COMPLEX NUMBERS

  Beertino
  John
  Yeong Hui
  Yu Jie
CONTENTS
    Beertino                     Yeong Hui
   Approaches/pedagogy         A level syllabus
   Diophantus’s problem        Pedagogical Consideration
   roots of function           Multiplication
   Cubic Example                and Division of
                                 complex numbers
                                Complex conjugates
    Yu Jie
   A level syllabus
   Pedagogical considerations
   Basic definition &           John
    Argand Diagram              A Level syllabus
   Addition and                Pedagogical considerations
    Subtraction of
    complex numbers             Learning difficulties
 Uniqueness of Complex Numbers
APPROACHES/PEDAGOGY
 Axiomatic Approach
    Common in textbooks.
    Start by defining complex numbers as numbers of the form a+ib where a, b are real
      numbers.




Back to Table of contents                                     Diophantus’s problem
APPROACHES/PEDAGOGY
 Utilitarian Approach
    Briefly describe Complex Numbers lead to the theory of fractals
    It allows computer programmers to create realistic clouds and mountains in video
      games.




Back to Table of contents                                     Diophantus’s problem
APPROACHES/PEDAGOGY
 Totalitarian Approach! ( Just kidding )




Back to Table of contents                   Diophantus’s problem
APPROACHES/PEDAGOGY
 Historical Approach
 Why this approach?
    Real questions faced by mathematicians.
    Build on pre-existing mathematical knowledge,
        Quadratic formula
        Roots.




Back to Table of contents                            Diophantus’s problem
APPROACHES/PEDAGOGY
 So, how does the approach goes?
    First, bring about the quadratic problem.
        Tapping on prior knowledge
              Quadratic formula.
              Roots of an equation.
        Followed with definition of root.
        Then sub value into root to get a cognitive conflict.

    Give another example, this time it’s cubic
        Tap on prior knowledge again
              Completing Square to get to Completing Cube (Cardano’s Method)

        Solve to get a weird answer.
        Show that weird answer is 4, and get another cognitive conflict.




Back to Table of contents                                             Diophantus’s problem
DIOPHANTUS’S PROBLEM




   Diophantus' Arithhmetica (C.E 275) A right-angled triangle has area 7
    square units and perimeter 12 units. Find the lengths of its sides.




Approaches/Pedagogy         Back to Table of contents          Root of Function
SOLUTION AND PROBLEM




Approaches/Pedagogy   Back to Table of contents   Root of Function
ROOT OF FUNCTION




Diophantus’s problem   Back to Table of contents   Cubic Example
ROOT OF FUNCTION




Diophantus’s problem   Back to Table of contents   Cubic Example
CUBIC EXAMPLE




  Root of Function   Back to Table of contents
CUBIC EXAMPLE




  Root of Function   Back to Table of contents
LASTLY




   Root of Function   Back to Table of contents
A-LEVEL SYLLABUS




Back to Table of contents   Pedagogical considerations
PEDAGOGICAL CONSIDERATIONS

   Operations in complex plane is
   similar but not exactly the same
   as vector geometry (see complex
   multiplication and division)
   Building on Prior Knowledge
   Rules-Based Approach vs
     Theoretical Understanding

SyllabusBack to table of contents   (Teaching) Basic Definition
PEDAGOGICAL CONSIDERATIONS

   Multimodal Representation and usage of similarity in
    vector geometry for teaching of complex addition and
    subtraction
   Algebraic proof for uniqueness of complex numbers
    and should it be taught specifically
   No ordering in complex plane, not appropriate to talk
    about
    z1 > z2
   ordering is appropriate for modulus, since modulus of
     complex numbers are real values

SyllabusBack to table of contents   (Teaching) Basic Definition
BASIC DEFINITONS

        First defined by Leonard Euler, a swiss
        mathematician, a complex number, denoted
        by i, to be i2 = -1

        In general, a complex number z can be
        written as


        where x denotes the real part and y denotes
        the imaginary part



Pedagogical considerationsBack to Table of contents   Argand Diagram
ARGAND DIAGRAM
                                                       z=x+yi
   Im(z)
                                                       x : Real Part
                                   P(x,y)              y : Imaginary
        y                                                  Part

