Chapter 12 kinematics_of_a_particle
Chapter 12 kinematics_of_a_particleChapter 12 kinematics_of_a_particle
Chapter 12 kinematics_of_a_particle
Self-employed
 
13675443.ppt
13675443.ppt13675443.ppt
13675443.ppt
Ahmed Sobhi
 
Phys111_lecture09.ppt
Phys111_lecture09.pptPhys111_lecture09.ppt
Phys111_lecture09.ppt
RandyBaquiran1
 
dynamics15lecture kinematics of rigid bodies.ppt
dynamics15lecture kinematics of rigid bodies.pptdynamics15lecture kinematics of rigid bodies.ppt
dynamics15lecture kinematics of rigid bodies.ppt
GemechisEdosa1
 
dynamics15lecture kinematics of of rigid bodies.ppt
dynamics15lecture kinematics of of rigid bodies.pptdynamics15lecture kinematics of of rigid bodies.ppt
dynamics15lecture kinematics of of rigid bodies.ppt
GemechisEdosa1
 
15 lecture ppt
15 lecture ppt15 lecture ppt
15 lecture ppt
miladshah
 
002 Angular Kinematics.ppt
002 Angular Kinematics.ppt002 Angular Kinematics.ppt
002 Angular Kinematics.ppt
ChandanRaj58
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
Younes Sina
 
Emm3104 chapter 3
Emm3104 chapter 3Emm3104 chapter 3
Emm3104 chapter 3
Khairiyah Sulaiman
 
Cee311(11)
Cee311(11)Cee311(11)
Cee311(11)
apudgr8
 
2.3 worm and worm wheel
2.3 worm and worm wheel2.3 worm and worm wheel
2.3 worm and worm wheel
Kiran Wakchaure
 
Velocity And acceleration
Velocity And accelerationVelocity And acceleration
Velocity And acceleration
Taimoor Muzaffar Gondal
 
Dynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear MotionDynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear Motion
Nikolai Priezjev
 
Polar Coordinates.pptx
Polar Coordinates.pptxPolar Coordinates.pptx
Polar Coordinates.pptx
AbdullahTanweer1
 
13.1.1 Shm Part 1 Introducing Circular Motion
13.1.1 Shm Part 1 Introducing Circular Motion13.1.1 Shm Part 1 Introducing Circular Motion
13.1.1 Shm Part 1 Introducing Circular MotionChris Staines
 
PHY300 Chapter 5 physics 5e
PHY300 Chapter 5 physics 5ePHY300 Chapter 5 physics 5e
PHY300 Chapter 5 physics 5e
BealCollegeOnline
 

Similar to Unit 5 rigid body dynamics (20)

Dynamics chapter 4,20234 discuss about kinematics of rigid body .pdf
Dynamics chapter 4,20234 discuss about kinematics of rigid body .pdfDynamics chapter 4,20234 discuss about kinematics of rigid body .pdf
Dynamics chapter 4,20234 discuss about kinematics of rigid body .pdf
 
3.5) 12 rotational-motion-ii
3.5) 12 rotational-motion-ii3.5) 12 rotational-motion-ii
3.5) 12 rotational-motion-ii
 
Phys111_lecture09.ppt
Phys111_lecture09.pptPhys111_lecture09.ppt
Phys111_lecture09.ppt
 
Chapter 12 kinematics_of_a_particle
Chapter 12 kinematics_of_a_particleChapter 12 kinematics_of_a_particle
Chapter 12 kinematics_of_a_particle
 
13675443.ppt
13675443.ppt13675443.ppt
13675443.ppt
 
Phys111_lecture09.ppt
Phys111_lecture09.pptPhys111_lecture09.ppt
Phys111_lecture09.ppt
 
dynamics15lecture kinematics of rigid bodies.ppt
dynamics15lecture kinematics of rigid bodies.pptdynamics15lecture kinematics of rigid bodies.ppt
dynamics15lecture kinematics of rigid bodies.ppt
 
dynamics15lecture kinematics of of rigid bodies.ppt
dynamics15lecture kinematics of of rigid bodies.pptdynamics15lecture kinematics of of rigid bodies.ppt
dynamics15lecture kinematics of of rigid bodies.ppt
 
