SlideShare a Scribd company logo
What is Cluster Analysis?
• Cluster: a collection of data objects
– Similar to one another within the same cluster
– Dissimilar to the objects in other clusters
• Cluster analysis
– Finding similarities between data according to the
characteristics found in the data and grouping similar
data objects into clusters
• Unsupervised learning: no predefined classes
• Typical applications
– As a stand-alone tool to get insight into data distribution
– As a preprocessing step for other algorithms
Clustering: Rich Applications
and Multidisciplinary Efforts
• Pattern Recognition
• Spatial Data Analysis
– Create thematic maps in GIS by clustering feature
spaces
– Detect spatial clusters or for other spatial mining tasks
• Image Processing
• Economic Science (especially market research)
• WWW
– Document classification
– Cluster Weblog data to discover groups of similar
access patterns
Examples of Clustering
Applications
• Marketing: Help marketers discover distinct groups in their customer
bases, and then use this knowledge to develop targeted marketing
programs
• Land use: Identification of areas of similar land use in an earth
observation database
• Insurance: Identifying groups of motor insurance policy holders with a
high average claim cost
• City-planning: Identifying groups of houses according to their house
type, value, and geographical location
• Earth-quake studies: Observed earth quake epicenters should be
clustered along continent faults
Quality: What Is Good
Clustering?
• A good clustering method will produce high quality clusters with
– high intra-class similarity
– low inter-class similarity
• The quality of a clustering result depends on both the similarity
measure used by the method and its implementation
• The quality of a clustering method is also measured by its ability to
discover some or all of the hidden patterns
Measure the Quality of
Clustering
• Dissimilarity/Similarity metric: Similarity is expressed in terms of a
distance function, typically metric: d(i, j)
• There is a separate “quality” function that measures the “goodness” of
a cluster.
• The definitions of distance functions are usually very different for
interval-scaled, boolean, categorical, ordinal ratio, and vector
variables.
• Weights should be associated with different variables based on
applications and data semantics.
• It is hard to define “similar enough” or “good enough”
– the answer is typically highly subjective.
Requirements of Clustering in Data
Mining
• Scalability
• Ability to deal with different types of attributes
• Ability to handle dynamic data
• Discovery of clusters with arbitrary shape
• Minimal requirements for domain knowledge to determine input
parameters
• Able to deal with noise and outliers
• Insensitive to order of input records
• High dimensionality
• Incorporation of user-specified constraints
• Interpretability and usability
Similarity and Dissimilarity
Between Objects
• Distances are normally used to measure the
similarity or dissimilarity between two data
objects
• Some popular ones include: Minkowski
distance:
where i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are
two p-dimensional data objects, and q is a positive
integer
q
q
p
p
q
q
j
x
i
x
j
x
i
x
j
x
i
x
j
i
d )
|
|
...
|
|
|
(|
)
,
(
2
2
1
1







|
|
...
|
|
|
|
)
,
(
2
2
1
1 p
p j
x
i
x
j
x
i
x
j
x
i
x
j
i
d 






Similarity and Dissimilarity
Between Objects (Cont.)
• If q = 2, d is Euclidean distance:
– Properties
• d(i,j)  0
• d(i,i) = 0
• d(i,j) = d(j,i)
• d(i,j)  d(i,k) + d(k,j)
• Also, one can use weighted distance,
parametric Pearson product moment
correlation, or other disimilarity measures
)
|
|
...
|
|
|
(|
)
,
( 2
2
2
2
2
1
1 p
p j
x
i
x
j
x
i
x
j
x
i
x
j
i
d 