                                                       Important aspect,
                                                       common student
                                                       error is forgetting
                                             Re(z)
        0                      x                       that x,y are both
                                                       real valued


Basic DefinitionsBack to Table of contents           Addition
EXTENSION FROM REAL NUMBERS
(ENGAGING PRIOR KNOWLEDGE)
                                                     The Real Axis
   Im(z)
                                                     (x-axis) represents
                                                     the real number
                                   z                 line.
        y

                      |z|                            In other words the
                                                     real numbers just
                                                     have the imaginary
                  θ                                  part to be zero.
                                             Re(z)
        0                      x
                                                     e.g. 1 = 1 + 0 i


Basic DefinitionsBack to Table of contents           Addition
ADDITION OF COMPLEX NUMBERS
 Complex Addition
    Addition of 2 complex numbers
        z1 = x1 + y1i, z2 = x2 + y2i
        z1 + z2 = (x1 + y1i) + (x2 + y2i)
                          = (x1 + x2) + (y1 + y2) i
        Addition of real and imaginary portions and summing the 2
        parts up
    Geometric Interpretation (vector addition)


Rationale
Multimodal Representation: Argand Diagram
Engaging prior knowledge: Addition for Real Numbers


Argand DiagramBack to Table of contents               Subtraction
MMR IN ADDITION
 Multimodal Representation used: Pictorial
    Geometric Interpretation
        Vector Addition

       Im(z)

             z1               z1+z2



                         z2
                                          Re(z)
        0

Argand DiagramBack to Table of contents           Subtraction
SUBTRACTION OF COMPLEX NUMBERS

 Complex Subtraction
    Difference of 2 complex numbers
        z1 = x1 + y1i, z2 = x2 + y2i

        z1 - z2 = (x1 + y1i) - (x2 + y2i)
                           = (x1 - x2) + (y1 - y2) i
        Subtraction of real and imaginary portions and summing the 2
            parts up
    Geometric Interpretation (vector subtraction)
Rationale
Multimodal Representation: Argand Diagram
Engaging prior knowledge: Subtraction for Real Numbers


AdditionBack to Table of contents               Uniqueness
MMR IN SUBTRACTION
 Multimodal Representation used: Pictorial
    Geometric Interpretation
        Vector Subtraction
                     Im(z)

             z1-z2            z1


                                    Re(z)
       -z2            0


AdditionBack to Table of contents    Uniqueness
UNIQUENESS OF COMPLEX NUMBERS

 If two complex numbers are the same, i.e. z1 = z2, then their real parts
  must be equal, and their imaginary parts are equal.


 Algebraically, let z1 = x1 + y1i, z2 = x2 + y2 i, if z1 = z2 then we have

     x1 = x2 and y1 = y2


 Geometrically, from the argand diagram we can see that if two complex
  numbers are the same, then they are represented by the same point on
  the argand diagram, and immediately we can see that the x and y co-
  ordinates of the point must be the same.




Subtraction                                      Back to table of contents
A-LEVEL SYLLABUS




Back to Table of contents   Pedagogical Considerations
PEDAGOGICAL CONSIDERATIONS

   Operations in complex plane is similar but not exactly the same as
    vector geometry (see complex multiplication and division)

   Limitations in relating to Argand diagram (pictorial) for teaching of
    complex multiplication and division in Cartesian form

   Building on Prior Knowledge


   Rules-Based Approach vs Theoretical Understanding




Syllabus                Back to table of contents              Multiplication
PEDAGOGICAL CONSIDERATIONS

   Properties…
      of complex multiplication assumed
       (commutative, associative, distributive over complex addition)
      of complex division assumed
       (not associative, not commutative)
      of complex conjugates
       (self-verification exercise)

   Notion of identity element, multiplicative inverse


   Use of GC
      Accuracy of answers



Syllabus               Back to table of contents            Multiplication
MULTIPLICATION OF COMPLEX NUMBERS