15 lecture ppt
15 lecture ppt15 lecture ppt
15 lecture ppt
 
002 Angular Kinematics.ppt
002 Angular Kinematics.ppt002 Angular Kinematics.ppt
002 Angular Kinematics.ppt
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Ppt circular motion
Ppt circular motionPpt circular motion
Ppt circular motion
 
Emm3104 chapter 3
Emm3104 chapter 3Emm3104 chapter 3
Emm3104 chapter 3
 
Cee311(11)
Cee311(11)Cee311(11)
Cee311(11)
 
2.3 worm and worm wheel
2.3 worm and worm wheel2.3 worm and worm wheel
2.3 worm and worm wheel
 
Velocity And acceleration
Velocity And accelerationVelocity And acceleration
Velocity And acceleration
 
Dynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear MotionDynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear Motion
 
Polar Coordinates.pptx
Polar Coordinates.pptxPolar Coordinates.pptx
Polar Coordinates.pptx
 
13.1.1 Shm Part 1 Introducing Circular Motion
13.1.1 Shm Part 1 Introducing Circular Motion13.1.1 Shm Part 1 Introducing Circular Motion
13.1.1 Shm Part 1 Introducing Circular Motion
 
PHY300 Chapter 5 physics 5e
PHY300 Chapter 5 physics 5ePHY300 Chapter 5 physics 5e
PHY300 Chapter 5 physics 5e
 

Recently uploaded

Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 

Recently uploaded (20)

Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 

Unit 5 rigid body dynamics

  • 1. ENGINEERING MECHANICS Unit – V Rigid Body Dynamics by S.Thanga Kasi Rajan Assistant Professor Department of Mechanical Engineering Kamaraj College of Engineering & Technology, Virudhunagar – 626001. Tamil Nadu, India Email : stkrajan@gmail.com
  • 2. Kinematics of Rigid Bodies A rigid body has size that is not negligible and does not deform (distance between two points on body is constant). (Idealisation) Rigid body motion involves translation and/or rotation Types of Rigid Body Plane Motion Translation: - No rotation of any line in the body - All points in body have same velocity and acceleration - No relative motion between any two particles Rectilinear translation 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 2
  • 3. Translation Every line segment on the body remains parallel to its original direction during the motion 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 3
  • 4. Fixed-axis rotation: - All points move in circular paths about axis of rotation Curvilinear translation 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 4
  • 5. Rotation about fixed axis All particles of the body move along circular paths except those which lie on the axis of rotation 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 5
  • 6. General plane motion Combination of translation and rotation 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 6
  • 7. General plane motion - Both translation and rotation occur - Distances between particles are fixed Note: We will consider plane motion only. - Relative motion of one particle to another will always be a circular motion 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 7
  • 8. General Plane Motion is the summation of a Translation and a Rotation Consider the motion of the rigid bar AB: General Motion B1 B2 A1 A2 Rotation about A A2 B’1 B2 We could break this motion down another way: General Motion B1 B2 A1 A2 Translation with B B1 B2 A1 A’1 Rotation about B A’1 A2 B2 A1 A2 B1 B’1 Translation with A 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 8
  • 9. Rigid Bodies: Why are Rigid Bodies so different from Particles? - Size negligible compared to motion Particles: mg N F - All forces act through center of gravity - Neglect rotation about center of gravity R2R1 F mg - Points of application, and lines of action of forces are important - Rotation and Moments about center of gravity are important Rigid Bodies Vs Particles 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 9
  • 10. Types of rigid body planar motion Translation – only linear direction Rotational about fixed axis – rotational motion General plane motion – consists of both linear and rotational motion Rigid-Body Motion 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 10
  • 11. Example Rectilinear translation Rotation about a fixed axis Curvilinear translation General plane motion 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 11
  • 12. Translation ABAB /rrr  Position AB AB ABAB const dtd vv .r /rvv / /    Velocity Acceleration AB aa  All points move with same velocity and acceleration 14/12/2014S. ThangaKasiRajan, stkrajan@gmail.com12
  • 13. Summary • Time dependent acceleration dt ds v  )(ts 2 2 dt sd dt dv a  dvvdsa  • Constant acceleration tavv c 0 2 00 2 1 tatvss c )(2 0 2 0 2 ssavv c  14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 13
  • 14. Rotation About a Fixed axis Angular Position ( q ) Defined by the angle q measured between a fixed reference line and r Measured in rad Angular Displacement Measured as dq Vector quantity Measured in radians or revolutions 1 rev = 2 p rad 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 14
  • 15. q q   dt d Angular velocity ( ) “the time rate of change in the angular position” q    dt d Angular acceleration “the time rate of change of the angular velocity” q q   2 2 dt d  = f(q) q dd  14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 15
  • 16. Constant Angular Acceleration )(2 0 2 0 2 qq  c tc  0 2 00 2 1 tt cqq  14/12/2014S. ThangaKasiRajan, stkrajan@gmail.com16
  • 17. Comparison )(2 2 1 0 2 0 2 2 00 0 qq qq     c c c tt t dt ds v )(ts 2 2 dt sd dt dv a  dvvdsa  tavv c 0 2 00 2 1 tatvss c )(2 0 2 0 2 ssavv c  dt dq   2 2 dt d dt d q   q dd  )(tq 14/12/2014S. ThangaKasiRajan, stkrajan@gmail.com17
  • 18. Motion of Point P Prxv  Position : qrs The arc-length is Is defined by the position vector r tv dt ds  ( )qr dt d  r dt dq  r Velocity “tangent to the path” 14/12/2014S. ThangaKasiRajan, stkrajan@gmail.com18
  • 19. Acceleration ta dt d  ( )r dt d  dt d r   r r an 2   r r 2 )(  r2  Direction of an is always toward O “rate of change in the velocity’s magnitude” “rate of change in the velocity’s direction” a 22 rt aa  ( ) ( )222  rr  42   r Motion of Point P 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 19
  • 20. 2211 rrS qq  2211 rr   2211 rra   r1 r2 s , v, a r1 r2 14/12/2014S. ThangaKasiRajan, stkrajan@gmail.com20
  • 21. Rest at = 4t m/s2 =? q=? ra tP )( 2 /20 )2.0()4( sradt t     t dt d 20   sradt dttd t /10 20 2 0 0       2 10 t dt d  q  radt dttd t 3 0 0 2 33.3 10    q q q Problem 1 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 21