Major Clustering
Approaches (I)
• Partitioning approach:
– Construct various partitions and then evaluate them by some criterion, e.g.,
minimizing the sum of square errors
– Typical methods: k-means, k-medoids, CLARANS
• Hierarchical approach:
– Create a hierarchical decomposition of the set of data (or objects) using
some criterion
– Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON
• Density-based approach:
– Based on connectivity and density functions
– Typical methods: DBSACN, OPTICS, DenClue
Major Clustering
Approaches (II)
• Grid-based approach:
– based on a multiple-level granularity structure
– Typical methods: STING, WaveCluster, CLIQUE
• Model-based:
– A model is hypothesized for each of the clusters and tries to find the best fit
of that model to each other
– Typical methods: EM, SOM, COBWEB
• Frequent pattern-based:
– Based on the analysis of frequent patterns
– Typical methods: pCluster
• User-guided or constraint-based:
– Clustering by considering user-specified or application-specific constraints
– Typical methods: COD (obstacles), constrained clustering
Typical Alternatives to Calculate the
Distance between Clusters
• Single link: smallest distance between an element in
one cluster and an element in the other, i.e., dis(Ki, Kj) =
min(tip, tjq)
• Complete link: largest distance between an element in
one cluster and an element in the other, i.e., dis(Ki, Kj) =
max(tip, tjq)
• Average: avg distance between an element in one
cluster and an element in the other, i.e., dis(Ki, Kj) =
avg(tip, tjq)
• Centroid: distance between the centroids of two
The K-Means Clustering Method
• Given k, the k-means algorithm is
implemented in four steps:
– Partition objects into k nonempty subsets
– Compute seed points as the centroids of the
clusters of the current partition (the centroid is the
center, i.e., mean point, of the cluster)
– Assign each object to the cluster with the nearest
seed point
– Go back to Step 2, stop when no more new
assignment
The K-Means Clustering Method
• Example
0
1
2
3
4
5
6
7
8
9
10
0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10
0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10
0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10
0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10
0 1 2 3 4 5 6 7 8 9 10
K=2
Arbitrarily choose K
object as initial
cluster center
Assign
each
objects
to most
similar
center
Update
the
cluster
means
Update
the
cluster
means
reassign
reassign
Comments on the K-Means
Method
• Strength: Relatively efficient: O(tkn), where n is # objects, k
is # clusters, and t is # iterations. Normally, k, t << n.
• Comparing: PAM: O(k(n-k)2 ), CLARA: O(ks2 + k(n-k))
• Comment: Often terminates at a local optimum. The global
optimum may be found using techniques such as:
deterministic annealing and genetic algorithms
• Weakness
– Applicable only when mean is defined, then what about categorical
data?
– Need to specify k, the number of clusters, in advance
– Unable to handle noisy data and outliers
– Not suitable to discover clusters with non-convex shapes
What Is the Problem of the K-Means
Method?
• The k-means algorithm is sensitive to outliers !
– Since an object with an extremely large value may substantially
distort the distribution of the data.
• K-Medoids: Instead of taking the mean value of the object
in a cluster as a reference point, medoids can be used,
which is the most centrally located object in a cluster.
0
1
2
3
4
5
6
7
8
9
10
0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10
0 1 2 3 4 5 6 7 8 9 10
The K-Medoids Clustering Method
• Find representative objects, called medoids, in clusters
• PAM (Partitioning Around Medoids, 1987)
– starts from an initial set of medoids and iteratively replaces one
of the medoids by one of the non-medoids if it improves the total
distance of the resulting clustering
– PAM works effectively for small data sets, but does not scale
well for large data sets
• CLARA (Kaufmann & Rousseeuw, 1990)
• CLARANS (Ng & Han, 1994): Randomized sampling
• Focusing + spatial data structure (Ester et al., 1995)
Hierarchical Clustering
• Use distance matrix as clustering criteria. This
method does not require the number of clusters
k as an input, but needs a termination condition
Step 0 Step 1 Step 2 Step 3 Step 4
b
d
c
e
a
a b
d e
c d e
a b c d e
Step 4 Step 3 Step 2 Step 1 Step 0
agglomerative
divisive
Dendrogram: Shows How the Clusters are Merged
Decompose data objects into a several levels of nested
partitioning (tree of clusters), called a dendrogram.
A clustering of the data objects is obtained by cutting the
dendrogram at the desired level, then each connected
component forms a cluster.
What Is Outlier Discovery?
• What are outliers?
– The set of objects are considerably dissimilar from the
remainder of the data
– Example: Sports: Michael Jordon, Wayne Gretzky, ...
• Problem: Define and find outliers in large data
sets
• Applications:
– Credit card fraud detection
– Telecom fraud detection
– Customer segmentation
– Medical analysis
Summary
• Cluster analysis groups objects based on their
similarity and has wide applications
• Clustering algorithms can be categorized into
partitioning methods, hierarchical methods,
density-based methods, grid-based methods,
and model-based methods
• Outlier detection and analysis are very useful for
fraud detection, etc.
References (1)
• R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. SIGMOD'98
• M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
• M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to
identify the clustering structure, SIGMOD’99.
• P. Arabie, L. J. Hubert, and G. De Soete. Clustering and Classification. World
Scientific, 1996
• Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering", KDD'02
• M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying Density-Based Local
Outliers. SIGMOD 2000.
• M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases. KDD'96.
• M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases:
Focusing techniques for efficient class identification. SSD'95.
• D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2:139-172, 1987.
References (2)
• V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical Data Using
Summaries. KDD'99.
• D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach
based on dynamic systems. In Proc. VLDB’98.
• S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large
databases. SIGMOD'98.
• S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categorical
attributes. In ICDE'99, pp. 512-521, Sydney, Australia, March 1999.
• A. Hinneburg, D.l A. Keim: An Efficient Approach to Clustering in Large Multimedia
Databases with Noise. KDD’98.
• A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988.
• G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering
Algorithm Using Dynamic Modeling. COMPUTER, 32(8): 68-75, 1999.
• L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster
Analysis. John Wiley & Sons, 1990.
• E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets.
VLDB’98.
• G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to
Clustering. John Wiley and Sons, 1988.
References (3)
• L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A
Review , SIGKDD Explorations, 6(1), June 2004
• E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large
data sets. Proc. 1996 Int. Conf. on Pattern Recognition,.
• G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution
clustering approach for very large spatial databases. VLDB’98.
• A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based
Clustering in Large Databases, ICDT'01.
• A. K. H. Tung, J. Hou, and J. Han. Spatial Clustering in the Presence of Obstacles ,
ICDE'01
• H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large
data sets, SIGMOD’ 02.
• W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial
Data Mining, VLDB’97.
• T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : an efficient data clustering
method for very large databases. SIGMOD'96.