    Complex multiplication
        Multiplication of 2 complex numbers
           z1 = x1 + y1i, z2 = x2 + y2i
           z1 z2   = (x1 + y1i) (x2 + y2i)
                    = x1x2 + x1y2i + x2y1i - y1y2i2
                    = (x1x2 - y1y2 ) + (x1y2+ x2y1)i
        Geometric Interpretation (Modulus Argument form)


   Rationale
   Engaging prior knowledge: Multiplication for Real Numbers




Pedagogical considerations          Back to Table of contents   Division
MULTIPLICATION OF COMPLEX NUMBERS

    Complex multiplication
        Scalar Multiplication
           z = x + yi, k real number
          kz      = k(x + yi)
                   = kx + kyi
        Geometric Interpretation (vector scaling)
           k ≥ 0 and k < 0


   Rationale
   Multimodal Representation: Argand Diagram
   Engaging prior knowledge: Multiplication for Real Numbers



Pedagogical considerations        Back to Table of contents    Division
MULTIPLICATION OF COMPLEX NUMBERS

    i4n = I, i4n+1 = i, i4n+2 = -1, i4n+3 = -I for any integer n
        Explore using GC (Limitations)


    Extension of algebraic identities from real number system
        (z1 + z2 )(z1 – z2 ) = z12 – z22
             (x + iy)(x – iy) = x2 – xyi + xyi + y2 = x2 + y2
             ALWAYS real


   Rationale
   Engaging prior knowledge: Multiplication for Real Numbers
   Cognitive process: Assimilation

Pedagogical considerations               Back to Table of contents   Division
DIVISION OF COMPLEX NUMBERS
 Complex division
    Division of 2 complex numbers (Realising the denominator)
        z1 = x1 + y1i, z2 = x2 + y2i
       .
            z1 x1 + y1i x1 + y1i ( x2 − y2i ) x1 x2 + y1 y2 x2 y1 − x1 y2
              =        =                      =            + 2            i
            z2 x2 + y2i x2 + y2i ( x2 − y2i )   x2 + y2
                                                  2      2
                                                             x2 + y2   2




Rationale
Engaging prior knowledge: Rationalising the denominator



Multiplication             Back to Table of contents        Conjugates
DIVISION OF COMPLEX NUMBERS
 Solve simultaneous equations
  (using the four complex number operations)

 Finding square root of complex number




Multiplication       Back to Table of contents   Conjugates
COMPLEX CONJUGATES
 Let z = x + iy. The complex conjugate of z is given by z* = x – iy.
     Conjugate pair: z and z*
     Geometrical representation: Reflection about the real axis


 Multiplication: (x + iy)(x – iy) = x2 + y2
 Division: Realising the denominator


Rationale
 Bruner’s CPA
 Recalling prior knowledge, Law of recency




DivisionBack to Table of contents              Learning Difficulties
COMPLEX CONJUGATES
 Properties:
  Exercise for students (direct verification)
    1. Re(z*) = Re(z); Im(z*) = -Im(z)                 7. (z1 + z2)* = z1* + z2*
    2. |z*| = |z|                                      8. (z1z2)* = z1*z2*
    3. (z*)* = z                                       9. (z1/z2)* = z1*/z2*,
    4. z + z* = 2Re(z); z – z* = 2Im(z)                  if z2 ≠ 0
    5. zz* = |z|2
    6. z = z* if and only if z is real


Rationale
 Self-directed learning


DivisionBack to Table of contents               Learning Difficulties
LEARNING DIFFICULTIES
/COMMON MISTAKES
 In z = x + yi, x and y are always REAL numbers


 Solve equations using z directly or sub z = x + yi


 Common mistake: (1 + zi)* = (1 – zi)
    Confused with (x + yi)* = (x - yi)




DivisionBack to Table of contents
A-LEVEL SYLLABUS




Back to Table of contents   Pedagogical Considerations
PEDAGOGICAL CONSIDERATION
 Start with a simple quadratic equation
    Example: x2 + 2x + 2 = 0.


 Get students to observe and comment on the roots.


Rationale:
 Bruner’s CPA Approach: Concrete
 Engaging Prior Knowledge




SyllabusBack to Table of contents   Learning Difficulties
PEDAGOGICAL CONSIDERATION
 Direct attention to discriminant of quadratic equation
    What can we say about the discriminant?




