SlideShare a Scribd company logo
Nonlinear programming and
grossone: (theory and) algorithms
R. De Leone
School of Science and Tecnology
Universit`a di Camerino
June 2016
Outline of the talk
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 2 / 31
Equality Constraints
Inequality Constraints
Quadratic Problems
Algorithms
Equality Constraints
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
The case of Equality Constraints
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 4 / 31
min
x
f(x)
subject to h(x) = 0
where f : IRn
→ IR and h : IRn
→ IRk
L(x, π) := f(x) +
k
j=1
πjhj(x) = f(x) + πT
h(x)
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
If x∗ is a local minimizer then
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
If x∗ is a local minimizer then
there exists π∗ ∈ IRk
such that
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
If x∗ is a local minimizer then
there exists π∗ ∈ IRk
such that
∇xL(x∗
, π∗
) = ∇f(x∗
) +
k
j=1
∇hj(x∗
)π∗
j = 0
∇πL(x∗
, π∗
) = h(x∗
) = 0
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
If x∗ is a local minimizer then
there exists π∗ ∈ IRk
such that
∇xL(x∗
, π∗
) = ∇f(x∗
) + ∇h(x∗
)T
π∗
= 0
∇πL(x∗
, π∗
) = h(x∗
) = 0
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
If x∗ is a local minimizer then
there exists π∗ ∈ IRk
such that
∇xL(x∗
, π∗
) = ∇f(x∗
) + ∇h(x∗
)T
π∗
= 0
∇πL(x∗
, π∗
) = h(x∗
) = 0
KKT (Karush–Kuhn–Tucker) Conditions
Penalty Functions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 6 / 31
A penalty function P : IRn
→ IR satisfies the following condition
P(x)
= 0 if x belongs to the feasible region
> 0 otherwise
Penalty Functions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 6 / 31
A penalty function P : IRn
→ IR satisfies the following condition
P(x)
= 0 if x belongs to the feasible region
> 0 otherwise
P(x) =
k
j=1
|hj(x)|
P(x) =
k
j=1
h2
j (x)
Exactness of a Penalty Function
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 7 / 31
The optimal solution of the constrained problem
min
x
f(x)
subject to h(x) = 0
can be obtained by solving the following unconstrained minimization problem
min f(x) +
1
σ
P(x)
for sufficiently small but fixed σ > 0.
Exactness of a Penalty Function
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 7 / 31
The optimal solution of the constrained problem
min
x
f(x)
subject to h(x) = 0
can be obtained by solving the following unconstrained minimization problem
min f(x) +
1
σ
P(x)
for sufficiently small but fixed σ > 0.
P(x) =
k
j=1
|hj(x)|
Exactness of a Penalty Function
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 7 / 31
The optimal solution of the constrained problem
min
x
f(x)
subject to h(x) = 0
can be obtained by solving the following unconstrained minimization problem
min f(x) +
1
σ
P(x)
for sufficiently small but fixed σ > 0.
P(x) =
k
j=1
|hj(x)|
Non–smooth function!
Sequential Penalty Method
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 8 / 31
Let {σl} ↓ 0 and P(x) =
k
j=1
h2
j (x)
Step 0 Set l = 0
Step 1 Let x(σl) be an optimal solution of the unconstrained
differentiable problem
min f(x) +
1
σl
P(x)
Step 2 Set l = l + 1 and return to Step 1
Introducing ①
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 9 / 31
Let
P(x) =
k
j=1
h2
j (x)
Solve
min f(x) + ①P(x) =: φ (x, ①)
Assumptions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 10 / 31
x = x0
+ ①−1
x1
+ ①−2
x2
+ . . .
with xi ∈ IRn
Assumptions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 10 / 31
x = x0
+ ①−1
x1
+ ①−2
x2
+ . . .
with xi ∈ IRn
f(x) = f(0)
(x) + ①−1
f(1)
(x) + ①−2
f(2)
(x) + . . .
h(x) = h(0)
(x) + ①−1
h(1)
(x) + ①−2
h(2)
(x) + . . .
where f(i) : IRn
→ IR, h(i) : IRn
→ IRk
are all finite–value functions.
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 11 / 31
min
x
f(x)
subject to h(x) = 0
(1)
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 11 / 31
min
x
f(x)
subject to h(x) = 0
(1)
min
x
f(x) +
1
2
① h(x) 2
(2)
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 11 / 31
min
x
f(x)
subject to h(x) = 0
(1)
min
x
f(x) +
1
2
① h(x) 2
(2)
Let
x∗
= x∗0
+ ①−1
x∗1
+ ①−2
x∗2
+ . . .
be a stationary point for (2) and assume that the LICQ condition holds at x∗0
then
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 11 / 31
min
x
f(x)
subject to h(x) = 0
(1)
min
x
f(x) +
1
2
① h(x) 2
(2)
Let
x∗
= x∗0
+ ①−1
x∗1
+ ①−2
x∗2
+ . . .
be a stationary point for (2) and assume that the LICQ condition holds at x∗0
then
the pair x∗0, π∗ = h(1)(x∗) is a KKT point of (1).
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
min
x
1
2x2
1 + 1
6 x2
2
subject to x1 + x2 = 1
The pair (x∗, π∗) with x∗ =


1
4
3
4

, π∗ = −1
4 is a KKT point.
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
min
x
1
2x2
1 + 1
6 x2
2
subject to x1 + x2 = 1
The pair (x∗, π∗) with x∗ =


1
4
3
4

, π∗ = −1
4 is a KKT point.
f(x) + ①P(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
f(x) + ①P(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
First Order Optimality Condition
x1 + ①(x1 + x2 − 1) = 0
1
3x2 + ①(x1 + x2 − 1) = 0
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
f(x) + ①P(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
x∗
1 =
1①
1 + 4①
, x∗
2 =
3①
1 + 4①
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
f(x) + ①P(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
x∗
1 =
1①
1 + 4①
, x∗
2 =
3①
1 + 4①
x∗
1 =
1
4
− ①−1
(
1
16
−
1
64
①−1
. . .)
x∗
2 =
3
4
− ①−1
(
3
16
−
3
64
①−1
. . .)
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
f(x) + ①P(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
x∗
1 =
1①
1 + 4①
, x∗
2 =
3①
1 + 4①
x∗
1 + x∗
2 − 1 =
1
4
−
1
16
①−1
+
1
64
①−2
. . .
+
3
4
−
3
16
①−1
+
3
64
①−2
. . . − 1
= −
1
16
①−1
−
3
16
①−1
+
4
64
①−2
. . .
and h(1)(x∗) = −1
4 = π∗
Example 2
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 13 / 31
min x1 + x2
subject to x2
1 + x2
2 − 2 = 0
L(x, π) = x1 + x2 + π x2
1 + x2
2 − 2
The optimal solution is x∗ =
−1
−1
and the pair x∗, π∗ = 1
2 satisfies the
KKT conditions.
Example 2
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 13 / 31
φ (x, ①) = x1 + x2 +
①
2
x2
1 + x2
2 − 2
2
First–Order Optimality Conditions



x1 + 2①x1 x2
1 + x2
2 − 2
2
= 0
x2 + 2①x2 x2
1 + x2
2 − 2
2
= 0
The solution is given by