More Related Content

Similar to DM_clustering.ppt

Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...
Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...
Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...
Salah Amean
 
Cluster Analysis.pptx
Cluster Analysis.pptxCluster Analysis.pptx
Cluster Analysis.pptx
Rvishnupriya2
 
Clusters techniques
Clusters techniquesClusters techniques
Clusters techniques
rajshreemuthiah
 
Machine learning clustering
Machine learning clusteringMachine learning clustering
Machine learning clustering
CosmoAIMS Bassett
 
Unsupervised learning Modi.pptx
Unsupervised learning Modi.pptxUnsupervised learning Modi.pptx
Unsupervised learning Modi.pptx
ssusere1fd42
 
UNIT - 4: Data Warehousing and Data Mining
UNIT - 4: Data Warehousing and Data MiningUNIT - 4: Data Warehousing and Data Mining
UNIT - 4: Data Warehousing and Data Mining
Nandakumar P
 
DM UNIT_4 PPT for btech final year students
DM UNIT_4 PPT for btech final year studentsDM UNIT_4 PPT for btech final year students
DM UNIT_4 PPT for btech final year students
sriharipatilin
 
Dataa miining
Dataa miiningDataa miining
Dataa miining
SUBBIAH SURESH
 
Chapter 5.pdf
Chapter 5.pdfChapter 5.pdf
Chapter 5.pdf
DrGnaneswariG
 
ClusetrigBasic.ppt
ClusetrigBasic.pptClusetrigBasic.ppt
ClusetrigBasic.ppt
ChaitanyaKulkarni451137
 
Cluster_saumitra.ppt
Cluster_saumitra.pptCluster_saumitra.ppt
Cluster_saumitra.ppt
ssuser6b3336
 
CSA 3702 machine learning module 3
CSA 3702 machine learning module 3CSA 3702 machine learning module 3
CSA 3702 machine learning module 3
Nandhini S
 
Machine learning clustering
Machine learning clusteringMachine learning clustering
Machine learning clustering
Nadeem Oozeer
 