Rationale:
 Engaging Prior Knowledge:
    Linking to O-Level Additional Maths knowledge
 Involving students in active learning (Vygotsky’s ZPD)




SyllabusBack to Table of contents    Learning Difficulties
PEDAGOGICAL CONSIDERATION
 Examples on Solving for Complex Roots of Quadratic
  Equations
    Expose students to different methods:
       Quadratic Formula
       Completing the Square Method


Rationale:
Making Connections between real case and complex case
Getting students to think actively



SyllabusBack to Table of contents   Learning Difficulties
PEDAGOGICAL CONSIDERATION
 Different version: What if we are given one complex root?


Example:
If one of the roots α of the equation z2 + pz + q = 0 is 3 − 2i,
   and p, q ∈ ℝ , find p and q.


Rationale:
Understanding and applying concepts learnt



SyllabusBack to Table of contents     Learning Difficulties
PEDAGOGICAL CONSIDERATION
                                                        Good to
 Fundamental Theorem of Algebra
                                                         know

Over the set of complex numbers, every polynomial with real
  coefficients can be factored into a product of linear factors.

Consequently, every polynomial of degree n with real coefficients
  has n roots, subjected to repeated roots.

Rationale:
Making Connections to Prior Knowledge in Real Case

SyllabusBack to Table of contents        Learning Difficulties
PEDAGOGICAL CONSIDERATION
                                                   Good to
 Visualizing Complex Roots
                                                    know
    Exploration with GeoGebra




Rationale:
Stretch higher ability students to think further
Motivates interest in topic of complex numbers



SyllabusBack to Table of contents   Learning Difficulties
PEDAGOGICAL CONSIDERATION
 Extending from quadratic equations to cubic equations
    Can we generalize to any polynomial?


    Recall: finding conjugate roots of polynomials with real
      coefficients


Rationale:
Making sense through comparing and contrasting




SyllabusBack to Table of contents    Learning Difficulties
LEARNING DIFFICULTIES
/COMMON MISTAKES
 X: complex roots will always appear in conjugate pairs


 ‘No roots’ versus ‘No real roots’