x1 = −1 − ①−1 1
8 + ①−2
C
x2 = −1 − ①−1 1
8 + ①−2
C
Example 2
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 13 / 31
Moreover
x2
1 + x2
2 − 2 = 1 +
1
64
①−2
+ ①−4
C2 1
4
①−1
− 2①−2
−
1
4
①−3
C +
1 +
1
64
①−2
+ ①−4
C2 1
4
①−1
− 2①−2
−
1
4
①−3
C
=
1
2
①−1
+
1
32
− 4C ①−2
+ −
1
2
C ①−3
+ −2C2
①−4
Inequality Constraints
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
Inequality Constraints
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 15 / 31
min
x
f(x)
subject to g(x) ≤ 0
h(x) = 0
where f : IRn
→ IR, g : IRn
→ IRm
h : IRn
→ IRk
.
L(x, π, µ) := f(x) +
m
i=1
µigi(x) +
k
j=1
πjhj(x)
= f(x) + µT
g(x) + πT
h(x)
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 16 / 31
Let x∗ ∈ IRn
with
∇gi(x∗
), i : gi(x∗
) = 0, ∇hj(x∗
), j = 1, . . . , k
linearly independent
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 16 / 31
Let x∗ ∈ IRn
with
∇gi(x∗
), i : gi(x∗
) = 0, ∇hj(x∗
), j = 1, . . . , k
linearly independent
If x∗ is a local minimizer then
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 16 / 31
Let x∗ ∈ IRn
with
∇gi(x∗
), i : gi(x∗
) = 0, ∇hj(x∗
), j = 1, . . . , k
linearly independent
If x∗ is a local minimizer then there exists µ∗ ∈ IRm
+ , π∗ ∈ IRk
such that
∇xL(x∗
, µ∗
, π∗
) = ∇f(x∗
) +
k
j=1
∇hj(x∗
)π∗
j = 0
∇µL(x∗
, µ∗
, π∗
) = g(x∗
) ≤ 0
∇πL(x∗
, µ∗
, π∗
) = h(x∗
) = 0
µ∗
≥ 0
µ∗T
∇πL(x∗
, µ∗
, π∗
) = 0
Modified LICQ condition
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 17 / 31
Let x0 ∈ IRn
. The Modified LICQ (MLICQ) condition is said to hold at x0 if
the vectors
∇gi(x0
), i : gi(x0
) ≥ 0, ∇hj(x0
), j = 1, . . . , k
are linearly independent.
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 18 / 31
min
x
f(x)
subject to g(x) ≤ 0
h(x) = 0
min
x
f(x) +
①
2
max{0, gi(x)} 2
+
①
2
h(x) 2
x∗
= x∗0
+ ①−1
x∗1
+ ①−2
x∗2
+ . . .
⇓ (MLICQ)
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 18 / 31
min
x
f(x)
subject to g(x) ≤ 0
h(x) = 0
min
x
f(x) +
①
2
max{0, gi(x)} 2
+
①
2
h(x) 2
x∗
= x∗0
+ ①−1
x∗1
+ ①−2
x∗2
+ . . .
⇓ (MLICQ)
x∗0
, µ∗
= g(1)
(x∗
), π∗
= h(1)
(x∗
)
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
min x1 + x2
subject to x2
1 + x2
2 − 2 ≤ 0
−x2 ≤ 0
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
min x1 + x2
subject to x2
1 + x2
2 − 2 ≤ 0
−x2 ≤ 0
L(x, π) = x1 + x2 + µ1 x2
1 + x2
2 − 2 − µ2x2
The solution is x∗ =
−
√
2
0
and (x∗, µ∗) with µ∗ =
1/2
√
2
1
satisfies
KKT conditions.
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
min x1 + x2
subject to x2
1 + x2
2 − 2 ≤ 0
−x2 ≤ 0
φ(x, ①) = x1 + x2 +
①
2
max 0, x2
1 + x2
2 − 2
2
+
①
2
max {0, −x2}2
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
φ(x, ①) = x1 + x2 +
①
2
max 0, x2
1 + x2
2 − 2
2
+
①
2
max {0, −x2}2
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
φ(x, ①) = x1 + x2 +
①
2
max 0, x2
1 + x2
2 − 2
2
+
①
2
max {0, −x2}2



1 + 2x1① max 0, x2
1 + x2
2 − 2 = 0
1 + 2x2① max 0, x2
1 + x2
2 − 2 − ① max {0, −x2} = 0
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
φ(x, ①) = x1 + x2 +
①
2
max 0, x2
1 + x2
2 − 2
2
+
①
2
max {0, −x2}2



1 + 2x1① max 0, x2
1 + x2
2 − 2 = 0
1 + 2x2① max 0, x2
1 + x2
2 − 2 − ① max {0, −x2} = 0



x∗
1 = −
√
2 + A①−1
+ B①−2
+ . . .
x∗
2 = 0 − 1①−1
+ D①−2
+ . . .
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
g1(x∗
) = (x∗
1)2
+ (x∗
2)2
− 2 =
+2
√
2
1
8
①−1
+
1
64
− 2
√
2B + C2
①−2
+ · · ·
µ∗
1 = 2
√
2
1
8
=
1
2
√
2
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
g2(x∗
) = −x∗
2
− −①−1
− D①−2
+ · · ·
µ∗
2 = 1
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31
min 1
2 x1 − 3
2
2
+ 1
2 x2 − 1
2
4
subject to x1 + x2 − 1 ≤ 0
x1 − x2 − 1 ≤ 0
−x1 + x2 − 1 ≤ 0
−x1 − x2 − 1 ≤ 0
The solution is x∗ =
1
0
and (x+, µ∗) with µ∗ =




3/8
1/8
0
0



 satisfies KKT
conditions.
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31
φ(x, ①) =
1
2
x1 −
3
2
2
+
1
2
x2 −
1
2
4
+
①
2
max{0, x1 + x2 − 1}2
+
max{0, x1 − x2 − 1}2
+ max{0, −x1 + x2 − 1}2
+ max{0, −x1 − x2 − 1}2
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31
φ(x, ①) =
1
2
x1 −
3
2
2
+
1
2
x2 −
1
2
4
+
①
2
max{0, x1 + x2 − 1}2
+
max{0, x1 − x2 − 1}2
+ max{0, −x1 + x2 − 1}2
+ max{0, −x1 − x2 − 1}2



x1 − 3
2
+ ① max{0, x1 + x2 − 1}+
max{0, x1 − x2 − 1} − max{0, −x1 + x2 − 1} − max{0, −x1 − x2 − 1} = 0
2 x2 − 1
2
3
+ ① max{0, x1 + x2 − 1}−
max{0, x1 − x2 − 1} + max{0, −x1 + x2 − 1} − max{0, −x1 − x2 − 1} = 0
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31



x∗
1 = 1 + 1
4①−1
+ · · ·
x∗
2 = 1
8 ①−1
+ · · ·
x∗
1 + x∗
2 − 1 = 1 + 1
4
①−1
+ 1
8
①−1
+ · · · = 3
8
①−1
+ · · · > 0
x∗
1 − x∗
2 − 1 = 1 + 1
4
①−1
− 1
8
①−1
+ · · · = 1
8
①−1
+ · · · > 0
−x∗
1 + x∗
2 − 1 = −1 − 1
4
①−1
+ 1
8
①−1
+ · · · < 0
−x∗
1 − x∗
2 − 1 = −1 − 1
4
①−1
− 1
8
①−1
+ · · · < 0
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31



x∗
1 = 1 + 1
4①−1
+ · · ·
x∗
2 = 1
8 ①−1
+ · · ·
x∗
1 + x∗
2 − 1 = 1 + 1
4
①−1
+ 1
8
①−1
+ · · · = 3
8
①−1
+ · · · > 0
x∗
1 − x∗
2 − 1 = 1 + 1
4
①−1
− 1
8
①−1
+ · · · = 1
8
①−1
+ · · · > 0
−x∗
1 + x∗
2 − 1 = −1 − 1
4
①−1
+ 1
8
①−1
+ · · · < 0
−x∗
1 − x∗
2 − 1 = −1 − 1
4
①−1
− 1
8
①−1
+ · · · < 0
x∗
1 −
3
2
+ ①
3
8
①−1
+
1
8
①−1
+ · · · =
1 +
1
4
①−1
+ · · · −
3
2
+ ①
3
8
①−1
+
1
8
①−1
+ · · · = 0 + · · · ①−1
+ · · ·
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31



