This document presents an internship project report on multistep methods for solving initial value problems of ordinary differential equations. It introduces the basic problem of finding the function y(t) that satisfies a given differential equation and initial condition. It discusses existence and uniqueness theorems, Picard's method of successive approximations, and approaches for approximating the required integrations, including the derivative, Taylor series, and Euler's methods. The report appears to evaluate various one-step and multistep numerical methods for solving initial value problems, including Runge-Kutta, Adams-Bashforth, and Adams-Moulton methods.