 Difficulty in applying factor theorem


 Careless when performing long division


 Application of ‘uniqueness of complex numbers’ does
        not occur naturally




Pedagogical ConsiderationsBack to Table of contents

Complex Number I - Presentation

  • 1.
    COMPLEX NUMBERS Beertino John Yeong Hui Yu Jie
  • 2.
    CONTENTS Beertino Yeong Hui  Approaches/pedagogy  A level syllabus  Diophantus’s problem  Pedagogical Consideration  roots of function  Multiplication  Cubic Example and Division of complex numbers  Complex conjugates Yu Jie  A level syllabus  Pedagogical considerations  Basic definition & John Argand Diagram  A Level syllabus  Addition and  Pedagogical considerations Subtraction of complex numbers  Learning difficulties  Uniqueness of Complex Numbers
  • 3.
    APPROACHES/PEDAGOGY  Axiomatic Approach  Common in textbooks.  Start by defining complex numbers as numbers of the form a+ib where a, b are real numbers. Back to Table of contents Diophantus’s problem
  • 4.
    APPROACHES/PEDAGOGY  Utilitarian Approach  Briefly describe Complex Numbers lead to the theory of fractals  It allows computer programmers to create realistic clouds and mountains in video games. Back to Table of contents Diophantus’s problem
  • 5.
    APPROACHES/PEDAGOGY  Totalitarian Approach!( Just kidding ) Back to Table of contents Diophantus’s problem
  • 6.
    APPROACHES/PEDAGOGY  Historical Approach Why this approach?  Real questions faced by mathematicians.  Build on pre-existing mathematical knowledge,  Quadratic formula  Roots. Back to Table of contents Diophantus’s problem
  • 7.
    APPROACHES/PEDAGOGY  So, howdoes the approach goes?  First, bring about the quadratic problem.  Tapping on prior knowledge  Quadratic formula.  Roots of an equation.  Followed with definition of root.  Then sub value into root to get a cognitive conflict.  Give another example, this time it’s cubic  Tap on prior knowledge again  Completing Square to get to Completing Cube (Cardano’s Method)  Solve to get a weird answer.  Show that weird answer is 4, and get another cognitive conflict. Back to Table of contents Diophantus’s problem
  • 8.
    DIOPHANTUS’S PROBLEM  Diophantus' Arithhmetica (C.E 275) A right-angled triangle has area 7 square units and perimeter 12 units. Find the lengths of its sides. Approaches/Pedagogy Back to Table of contents Root of Function
  • 9.
    SOLUTION AND PROBLEM Approaches/Pedagogy Back to Table of contents Root of Function
  • 10.
    ROOT OF FUNCTION Diophantus’sproblem Back to Table of contents Cubic Example
  • 11.
    ROOT OF FUNCTION Diophantus’sproblem Back to Table of contents Cubic Example
  • 12.
    CUBIC EXAMPLE Root of Function Back to Table of contents
  • 13.
    CUBIC EXAMPLE Root of Function Back to Table of contents
  • 14.
    LASTLY Root of Function Back to Table of contents
  • 15.
    A-LEVEL SYLLABUS Back toTable of contents Pedagogical considerations
  • 16.
    PEDAGOGICAL CONSIDERATIONS  Operations in complex plane is similar but not exactly the same as vector geometry (see complex multiplication and division)  Building on Prior Knowledge  Rules-Based Approach vs Theoretical Understanding SyllabusBack to table of contents (Teaching) Basic Definition
  • 17.
    PEDAGOGICAL CONSIDERATIONS  Multimodal Representation and usage of similarity in vector geometry for teaching of complex addition and subtraction  Algebraic proof for uniqueness of complex numbers and should it be taught specifically  No ordering in complex plane, not appropriate to talk about z1 > z2  ordering is appropriate for modulus, since modulus of complex numbers are real values SyllabusBack to table of contents (Teaching) Basic Definition
  • 18.
    BASIC DEFINITONS First defined by Leonard Euler, a swiss mathematician, a complex number, denoted by i, to be i2 = -1 In general, a complex number z can be written as where x denotes the real part and y denotes the imaginary part Pedagogical considerationsBack to Table of contents Argand Diagram
  • 19.
    ARGAND DIAGRAM z=x+yi Im(z) x : Real Part P(x,y) y : Imaginary y Part Important aspect, common student error is forgetting Re(z) 0 x that x,y are both real valued Basic DefinitionsBack to Table of contents Addition
  • 20.