x∗
1 = 1 + 1
4①−1
+ · · ·
x∗
2 = 1
8 ①−1
+ · · ·
x∗
1 + x∗
2 − 1 = 1 + 1
4
①−1
+ 1
8
①−1
+ · · · = 3
8
①−1
+ · · · > 0
x∗
1 − x∗
2 − 1 = 1 + 1
4
①−1
− 1
8
①−1
+ · · · = 1
8
①−1
+ · · · > 0
−x∗
1 + x∗
2 − 1 = −1 − 1
4
①−1
+ 1
8
①−1
+ · · · < 0
−x∗
1 − x∗
2 − 1 = −1 − 1
4
①−1
− 1
8
①−1
+ · · · < 0
2 x∗
2 −
1
2
3
+ ①
3
8
①−1
+
1
8
①−1
+ · · · =
2
1
8
①−1
+ · · · −
1
2
−
3
2
+ ①
3
8
①−1
+
1
8
①−1
+ · · · =
2 −
1
2
3
+ · · · ①−1
+ · · · −
1
2
−
3
2
+ ①
3
8
①−1
+
1
8
①−1
+ · · · = 0 + · · · ①−1
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31



x∗
1 = 1 + 1
4①−1
+ · · ·
x∗
2 = 1
8 ①−1
+ · · ·
x∗
1 + x∗
2 − 1 = 1 + 1
4
①−1
+ 1
8
①−1
+ · · · = 3
8
①−1
+ · · · > 0
x∗
1 − x∗
2 − 1 = 1 + 1
4
①−1
− 1
8
①−1
+ · · · = 1
8
①−1
+ · · · > 0
−x∗
1 + x∗
2 − 1 = −1 − 1
4
①−1
+ 1
8
①−1
+ · · · < 0
−x∗
1 − x∗
2 − 1 = −1 − 1
4
①−1
− 1
8
①−1
+ · · · < 0
x∗
1 + x∗
2 − 1 =
3
8
①−1
+ · · · =⇒ µ∗
1 =
3
8
x∗
1 − x∗
2 − 1 =
1
8
①−1
+ · · · =⇒ µ∗
1 =
1
8
Example 4
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 21 / 31
min x1 + x2
subject to x2
1 + x2
2 − 2
2
= 0
L(x, π) = x1 + x2 + π x2
1 + x2
2 − 2
2
The optimal solution is x∗ =
−1
−1
Example 4
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 21 / 31
φ (x, ①) = x1 + x2 +
①
2
x2
1 + x2
2 − 2
4
First–Order Optimality Conditions



x1 + 4①x1 x2
1 + x2
2 − 2
3
= 0
x2 + 4①x2 x2
1 + x2
2 − 2
3
= 0
Example 4
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 21 / 31



x1 = A + B①−1
+ C①−2
x2 = D + E①−1
+ F①−2
1 + 4①x∗
1 x2
1 + x2
2 − 2
3
=
1 + 4A① + 4B + 4C①−1
R + · · · ①−1
+ · · · + · · ·
3
=
where R = A2 + B2 − 2. If R = 0 there is still a term multiplying ①. If
R = 0, a term ①−3
can be factored out. The only possibility to eliminate the
term multiplying ① is A = 0. Spurious solution!
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 23 / 31
min
x
1
2xT Mx
subject to Ax = b
x ≥ 0
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 23 / 31
min
x
1
2xT Mx
subject to Ax = b
x ≥ 0
KKT conditions
Mx + q − AT
u − v = 0
Ax − b = 0
x ≥ 0, v ≥ 0, xT
v = 0
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 23 / 31
min
x
1
2xT Mx
subject to Ax = b
x ≥ 0
min
1
2
xT
Mx +
①
2
Ax − b 2
2 +
①
2
max{0, −x} 2
2 =: F(x)
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 23 / 31
min
x
1
2xT Mx
subject to Ax = b
x ≥ 0
min
1
2
xT
Mx +
①
2
Ax − b 2
2 +
①
2
max{0, −x} 2
2 =: F(x)
∇F(x) = Mx + q + ①AT
(Ax − b) − ① max{0, −x}
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 23 / 31
min
x
1
2xT Mx
subject to Ax = b
x ≥ 0
min
1
2
xT
Mx +
①
2
Ax − b 2
2 +
①
2
max{0, −x} 2
2 =: F(x)
∇F(x) = Mx + q + ①AT
(Ax − b) − ① max{0, −x}
x = x(0)
+ ①−1
x(1)
+ ①−2
x(2)
+ . . .
b = b(0)
+ ①−1
b(1)
+ ①−2
b(2)
+ . . .
A ∈ IRm×n
rank(A) = m
∇F(x) = 0
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 24 / 31
0 = Mx + q + ①AT A x(0) + ①−1
x(1) + ①−2
x(2) + . . .
−b(0) − ①−1
b(1) − ①−2
b(2) + . . .
+① max 0, −x(0) − ①−1
x(1) − ①−2
x(2) + . . .
∇F(x) = 0
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 24 / 31
0 = Mx + q + ①AT A x(0) + ①−1
x(1) + ①−2
x(2) + . . .
−b(0) − ①−1
b(1) − ①−2
b(2) + . . .
+① max 0, −x(0) − ①−1
x(1) − ①−2
x(2) + . . .
Looking at the ① terms
Ax(0)
− b(0)
= 0
max 0, −x(0)
= 0 and hence x(0)
≥ 0
∇F(x) = 0
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 24 / 31
0 = Mx + q + ①AT A x(0) + ①−1
x(1) + ①−2
x(2) + . . .
−b(0) − ①−1
b(1) − ①−2
b(2) + . . .
+① max 0, −x(0) − ①−1
x(1) − ①−2
x(2) + . . .
Looking at the ①0
terms
Mx(0)
+ q + AT
Ax(1)
− b(1)
− v = 0
where
vj = max 0, −x
(1)
j
only for the indices j for which x
(0)
j = 0, otherwise vj = 0
∇F(x) = 0
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 24 / 31
0 = Mx + q + ①AT A x(0) + ①−1
x(1) + ①−2
x(2) + . . .
−b(0) − ①−1
b(1) − ①−2
b(2) + . . .
+① max 0, −x(0) − ①−1
x(1) − ①−2
x(2) + . . .
Set
u = Ax(1)
− b(1)
vj =
0 if x
(0)
j = 0
max 0, −x
(1)
j otherwise
Then
Mx(0)
+ q + AT
u − v = 0
v ≥ 0, vT
x0
= 0
Algorithms
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
f(x) = ①f(1)
(x) + f(0)
(x) + ①−1
f(−1)
(x) + . . .
∇f(x) = ①∇f(1)
(x) + ∇f(0)
(x) + ①−1
∇f(−1)
(x) + . . .
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
At iteration k
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
At iteration k
If
∇f(1)
(xk
) = 0 and ∇f(0)
(xk
) = 0
STOP
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
At iteration k
otherwise find xk+1 such that
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
At iteration k
otherwise find xk+1 such that
If ∇f(1)(xk) = 0
f(1)
(xk+1
) ≤ f(1)
(xk
) + σ ∇f(1)
(xk
)
f(0)
(xk+1
) ≤ max
0≤j≤lk
f(0)
(xk−j
) + σ ∇f(0)
(xk
)
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
At iteration k
otherwise find xk+1 such that
If ∇f(1)(xk) = 0
f(0)
(xk+1
) ≤ f(0)
(xk
) + σ ∇f(0)
(xk
)
f(1)
(xk+1
) ≤ max
0≤j≤mk
f(1)
(xk−j
)
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
m0 = 0, mk+1 ≤ max {mk + 1, M}
l0 = 0, kk+1 ≤ max {lk + 1, L}
σ(.) is a forcing function.
Convergence
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 27 / 31
Case 1: ∃¯k such that ∇f(1)(xk) = 0, k ≥ ¯k
Then
f(1)
(xk+1
) ≤ max
0≤j≤mk
f(1)
(xk−j
), k ≥ ¯k
and hence
max
0≤i≤M
f(1)
(x
¯k+Ml+i
) ≤ max
0≤i≤M
f(1)
(x
¯k+M(l−1)+i
)
and
f(0)
(xk+1
) ≤ f(0)
(xk
) + σ ∇f(0)
(xk
) , k ≥ ¯k
Assuming that the level sets for f(1)(x0) and f(0)(x0) are compact sets, then
the sequence has at least one accumulation point x∗ and any accumulation
point satisfies ∇f(1)(x∗) = 0 and ∇f(0)(x∗) = 0
Convergence
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 27 / 31
Case 2: ∃ a subsequence jk such that ∇f(1)(xjk ) = 0
Then
f(1)
(xjk+1
) ≤ f(1)
(xjk
) + +σ ∇f(1)
(xjk
)
Again
max
0≤i≤M
f(1)
(xjk+Mt+i
) ≤ max
0≤i≤M
f(1)
(xjk+M(t−1)+i
) + σ ∇f(1)
(xjk
)
and hence ∇f(1)(xjk ) → 0.
Convergence
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 27 / 31
Case 2: ∃ a subsequence jk such that ∇f(1)(xjk ) = 0
Then
f(1)
(xjk+1
) ≤ f(1)
(xjk
) + +σ ∇f(1)
(xjk
)
Again
max
0≤i≤M
f(1)
(xjk+Mt+i
) ≤ max
0≤i≤M
f(1)
(xjk+M(t−1)+i
) + σ ∇f(1)
(xjk
)
and hence ∇f(1)(xjk ) → 0. Moreover,
max
0≤i≤L
f(0)
(xjk+Lt+i
) ≤ max
0≤i≤L
f(0)
(xjk+L(t−1)+i
) + σ ∇f(0)
(xjk
)
and hence ∇f(0)(xjk ) → 0.
Gradient Method
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 28 / 31
At iterations k calculate ∇f(xk).
If ∇f(1)(xk) = 0
xk+1
= min
α≥0,β≥0
f xk
− α∇f(1)
(xk
) − β∇f(0)
(xk
)
If ∇f(1)(xk) = 0
xk+1
= min
α≥0
f(0)
xk
− α∇f(0)
(xk
)
Example A
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 29 / 31
min
x
1
2x2
1 + 1
6 x2
2
subject to x1 + x2 − 1 = 0
f(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
x0
=
4
1
→ x1
=
0.31
0.69
→ x2
=
−0.1
0.39
→ x3
=
0.26
0.74
→
x4
=
−0.12
0.38
→ x5
=
0.25
0.75
Example B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 30 / 31
min
x
x1 + x2
subject to x1
1 + x2
2 − 2 = 0
f(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
x0
=
0.25
0.75
→ x1
=
−1.22
−0.72
→ x2
=
−7.39
−6.89
→ x3
=
1.04
0.95
→
x4
=
−7.10
−7.19
→ x5
=
−1
−1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 31 / 31
Thanks for your attention