  • 22. Problem 2 Cable C has a constant acceleration of 225 mm/s2 and an initial velocity of 300 mm/s, both directed to the right. Determine (a) the number of revolutions of the pulley in 2 s, (b) the velocity and change in position of the load B after 2 s, and (c) the acceleration of the point D on the rim of the inner pulley at t = 0. SOLUTION: • Due to the action of the cable, the tangential velocity and acceleration of D are equal to the velocity and acceleration of C. Calculate the initial angular velocity and acceleration. • Apply the relations for uniformly accelerated rotation to determine the velocity and angular position of the pulley after 2 s. • Evaluate the initial tangential and normal acceleration components of D. 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com
  • 23. Problem 2 SOLUTION: • The tangential velocity and acceleration of D are equal to the velocity and acceleration of C. ( ) ( ) ( ) ( ) srad4 75 300 smm300 0 0 00 00    r v rv vv D D CD    ( ) ( ) ( ) 2 srad3 3 225 2/225    r a ra smmaa tD tD CtD    • Apply the relations for uniformly accelerated rotation to determine velocity and angular position of pulley after 2 s. ( )( ) srad10s2srad3srad4 2 0  t ( )( ) ( )( ) rad14 s2srad3s2srad4 22 2 12 2 1 0   tt q ( ) revsofnumber rad2 rev1 rad14        p N rev23.2N ( )( ) ( )( )rad14mm125 srad10mm125   q  ry rv B B m75.1 sm25.1   B B y v  14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 23
  • 24. Problem 2 • Evaluate the initial tangential and normal acceleration components of D. ( )  2 smm225CtD aa  ( ) ( )( ) 222 0 smm1200srad4mm57  DnD ra ( ) ( )  22 smm1200smm225 nDtD aa  Magnitude and direction of the total acceleration, ( ) ( ) 22 22 1200225   nDtDD aaa 2 smm1220Da ( ) ( ) 225 1200 tan   tD nD a a   4.79 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com
  • 25. Problem 3 The double gear rolls on the stationary lower rack: the velocity of its center is 1.2 m/s. Determine (a) the angular velocity of the gear, and (b) the velocities of the upper rack R and point D of the gear. SOLUTION: • The displacement of the gear center in one revolution is equal to the outer circumference. Relate the translational and angular displacements. Differentiate to relate the translational and angular velocities. • The velocity for any point P on the gear may be written as Evaluate the velocities of points B and D. APAAPAP rkvvvv    14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 25
  • 26. Problem 3 SOLUTION: • The displacement of the gear center in one revolution is equal to the outer circumference. For xA > 0 (moves to right),  < 0 (rotates clockwise). q p q p 1 22 rx r x A A  Differentiate to relate the translational and angular velocities. m0.150 sm2.1 1 1   r v rv A A   ( )kk  srad8  14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 26
  • 27. Problem 3 • For any point P on the gear, APAAPAP rkvvvv    Velocity of the upper rack is equal to velocity of point B: ( ) ( ) ( ) ( ) ( )ii jki rkvvv ABABR    sm8.0sm2.1 m10.0srad8sm2.1     ( )ivR  sm2 Velocity of the point D: ( ) ( ) ( )iki rkvv ADAD   m150.0srad8sm2.1    ( ) ( ) sm697.1 sm2.1sm2.1   D D v jiv  14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 27
  • 28. Slider Crank Mechanism 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 28 Slider Crank Mechanism consists of 1. Crank shaft – Pure Rotation 2. Connecting rod – Both Translation and Rotation 3. Piston – Pure Rotation The motion of Connecting rod depends on motion of crank shaft Similarly the motion of piston depends on motion of connecting rod. Slider Crank MechanismSlider Crank Mechanism
  • 29. 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 29 Slider Crank Mechanism Motion of Crank AB VB = VA + VB/A here VA = 0 because A is fixed therefore VB = VB/A = rAB . ωAB
  • 30. 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 30 Slider Crank Mechanism Motion of Connecting Rod: When crank rotates in clockwise direction, connecting rod rotates in anticlockwise direction. Also VC/B is perpendicular to the axis of the connecting rod Apply sine and cosine rule to find the magnitude and direction the velocity of each component
  • 31. Problem 4 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 31 In the reciprocating engine shown in the figure, the crank AB has a constant angular velocity of 2000 rpm. For the crank position indicated determine i). Angular velocity of Crank AB ii). Angular Velocity of the Connecting Rod BC iii). Velocity of Piston
  • 32. Problem 4 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 32
  • 33. 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 33 Problem 4
  • 34. Problem 4 14/12/2014 S. ThangaKasiRajan, stkrajan@gmail.com 34
  • 35. References 1. Ferdinand P Beer & E.Russell Johnston “VECTOR MECHANICS FOR ENGINEERS STATICS & Dynamics”, (Ninth Edition) Tata McGraw Hill Education Private Limited, New Delhi. 2. Engineering Mechanics – Statics & Dynamics by S.Nagan, M.S.Palanichamy, Tata McGraw-Hill (2001). 02/01/2017 S.ThangaKasiRajan, stkrajan@gmail.com 35
  • 36. Thank you Any Queries contact S.Thanga Kasi Rajan Assistant Professor Department of Mechanical Engineering Kamaraj College of Engineering & Technology, Virudhunagar – 626001. Tamil Nadu, India Email : stkrajan@gmail.com 02/01/2017 S.ThangaKasiRajan, stkrajan@gmail.com 36