    EXTENSION FROM REALNUMBERS (ENGAGING PRIOR KNOWLEDGE) The Real Axis Im(z) (x-axis) represents the real number z line. y |z| In other words the real numbers just have the imaginary θ part to be zero. Re(z) 0 x e.g. 1 = 1 + 0 i Basic DefinitionsBack to Table of contents Addition
  • 21.
    ADDITION OF COMPLEXNUMBERS  Complex Addition  Addition of 2 complex numbers  z1 = x1 + y1i, z2 = x2 + y2i  z1 + z2 = (x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2) i  Addition of real and imaginary portions and summing the 2 parts up  Geometric Interpretation (vector addition) Rationale Multimodal Representation: Argand Diagram Engaging prior knowledge: Addition for Real Numbers Argand DiagramBack to Table of contents Subtraction
  • 22.
    MMR IN ADDITION Multimodal Representation used: Pictorial  Geometric Interpretation  Vector Addition Im(z) z1 z1+z2 z2 Re(z) 0 Argand DiagramBack to Table of contents Subtraction
  • 23.
    SUBTRACTION OF COMPLEXNUMBERS  Complex Subtraction  Difference of 2 complex numbers  z1 = x1 + y1i, z2 = x2 + y2i  z1 - z2 = (x1 + y1i) - (x2 + y2i) = (x1 - x2) + (y1 - y2) i  Subtraction of real and imaginary portions and summing the 2 parts up  Geometric Interpretation (vector subtraction) Rationale Multimodal Representation: Argand Diagram Engaging prior knowledge: Subtraction for Real Numbers AdditionBack to Table of contents Uniqueness
  • 24.
    MMR IN SUBTRACTION Multimodal Representation used: Pictorial  Geometric Interpretation  Vector Subtraction Im(z) z1-z2 z1 Re(z) -z2 0 AdditionBack to Table of contents Uniqueness
  • 25.
    UNIQUENESS OF COMPLEXNUMBERS  If two complex numbers are the same, i.e. z1 = z2, then their real parts must be equal, and their imaginary parts are equal.  Algebraically, let z1 = x1 + y1i, z2 = x2 + y2 i, if z1 = z2 then we have  x1 = x2 and y1 = y2  Geometrically, from the argand diagram we can see that if two complex numbers are the same, then they are represented by the same point on the argand diagram, and immediately we can see that the x and y co- ordinates of the point must be the same. Subtraction Back to table of contents
  • 26.
    A-LEVEL SYLLABUS Back toTable of contents Pedagogical Considerations
  • 27.
    PEDAGOGICAL CONSIDERATIONS  Operations in complex plane is similar but not exactly the same as vector geometry (see complex multiplication and division)  Limitations in relating to Argand diagram (pictorial) for teaching of complex multiplication and division in Cartesian form  Building on Prior Knowledge  Rules-Based Approach vs Theoretical Understanding Syllabus Back to table of contents Multiplication
  • 28.
    PEDAGOGICAL CONSIDERATIONS  Properties…  of complex multiplication assumed (commutative, associative, distributive over complex addition)  of complex division assumed (not associative, not commutative)  of complex conjugates (self-verification exercise)  Notion of identity element, multiplicative inverse  Use of GC  Accuracy of answers Syllabus Back to table of contents Multiplication
  • 29.
    MULTIPLICATION OF COMPLEXNUMBERS  Complex multiplication  Multiplication of 2 complex numbers  z1 = x1 + y1i, z2 = x2 + y2i  z1 z2 = (x1 + y1i) (x2 + y2i) = x1x2 + x1y2i + x2y1i - y1y2i2 = (x1x2 - y1y2 ) + (x1y2+ x2y1)i  Geometric Interpretation (Modulus Argument form) Rationale Engaging prior knowledge: Multiplication for Real Numbers Pedagogical considerations Back to Table of contents Division
  • 30.
    MULTIPLICATION OF COMPLEXNUMBERS  Complex multiplication  Scalar Multiplication  z = x + yi, k real number kz = k(x + yi) = kx + kyi  Geometric Interpretation (vector scaling)  k ≥ 0 and k < 0 Rationale Multimodal Representation: Argand Diagram Engaging prior knowledge: Multiplication for Real Numbers Pedagogical considerations Back to Table of contents Division
  • 31.
    MULTIPLICATION OF COMPLEXNUMBERS  i4n = I, i4n+1 = i, i4n+2 = -1, i4n+3 = -I for any integer n  Explore using GC (Limitations)  Extension of algebraic identities from real number system  (z1 + z2 )(z1 – z2 ) = z12 – z22  (x + iy)(x – iy) = x2 – xyi + xyi + y2 = x2 + y2  ALWAYS real Rationale Engaging prior knowledge: Multiplication for Real Numbers Cognitive process: Assimilation Pedagogical considerations Back to Table of contents Division
  • 32.