More Related Content

What's hot

Accelerated approximate Bayesian computation with applications to protein fol...
Accelerated approximate Bayesian computation with applications to protein fol...Accelerated approximate Bayesian computation with applications to protein fol...
Accelerated approximate Bayesian computation with applications to protein fol...
Umberto Picchini
 
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
BRNSS Publication Hub
 
ABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space models
Umberto Picchini
 
BlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed modelBlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed model
KyusonLim
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
Arthur Charpentier
 
talk MCMC & SMC 2004
talk MCMC & SMC 2004talk MCMC & SMC 2004
talk MCMC & SMC 2004
Stephane Senecal
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
Raj Parekh
 
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
Alexander Litvinenko
 
A lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controlsA lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controls
Alejandro Díaz-Caro
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equations
Meenakshisundaram N
 
Lec1 01
Lec1 01Lec1 01
Prime numbers
Prime numbersPrime numbers
Prime numbers
Solo Hermelin
 
Slides Bank England
Slides Bank EnglandSlides Bank England
Slides Bank England
Arthur Charpentier
 
Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...
Umberto Picchini
 
Newton’s Divided Difference Formula
Newton’s Divided Difference FormulaNewton’s Divided Difference Formula
Newton’s Divided Difference Formula
Jas Singh Bhasin
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Lecture 8 - Splines
Lecture 8 - SplinesLecture 8 - Splines
Lecture 8 - Splines
Eric Cochran
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of Variation
Subhajit Pramanick
 
My data are incomplete and noisy: Information-reduction statistical methods f...
My data are incomplete and noisy: Information-reduction statistical methods f...My data are incomplete and noisy: Information-reduction statistical methods f...
My data are incomplete and noisy: Information-reduction statistical methods f...
Umberto Picchini
 
So a webinar-2013-2
So a webinar-2013-2So a webinar-2013-2
So a webinar-2013-2
Arthur Charpentier
 

What's hot (20)

Accelerated approximate Bayesian computation with applications to protein fol...
Accelerated approximate Bayesian computation with applications to protein fol...Accelerated approximate Bayesian computation with applications to protein fol...
Accelerated approximate Bayesian computation with applications to protein fol...
 
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
 
ABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space models
 
BlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed modelBlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed model
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
 
talk MCMC & SMC 2004
talk MCMC & SMC 2004talk MCMC & SMC 2004
talk MCMC & SMC 2004
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
 
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
 
A lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controlsA lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controls
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equations
 
Lec1 01
Lec1 01Lec1 01
Lec1 01
 
Prime numbers
Prime numbersPrime numbers
Prime numbers
 
Slides Bank England
Slides Bank EnglandSlides Bank England
Slides Bank England
 
Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...
 
Newton’s Divided Difference Formula
Newton’s Divided Difference FormulaNewton’s Divided Difference Formula
Newton’s Divided Difference Formula
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Lecture 8 - Splines
Lecture 8 - SplinesLecture 8 - Splines
Lecture 8 - Splines
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of Variation
 
My data are incomplete and noisy: Information-reduction statistical methods f...
My data are incomplete and noisy: Information-reduction statistical methods f...My data are incomplete and noisy: Information-reduction statistical methods f...
My data are incomplete and noisy: Information-reduction statistical methods f...
 
So a webinar-2013-2
So a webinar-2013-2So a webinar-2013-2
So a webinar-2013-2
 

Similar to Main

MCMC and likelihood-free methods
MCMC and likelihood-free methodsMCMC and likelihood-free methods
MCMC and likelihood-free methods
Christian Robert
 
05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
BRNSS Publication Hub
 
smtlecture.6
smtlecture.6smtlecture.6
smtlecture.6
Roberto Bruttomesso
 
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
The Statistical and Applied Mathematical Sciences Institute
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
Dr Fereidoun Dejahang
 
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Satoshi Kura
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
Amin khalil
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
joseluisroyo
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...
Asma Ben Slimene
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...
Asma Ben Slimene
 
Controlled sequential Monte Carlo
Controlled sequential Monte Carlo Controlled sequential Monte Carlo
Controlled sequential Monte Carlo
JeremyHeng10
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notes
Ahmed Tayeh
 
ma112011id535
ma112011id535ma112011id535
ma112011id535
matsushimalab
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
Frank Nielsen
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
Dr. C.V. Suresh Babu
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
Elvis DOHMATOB
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
The Statistical and Applied Mathematical Sciences Institute
 
1010n3a
1010n3a1010n3a
1010n3a
Faiza Saher
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
VjekoslavKovac1
 
A Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium ProblemsA Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium Problems
Yasmine Anino
 

Similar to Main (20)

MCMC and likelihood-free methods
MCMC and likelihood-free methodsMCMC and likelihood-free methods
MCMC and likelihood-free methods
 
05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
 
smtlecture.6
smtlecture.6smtlecture.6
smtlecture.6
 
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...
 
