Cluster analysis is an unsupervised learning technique used to group unlabeled data points into meaningful clusters. There are several approaches to cluster analysis including partitioning methods like k-means, hierarchical clustering methods like agglomerative nesting (AGNES), and density-based methods like DBSCAN. The quality of clusters is evaluated based on intra-cluster similarity and inter-cluster dissimilarity. Cluster analysis has applications in fields like pattern recognition, image processing, and market segmentation.