    DIVISION OF COMPLEXNUMBERS  Complex division  Division of 2 complex numbers (Realising the denominator)  z1 = x1 + y1i, z2 = x2 + y2i . z1 x1 + y1i x1 + y1i ( x2 − y2i ) x1 x2 + y1 y2 x2 y1 − x1 y2 = = = + 2 i z2 x2 + y2i x2 + y2i ( x2 − y2i ) x2 + y2 2 2 x2 + y2 2 Rationale Engaging prior knowledge: Rationalising the denominator Multiplication Back to Table of contents Conjugates
  • 33.
    DIVISION OF COMPLEXNUMBERS  Solve simultaneous equations (using the four complex number operations)  Finding square root of complex number Multiplication Back to Table of contents Conjugates
  • 34.
    COMPLEX CONJUGATES  Letz = x + iy. The complex conjugate of z is given by z* = x – iy.  Conjugate pair: z and z*  Geometrical representation: Reflection about the real axis  Multiplication: (x + iy)(x – iy) = x2 + y2  Division: Realising the denominator Rationale  Bruner’s CPA  Recalling prior knowledge, Law of recency DivisionBack to Table of contents Learning Difficulties
  • 35.
    COMPLEX CONJUGATES  Properties: Exercise for students (direct verification)  1. Re(z*) = Re(z); Im(z*) = -Im(z) 7. (z1 + z2)* = z1* + z2*  2. |z*| = |z| 8. (z1z2)* = z1*z2*  3. (z*)* = z 9. (z1/z2)* = z1*/z2*,  4. z + z* = 2Re(z); z – z* = 2Im(z) if z2 ≠ 0  5. zz* = |z|2  6. z = z* if and only if z is real Rationale  Self-directed learning DivisionBack to Table of contents Learning Difficulties
  • 36.
    LEARNING DIFFICULTIES /COMMON MISTAKES In z = x + yi, x and y are always REAL numbers  Solve equations using z directly or sub z = x + yi  Common mistake: (1 + zi)* = (1 – zi)  Confused with (x + yi)* = (x - yi) DivisionBack to Table of contents
  • 37.
    A-LEVEL SYLLABUS Back toTable of contents Pedagogical Considerations
  • 38.
    PEDAGOGICAL CONSIDERATION  Startwith a simple quadratic equation  Example: x2 + 2x + 2 = 0.  Get students to observe and comment on the roots. Rationale:  Bruner’s CPA Approach: Concrete  Engaging Prior Knowledge SyllabusBack to Table of contents Learning Difficulties
  • 39.
    PEDAGOGICAL CONSIDERATION  Directattention to discriminant of quadratic equation  What can we say about the discriminant? Rationale:  Engaging Prior Knowledge:  Linking to O-Level Additional Maths knowledge  Involving students in active learning (Vygotsky’s ZPD) SyllabusBack to Table of contents Learning Difficulties
  • 40.
    PEDAGOGICAL CONSIDERATION  Exampleson Solving for Complex Roots of Quadratic Equations  Expose students to different methods:  Quadratic Formula  Completing the Square Method Rationale: Making Connections between real case and complex case Getting students to think actively SyllabusBack to Table of contents Learning Difficulties
  • 41.
    PEDAGOGICAL CONSIDERATION  Differentversion: What if we are given one complex root? Example: If one of the roots α of the equation z2 + pz + q = 0 is 3 − 2i, and p, q ∈ ℝ , find p and q. Rationale: Understanding and applying concepts learnt SyllabusBack to Table of contents Learning Difficulties
  • 42.
    PEDAGOGICAL CONSIDERATION Good to  Fundamental Theorem of Algebra know Over the set of complex numbers, every polynomial with real coefficients can be factored into a product of linear factors. Consequently, every polynomial of degree n with real coefficients has n roots, subjected to repeated roots. Rationale: Making Connections to Prior Knowledge in Real Case SyllabusBack to Table of contents Learning Difficulties
  • 43.
    PEDAGOGICAL CONSIDERATION Good to  Visualizing Complex Roots know  Exploration with GeoGebra Rationale: Stretch higher ability students to think further Motivates interest in topic of complex numbers SyllabusBack to Table of contents Learning Difficulties
  • 44.
    PEDAGOGICAL CONSIDERATION  Extendingfrom quadratic equations to cubic equations  Can we generalize to any polynomial?  Recall: finding conjugate roots of polynomials with real coefficients Rationale: Making sense through comparing and contrasting SyllabusBack to Table of contents Learning Difficulties
  • 45.
    LEARNING DIFFICULTIES /COMMON MISTAKES X: complex roots will always appear in conjugate pairs  ‘No roots’ versus ‘No real roots’  Difficulty in applying factor theorem  Careless when performing long division  Application of ‘uniqueness of complex numbers’ does not occur naturally Pedagogical ConsiderationsBack to Table of contents