Controlled sequential Monte Carlo
Controlled sequential Monte Carlo Controlled sequential Monte Carlo
Controlled sequential Monte Carlo
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notes
 
ma112011id535
ma112011id535ma112011id535
ma112011id535
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
 
1010n3a
1010n3a1010n3a
1010n3a
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
A Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium ProblemsA Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium Problems
 

More from Renato De Leone

Its
ItsIts
Inn
InnInn
Main
MainMain
Brasile
BrasileBrasile
Its
ItsIts
Pau 2015
Pau 2015Pau 2015
Pau 2015
Renato De Leone
 
Poster microgrid
Poster microgridPoster microgrid
Poster microgrid
Renato De Leone
 
SD approach to the boarding process
SD approach to the boarding processSD approach to the boarding process
SD approach to the boarding process
Renato De Leone
 
Main
MainMain
Airo2014
Airo2014Airo2014
Airo2014
Renato De Leone
 
Impara la Ricerca Operativa divertendoti
Impara la Ricerca Operativa divertendotiImpara la Ricerca Operativa divertendoti
Impara la Ricerca Operativa divertendotiRenato De Leone
 

More from Renato De Leone (13)

Its
ItsIts
Its
 
Inn
InnInn
Inn
 
Main
MainMain
Main
 
Brasile
BrasileBrasile
Brasile
 
Its
ItsIts
Its
 
Pau 2015
Pau 2015Pau 2015
Pau 2015
 
Poster microgrid
Poster microgridPoster microgrid
Poster microgrid
 
SD approach to the boarding process
SD approach to the boarding processSD approach to the boarding process
SD approach to the boarding process
 
Main
MainMain
Main
 
Main
MainMain
Main
 
Airo2014
Airo2014Airo2014
Airo2014
 
Impara la Ricerca Operativa divertendoti
Impara la Ricerca Operativa divertendotiImpara la Ricerca Operativa divertendoti
Impara la Ricerca Operativa divertendoti
 
Matematica e medicina
Matematica e medicinaMatematica e medicina
Matematica e medicina
 

Recently uploaded

aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
İsa Badur
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
University of Hertfordshire
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
PRIYANKA PATEL
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
Sharon Liu
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
Sérgio Sacani
 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
Hitesh Sikarwar
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
KrushnaDarade1
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
University of Maribor
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
European Sustainable Phosphorus Platform
 
Nucleophilic Addition of carbonyl compounds.pptx
Nucleophilic Addition of carbonyl  compounds.pptxNucleophilic Addition of carbonyl  compounds.pptx
Nucleophilic Addition of carbonyl compounds.pptx
SSR02
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
Aditi Bajpai
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
muralinath2
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
Anagha Prasad
 
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptxBREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
RASHMI M G
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
University of Maribor
 
Medical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptxMedical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptx
terusbelajar5
 

Recently uploaded (20)

aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
 
Nucleophilic Addition of carbonyl compounds.pptx
Nucleophilic Addition of carbonyl  compounds.pptxNucleophilic Addition of carbonyl  compounds.pptx
Nucleophilic Addition of carbonyl compounds.pptx
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
 
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptxBREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
 
Medical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptxMedical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptx
 

Main

  • 1. Nonlinear programming and grossone: (theory and) algorithms R. De Leone School of Science and Tecnology Universit`a di Camerino June 2016
  • 2. Outline of the talk Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 2 / 31 Equality Constraints Inequality Constraints Quadratic Problems Algorithms
  • 3. Equality Constraints Equality Constraints Inequality Constraints Quadratic Problems Algorithms
  • 4. The case of Equality Constraints Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 4 / 31 min x f(x) subject to h(x) = 0 where f : IRn → IR and h : IRn → IRk L(x, π) := f(x) + k j=1 πjhj(x) = f(x) + πT h(x)
  • 5. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition).
  • 6. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition). If x∗ is a local minimizer then
  • 7. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition). If x∗ is a local minimizer then there exists π∗ ∈ IRk such that
  • 8. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition). If x∗ is a local minimizer then there exists π∗ ∈ IRk such that ∇xL(x∗ , π∗ ) = ∇f(x∗ ) + k j=1 ∇hj(x∗ )π∗ j = 0 ∇πL(x∗ , π∗ ) = h(x∗ ) = 0
  • 9. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition). If x∗ is a local minimizer then there exists π∗ ∈ IRk such that ∇xL(x∗ , π∗ ) = ∇f(x∗ ) + ∇h(x∗ )T π∗ = 0 ∇πL(x∗ , π∗ ) = h(x∗ ) = 0
  • 10. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition). If x∗ is a local minimizer then there exists π∗ ∈ IRk such that ∇xL(x∗ , π∗ ) = ∇f(x∗ ) + ∇h(x∗ )T π∗ = 0 ∇πL(x∗ , π∗ ) = h(x∗ ) = 0 KKT (Karush–Kuhn–Tucker) Conditions
  • 11. Penalty Functions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 6 / 31 A penalty function P : IRn → IR satisfies the following condition P(x) = 0 if x belongs to the feasible region > 0 otherwise
  • 12. Penalty Functions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 6 / 31 A penalty function P : IRn → IR satisfies the following condition P(x) = 0 if x belongs to the feasible region > 0 otherwise P(x) = k j=1 |hj(x)| P(x) = k j=1 h2 j (x)
  • 13. Exactness of a Penalty Function Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 7 / 31 The optimal solution of the constrained problem min x f(x) subject to h(x) = 0 can be obtained by solving the following unconstrained minimization problem min f(x) + 1 σ P(x) for sufficiently small but fixed σ > 0.
  • 14. Exactness of a Penalty Function Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 7 / 31 The optimal solution of the constrained problem min x f(x) subject to h(x) = 0 can be obtained by solving the following unconstrained minimization problem min f(x) + 1 σ P(x) for sufficiently small but fixed σ > 0. P(x) = k j=1 |hj(x)|
  • 15. Exactness of a Penalty Function Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 7 / 31 The optimal solution of the constrained problem min x f(x) subject to h(x) = 0 can be obtained by solving the following unconstrained minimization problem min f(x) + 1 σ P(x) for sufficiently small but fixed σ > 0. P(x) = k j=1 |hj(x)| Non–smooth function!
  • 16. Sequential Penalty Method Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 8 / 31 Let {σl} ↓ 0 and P(x) = k j=1 h2 j (x) Step 0 Set l = 0 Step 1 Let x(σl) be an optimal solution of the unconstrained differentiable problem min f(x) + 1 σl P(x) Step 2 Set l = l + 1 and return to Step 1
  • 17. Introducing ① Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 9 / 31 Let P(x) = k j=1 h2 j (x) Solve min f(x) + ①P(x) =: φ (x, ①)
  • 18. Assumptions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 10 / 31 x = x0 + ①−1 x1 + ①−2 x2 + . . . with xi ∈ IRn
  • 19. Assumptions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 10 / 31 x = x0 + ①−1 x1 + ①−2 x2 + . . . with xi ∈ IRn f(x) = f(0) (x) + ①−1 f(1) (x) + ①−2 f(2) (x) + . . . h(x) = h(0) (x) + ①−1 h(1) (x) + ①−2 h(2) (x) + . . . where f(i) : IRn → IR, h(i) : IRn → IRk are all finite–value functions.
  • 20. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 11 / 31 min x f(x) subject to h(x) = 0 (1)
  • 21. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 11 / 31 min x f(x) subject to h(x) = 0 (1) min x f(x) + 1 2 ① h(x) 2 (2)
  • 22. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 11 / 31 min x f(x) subject to h(x) = 0 (1) min x f(x) + 1 2 ① h(x) 2 (2) Let x∗ = x∗0 + ①−1 x∗1 + ①−2 x∗2 + . . . be a stationary point for (2) and assume that the LICQ condition holds at x∗0 then
  • 23. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 11 / 31 min x f(x) subject to h(x) = 0 (1) min x f(x) + 1 2 ① h(x) 2 (2) Let x∗ = x∗0 + ①−1 x∗1 + ①−2 x∗2 + . . . be a stationary point for (2) and assume that the LICQ condition holds at x∗0 then the pair x∗0, π∗ = h(1)(x∗) is a KKT point of (1).
  • 24. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 min x 1 2x2 1 + 1 6 x2 2 subject to x1 + x2 = 1 The pair (x∗, π∗) with x∗ =   1 4 3 4  , π∗ = −1 4 is a KKT point.
  • 25. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 min x 1 2x2 1 + 1 6 x2 2 subject to x1 + x2 = 1 The pair (x∗, π∗) with x∗ =   1 4 3 4  , π∗ = −1 4 is a KKT point. f(x) + ①P(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2
  • 26. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 f(x) + ①P(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 First Order Optimality Condition x1 + ①(x1 + x2 − 1) = 0 1 3x2 + ①(x1 + x2 − 1) = 0
  • 27. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 f(x) + ①P(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 x∗ 1 = 1① 1 + 4① , x∗ 2 = 3① 1 + 4①
  • 28. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 f(x) + ①P(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 x∗ 1 = 1① 1 + 4① , x∗ 2 = 3① 1 + 4① x∗ 1 = 1 4 − ①−1 ( 1 16 − 1 64 ①−1 . . .) x∗ 2 = 3 4 − ①−1 ( 3 16 − 3 64 ①−1 . . .)
  • 29. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 f(x) + ①P(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 x∗ 1 = 1① 1 + 4① , x∗ 2 = 3① 1 + 4① x∗ 1 + x∗ 2 − 1 = 1 4 − 1 16 ①−1 + 1 64 ①−2 . . . + 3 4 − 3 16 ①−1 + 3 64 ①−2 . . . − 1 = − 1 16 ①−1 − 3 16 ①−1 + 4 64 ①−2 . . . and h(1)(x∗) = −1 4 = π∗
  • 30. Example 2 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 13 / 31 min x1 + x2 subject to x2 1 + x2 2 − 2 = 0 L(x, π) = x1 + x2 + π x2 1 + x2 2 − 2 The optimal solution is x∗ = −1 −1 and the pair x∗, π∗ = 1 2 satisfies the KKT conditions.
  • 31. Example 2 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 13 / 31 φ (x, ①) = x1 + x2 + ① 2 x2 1 + x2 2 − 2 2 First–Order Optimality Conditions    x1 + 2①x1 x2 1 + x2 2 − 2 2 = 0 x2 + 2①x2 x2 1 + x2 2 − 2 2 = 0 The solution is given by    x1 = −1 − ①−1 1 8 + ①−2 C x2 = −1 − ①−1 1 8 + ①−2 C
  • 32. Example 2 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 13 / 31 Moreover x2 1 + x2 2 − 2 = 1 + 1 64 ①−2 + ①−4 C2 1 4 ①−1 − 2①−2 − 1 4 ①−3 C + 1 + 1 64 ①−2 + ①−4 C2 1 4 ①−1 − 2①−2 − 1 4 ①−3 C = 1 2 ①−1 + 1 32 − 4C ①−2 + − 1 2 C ①−3 + −2C2 ①−4
  • 33. Inequality Constraints Equality Constraints Inequality Constraints Quadratic Problems Algorithms
  • 34. Inequality Constraints Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 15 / 31 min x f(x) subject to g(x) ≤ 0 h(x) = 0 where f : IRn → IR, g : IRn → IRm h : IRn → IRk . L(x, π, µ) := f(x) + m i=1 µigi(x) + k j=1 πjhj(x) = f(x) + µT g(x) + πT h(x)
  • 35. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 16 / 31 Let x∗ ∈ IRn with ∇gi(x∗ ), i : gi(x∗ ) = 0, ∇hj(x∗ ), j = 1, . . . , k linearly independent
  • 36. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 16 / 31 Let x∗ ∈ IRn with ∇gi(x∗ ), i : gi(x∗ ) = 0, ∇hj(x∗ ), j = 1, . . . , k linearly independent If x∗ is a local minimizer then
  • 37. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 16 / 31 Let x∗ ∈ IRn with ∇gi(x∗ ), i : gi(x∗ ) = 0, ∇hj(x∗ ), j = 1, . . . , k linearly independent If x∗ is a local minimizer then there exists µ∗ ∈ IRm + , π∗ ∈ IRk such that ∇xL(x∗ , µ∗ , π∗ ) = ∇f(x∗ ) + k j=1 ∇hj(x∗ )π∗ j = 0 ∇µL(x∗ , µ∗ , π∗ ) = g(x∗ ) ≤ 0 ∇πL(x∗ , µ∗ , π∗ ) = h(x∗ ) = 0 µ∗ ≥ 0 µ∗T ∇πL(x∗ , µ∗ , π∗ ) = 0
  • 38. Modified LICQ condition Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 17 / 31 Let x0 ∈ IRn . The Modified LICQ (MLICQ) condition is said to hold at x0 if the vectors ∇gi(x0 ), i : gi(x0 ) ≥ 0, ∇hj(x0 ), j = 1, . . . , k are linearly independent.
  • 39. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 18 / 31 min x f(x) subject to g(x) ≤ 0 h(x) = 0 min x f(x) + ① 2 max{0, gi(x)} 2 + ① 2 h(x) 2 x∗ = x∗0 + ①−1 x∗1 + ①−2 x∗2 + . . . ⇓ (MLICQ)
  • 40. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 18 / 31 min x f(x) subject to g(x) ≤ 0 h(x) = 0 min x f(x) + ① 2 max{0, gi(x)} 2 + ① 2 h(x) 2 x∗ = x∗0 + ①−1 x∗1 + ①−2 x∗2 + . . . ⇓ (MLICQ) x∗0 , µ∗ = g(1) (x∗ ), π∗ = h(1) (x∗ )
  • 41. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 min x1 + x2 subject to x2 1 + x2 2 − 2 ≤ 0 −x2 ≤ 0
  • 42. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 min x1 + x2 subject to x2 1 + x2 2 − 2 ≤ 0 −x2 ≤ 0 L(x, π) = x1 + x2 + µ1 x2 1 + x2 2 − 2 − µ2x2 The solution is x∗ = − √ 2 0 and (x∗, µ∗) with µ∗ = 1/2 √ 2 1 satisfies KKT conditions.
  • 43. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 min x1 + x2 subject to x2 1 + x2 2 − 2 ≤ 0 −x2 ≤ 0 φ(x, ①) = x1 + x2 + ① 2 max 0, x2 1 + x2 2 − 2 2 + ① 2 max {0, −x2}2
  • 44. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 φ(x, ①) = x1 + x2 + ① 2 max 0, x2 1 + x2 2 − 2 2 + ① 2 max {0, −x2}2
  • 45. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 φ(x, ①) = x1 + x2 + ① 2 max 0, x2 1 + x2 2 − 2 2 + ① 2 max {0, −x2}2    1 + 2x1① max 0, x2 1 + x2 2 − 2 = 0 1 + 2x2① max 0, x2 1 + x2 2 − 2 − ① max {0, −x2} = 0
  • 46. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 φ(x, ①) = x1 + x2 + ① 2 max 0, x2 1 + x2 2 − 2 2 + ① 2 max {0, −x2}2    1 + 2x1① max 0, x2 1 + x2 2 − 2 = 0 1 + 2x2① max 0, x2 1 + x2 2 − 2 − ① max {0, −x2} = 0    x∗ 1 = − √ 2 + A①−1 + B①−2 + . . . x∗ 2 = 0 − 1①−1 + D①−2 + . . .
  • 47. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 g1(x∗ ) = (x∗ 1)2 + (x∗ 2)2 − 2 = +2 √ 2 1 8 ①−1 + 1 64 − 2 √ 2B + C2 ①−2 + · · · µ∗ 1 = 2 √ 2 1 8 = 1 2 √ 2
  • 48. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 g2(x∗ ) = −x∗ 2 − −①−1 − D①−2 + · · · µ∗ 2 = 1
  • 49. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31 min 1 2 x1 − 3 2 2 + 1 2 x2 − 1 2 4 subject to x1 + x2 − 1 ≤ 0 x1 − x2 − 1 ≤ 0 −x1 + x2 − 1 ≤ 0 −x1 − x2 − 1 ≤ 0 The solution is x∗ = 1 0 and (x+, µ∗) with µ∗ =     3/8 1/8 0 0     satisfies KKT conditions.
  • 50. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31 φ(x, ①) = 1 2 x1 − 3 2 2 + 1 2 x2 − 1 2 4 + ① 2 max{0, x1 + x2 − 1}2 + max{0, x1 − x2 − 1}2 + max{0, −x1 + x2 − 1}2 + max{0, −x1 − x2 − 1}2
  • 51. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31 φ(x, ①) = 1 2 x1 − 3 2 2 + 1 2 x2 − 1 2 4 + ① 2 max{0, x1 + x2 − 1}2 + max{0, x1 − x2 − 1}2 + max{0, −x1 + x2 − 1}2 + max{0, −x1 − x2 − 1}2    x1 − 3 2 + ① max{0, x1 + x2 − 1}+ max{0, x1 − x2 − 1} − max{0, −x1 + x2 − 1} − max{0, −x1 − x2 − 1} = 0 2 x2 − 1 2 3 + ① max{0, x1 + x2 − 1}− max{0, x1 − x2 − 1} + max{0, −x1 + x2 − 1} − max{0, −x1 − x2 − 1} = 0
  • 52. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31    x∗ 1 = 1 + 1 4①−1 + · · · x∗ 2 = 1 8 ①−1 + · · · x∗ 1 + x∗ 2 − 1 = 1 + 1 4 ①−1 + 1 8 ①−1 + · · · = 3 8 ①−1 + · · · > 0 x∗ 1 − x∗ 2 − 1 = 1 + 1 4 ①−1 − 1 8 ①−1 + · · · = 1 8 ①−1 + · · · > 0 −x∗ 1 + x∗ 2 − 1 = −1 − 1 4 ①−1 + 1 8 ①−1 + · · · < 0 −x∗ 1 − x∗ 2 − 1 = −1 − 1 4 ①−1 − 1 8 ①−1 + · · · < 0
  • 53. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31    x∗ 1 = 1 + 1 4①−1 + · · · x∗ 2 = 1 8 ①−1 + · · · x∗ 1 + x∗ 2 − 1 = 1 + 1 4 ①−1 + 1 8 ①−1 + · · · = 3 8 ①−1 + · · · > 0 x∗ 1 − x∗ 2 − 1 = 1 + 1 4 ①−1 − 1 8 ①−1 + · · · = 1 8 ①−1 + · · · > 0 −x∗ 1 + x∗ 2 − 1 = −1 − 1 4 ①−1 + 1 8 ①−1 + · · · < 0 −x∗ 1 − x∗ 2 − 1 = −1 − 1 4 ①−1 − 1 8 ①−1 + · · · < 0 x∗ 1 − 3 2 + ① 3 8 ①−1 + 1 8 ①−1 + · · · = 1 + 1 4 ①−1 + · · · − 3 2 + ① 3 8 ①−1 + 1 8 ①−1 + · · · = 0 + · · · ①−1 + · · ·
  • 54. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31    x∗ 1 = 1 + 1 4①−1 + · · · x∗ 2 = 1 8 ①−1 + · · · x∗ 1 + x∗ 2 − 1 = 1 + 1 4 ①−1 + 1 8 ①−1 + · · · = 3 8 ①−1 + · · · > 0 x∗ 1 − x∗ 2 − 1 = 1 + 1 4 ①−1 − 1 8 ①−1 + · · · = 1 8 ①−1 + · · · > 0 −x∗ 1 + x∗ 2 − 1 = −1 − 1 4 ①−1 + 1 8 ①−1 + · · · < 0 −x∗ 1 − x∗ 2 − 1 = −1 − 1 4 ①−1 − 1 8 ①−1 + · · · < 0 2 x∗ 2 − 1 2 3 + ① 3 8 ①−1 + 1 8 ①−1 + · · · = 2 1 8 ①−1 + · · · − 1 2 − 3 2 + ① 3 8 ①−1 + 1 8 ①−1 + · · · = 2 − 1 2 3 + · · · ①−1 + · · · − 1 2 − 3 2 + ① 3 8 ①−1 + 1 8 ①−1 + · · · = 0 + · · · ①−1
  • 55. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31    x∗ 1 = 1 + 1 4①−1 + · · · x∗ 2 = 1 8 ①−1 + · · · x∗ 1 + x∗ 2 − 1 = 1 + 1 4 ①−1 + 1 8 ①−1 + · · · = 3 8 ①−1 + · · · > 0 x∗ 1 − x∗ 2 − 1 = 1 + 1 4 ①−1 − 1 8 ①−1 + · · · = 1 8 ①−1 + · · · > 0 −x∗ 1 + x∗ 2 − 1 = −1 − 1 4 ①−1 + 1 8 ①−1 + · · · < 0 −x∗ 1 − x∗ 2 − 1 = −1 − 1 4 ①−1 − 1 8 ①−1 + · · · < 0 x∗ 1 + x∗ 2 − 1 = 3 8 ①−1 + · · · =⇒ µ∗ 1 = 3 8 x∗ 1 − x∗ 2 − 1 = 1 8 ①−1 + · · · =⇒ µ∗ 1 = 1 8
  • 56. Example 4 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 21 / 31 min x1 + x2 subject to x2 1 + x2 2 − 2 2 = 0 L(x, π) = x1 + x2 + π x2 1 + x2 2 − 2 2 The optimal solution is x∗ = −1 −1
  • 57. Example 4 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 21 / 31 φ (x, ①) = x1 + x2 + ① 2 x2 1 + x2 2 − 2 4 First–Order Optimality Conditions    x1 + 4①x1 x2 1 + x2 2 − 2 3 = 0 x2 + 4①x2 x2 1 + x2 2 − 2 3 = 0
  • 58. Example 4 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 21 / 31    x1 = A + B①−1 + C①−2 x2 = D + E①−1 + F①−2 1 + 4①x∗ 1 x2 1 + x2 2 − 2 3 = 1 + 4A① + 4B + 4C①−1 R + · · · ①−1 + · · · + · · · 3 = where R = A2 + B2 − 2. If R = 0 there is still a term multiplying ①. If R = 0, a term ①−3 can be factored out. The only possibility to eliminate the term multiplying ① is A = 0. Spurious solution!
  • 59. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms
  • 60. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 23 / 31 min x 1 2xT Mx subject to Ax = b x ≥ 0
  • 61. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 23 / 31 min x 1 2xT Mx subject to Ax = b x ≥ 0 KKT conditions Mx + q − AT u − v = 0 Ax − b = 0 x ≥ 0, v ≥ 0, xT v = 0
  • 62. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 23 / 31 min x 1 2xT Mx subject to Ax = b x ≥ 0 min 1 2 xT Mx + ① 2 Ax − b 2 2 + ① 2 max{0, −x} 2 2 =: F(x)
  • 63. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 23 / 31 min x 1 2xT Mx subject to Ax = b x ≥ 0 min 1 2 xT Mx + ① 2 Ax − b 2 2 + ① 2 max{0, −x} 2 2 =: F(x) ∇F(x) = Mx + q + ①AT (Ax − b) − ① max{0, −x}
  • 64. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 23 / 31 min x 1 2xT Mx subject to Ax = b x ≥ 0 min 1 2 xT Mx + ① 2 Ax − b 2 2 + ① 2 max{0, −x} 2 2 =: F(x) ∇F(x) = Mx + q + ①AT (Ax − b) − ① max{0, −x} x = x(0) + ①−1 x(1) + ①−2 x(2) + . . . b = b(0) + ①−1 b(1) + ①−2 b(2) + . . . A ∈ IRm×n rank(A) = m
  • 65. ∇F(x) = 0 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 24 / 31 0 = Mx + q + ①AT A x(0) + ①−1 x(1) + ①−2 x(2) + . . . −b(0) − ①−1 b(1) − ①−2 b(2) + . . . +① max 0, −x(0) − ①−1 x(1) − ①−2 x(2) + . . .
  • 66. ∇F(x) = 0 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 24 / 31 0 = Mx + q + ①AT A x(0) + ①−1 x(1) + ①−2 x(2) + . . . −b(0) − ①−1 b(1) − ①−2 b(2) + . . . +① max 0, −x(0) − ①−1 x(1) − ①−2 x(2) + . . . Looking at the ① terms Ax(0) − b(0) = 0 max 0, −x(0) = 0 and hence x(0) ≥ 0
  • 67. ∇F(x) = 0 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 24 / 31 0 = Mx + q + ①AT A x(0) + ①−1 x(1) + ①−2 x(2) + . . . −b(0) − ①−1 b(1) − ①−2 b(2) + . . . +① max 0, −x(0) − ①−1 x(1) − ①−2 x(2) + . . . Looking at the ①0 terms Mx(0) + q + AT Ax(1) − b(1) − v = 0 where vj = max 0, −x (1) j only for the indices j for which x (0) j = 0, otherwise vj = 0
  • 68. ∇F(x) = 0 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 24 / 31 0 = Mx + q + ①AT A x(0) + ①−1 x(1) + ①−2 x(2) + . . . −b(0) − ①−1 b(1) − ①−2 b(2) + . . . +① max 0, −x(0) − ①−1 x(1) − ①−2 x(2) + . . . Set u = Ax(1) − b(1) vj = 0 if x (0) j = 0 max 0, −x (1) j otherwise Then Mx(0) + q + AT u − v = 0 v ≥ 0, vT x0 = 0
  • 69. Algorithms Equality Constraints Inequality Constraints Quadratic Problems Algorithms
  • 70. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) f(x) = ①f(1) (x) + f(0) (x) + ①−1 f(−1) (x) + . . . ∇f(x) = ①∇f(1) (x) + ∇f(0) (x) + ①−1 ∇f(−1) (x) + . . .
  • 71. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) At iteration k
  • 72. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) At iteration k If ∇f(1) (xk ) = 0 and ∇f(0) (xk ) = 0 STOP
  • 73. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) At iteration k otherwise find xk+1 such that
  • 74. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) At iteration k otherwise find xk+1 such that If ∇f(1)(xk) = 0 f(1) (xk+1 ) ≤ f(1) (xk ) + σ ∇f(1) (xk ) f(0) (xk+1 ) ≤ max 0≤j≤lk f(0) (xk−j ) + σ ∇f(0) (xk )
  • 75. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) At iteration k otherwise find xk+1 such that If ∇f(1)(xk) = 0 f(0) (xk+1 ) ≤ f(0) (xk ) + σ ∇f(0) (xk ) f(1) (xk+1 ) ≤ max 0≤j≤mk f(1) (xk−j )
  • 76. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) m0 = 0, mk+1 ≤ max {mk + 1, M} l0 = 0, kk+1 ≤ max {lk + 1, L} σ(.) is a forcing function.
  • 77. Convergence Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 27 / 31 Case 1: ∃¯k such that ∇f(1)(xk) = 0, k ≥ ¯k Then f(1) (xk+1 ) ≤ max 0≤j≤mk f(1) (xk−j ), k ≥ ¯k and hence max 0≤i≤M f(1) (x ¯k+Ml+i ) ≤ max 0≤i≤M f(1) (x ¯k+M(l−1)+i ) and f(0) (xk+1 ) ≤ f(0) (xk ) + σ ∇f(0) (xk ) , k ≥ ¯k Assuming that the level sets for f(1)(x0) and f(0)(x0) are compact sets, then the sequence has at least one accumulation point x∗ and any accumulation point satisfies ∇f(1)(x∗) = 0 and ∇f(0)(x∗) = 0
  • 78. Convergence Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 27 / 31 Case 2: ∃ a subsequence jk such that ∇f(1)(xjk ) = 0 Then f(1) (xjk+1 ) ≤ f(1) (xjk ) + +σ ∇f(1) (xjk ) Again max 0≤i≤M f(1) (xjk+Mt+i ) ≤ max 0≤i≤M f(1) (xjk+M(t−1)+i ) + σ ∇f(1) (xjk ) and hence ∇f(1)(xjk ) → 0.
  • 79. Convergence Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 27 / 31 Case 2: ∃ a subsequence jk such that ∇f(1)(xjk ) = 0 Then f(1) (xjk+1 ) ≤ f(1) (xjk ) + +σ ∇f(1) (xjk ) Again max 0≤i≤M f(1) (xjk+Mt+i ) ≤ max 0≤i≤M f(1) (xjk+M(t−1)+i ) + σ ∇f(1) (xjk ) and hence ∇f(1)(xjk ) → 0. Moreover, max 0≤i≤L f(0) (xjk+Lt+i ) ≤ max 0≤i≤L f(0) (xjk+L(t−1)+i ) + σ ∇f(0) (xjk ) and hence ∇f(0)(xjk ) → 0.
  • 80. Gradient Method Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 28 / 31 At iterations k calculate ∇f(xk). If ∇f(1)(xk) = 0 xk+1 = min α≥0,β≥0 f xk − α∇f(1) (xk ) − β∇f(0) (xk ) If ∇f(1)(xk) = 0 xk+1 = min α≥0 f(0) xk − α∇f(0) (xk )
  • 81. Example A Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 29 / 31 min x 1 2x2 1 + 1 6 x2 2 subject to x1 + x2 − 1 = 0 f(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 x0 = 4 1 → x1 = 0.31 0.69 → x2 = −0.1 0.39 → x3 = 0.26 0.74 → x4 = −0.12 0.38 → x5 = 0.25 0.75
  • 82. Example B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 30 / 31 min x x1 + x2 subject to x1 1 + x2 2 − 2 = 0 f(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 x0 = 0.25 0.75 → x1 = −1.22 −0.72 → x2 = −7.39 −6.89 → x3 = 1.04 0.95 → x4 = −7.10 −7.19 → x5 = −1 −1
  • 83. Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 31 / 31 Thanks for your attention