Chapter 10. Cluster Analysis Basic Concepts and Methods.ppt
Chapter 10. Cluster Analysis Basic Concepts and Methods.pptChapter 10. Cluster Analysis Basic Concepts and Methods.ppt
Chapter 10. Cluster Analysis Basic Concepts and Methods.ppt
Subrata Kumer Paul
 
47 292-298
47 292-29847 292-298
47 292-298
idescitation
 
10 clusbasic
10 clusbasic10 clusbasic
10 clusbasic
engrasi
 
Capter10 cluster basic : Han & Kamber
Capter10 cluster basic : Han & KamberCapter10 cluster basic : Han & Kamber
Capter10 cluster basic : Han & Kamber
Houw Liong The
 
Capter10 cluster basic
Capter10 cluster basicCapter10 cluster basic
Capter10 cluster basic
Houw Liong The
 
Chapter 10.1,2,3 pdf.pdf
Chapter 10.1,2,3 pdf.pdfChapter 10.1,2,3 pdf.pdf
Chapter 10.1,2,3 pdf.pdf
Amy Aung
 
CLUSTERING
CLUSTERINGCLUSTERING
CLUSTERING
Aman Jatain
 

Similar to DM_clustering.ppt (20)

Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...
Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...
Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...
 
Cluster Analysis.pptx
Cluster Analysis.pptxCluster Analysis.pptx
Cluster Analysis.pptx
 
Clusters techniques
Clusters techniquesClusters techniques
Clusters techniques
 
Machine learning clustering
Machine learning clusteringMachine learning clustering
Machine learning clustering
 
Unsupervised learning Modi.pptx
Unsupervised learning Modi.pptxUnsupervised learning Modi.pptx
Unsupervised learning Modi.pptx
 
UNIT - 4: Data Warehousing and Data Mining
UNIT - 4: Data Warehousing and Data MiningUNIT - 4: Data Warehousing and Data Mining
UNIT - 4: Data Warehousing and Data Mining
 
DM UNIT_4 PPT for btech final year students
DM UNIT_4 PPT for btech final year studentsDM UNIT_4 PPT for btech final year students
DM UNIT_4 PPT for btech final year students
 
Dataa miining
Dataa miiningDataa miining
Dataa miining
 
Chapter 5.pdf
Chapter 5.pdfChapter 5.pdf
Chapter 5.pdf
 
ClusetrigBasic.ppt
ClusetrigBasic.pptClusetrigBasic.ppt
ClusetrigBasic.ppt
 
Cluster_saumitra.ppt
Cluster_saumitra.pptCluster_saumitra.ppt
Cluster_saumitra.ppt
 
CSA 3702 machine learning module 3
CSA 3702 machine learning module 3CSA 3702 machine learning module 3
CSA 3702 machine learning module 3
 
Machine learning clustering
Machine learning clusteringMachine learning clustering
Machine learning clustering
 
Chapter 10. Cluster Analysis Basic Concepts and Methods.ppt
Chapter 10. Cluster Analysis Basic Concepts and Methods.pptChapter 10. Cluster Analysis Basic Concepts and Methods.ppt
Chapter 10. Cluster Analysis Basic Concepts and Methods.ppt
 
47 292-298
47 292-29847 292-298
47 292-298
 
10 clusbasic
10 clusbasic10 clusbasic
10 clusbasic
 
Capter10 cluster basic : Han & Kamber
Capter10 cluster basic : Han & KamberCapter10 cluster basic : Han & Kamber
Capter10 cluster basic : Han & Kamber
 
Capter10 cluster basic
Capter10 cluster basicCapter10 cluster basic
Capter10 cluster basic
 
Chapter 10.1,2,3 pdf.pdf
Chapter 10.1,2,3 pdf.pdfChapter 10.1,2,3 pdf.pdf
Chapter 10.1,2,3 pdf.pdf
 
CLUSTERING
CLUSTERINGCLUSTERING
CLUSTERING
 

Recently uploaded

Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Subhajit Sahu
 
Opendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptxOpendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptx
Opendatabay
 
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
ahzuo
 
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
v3tuleee
 
standardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhstandardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghh
ArpitMalhotra16
 
Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)
TravisMalana
 
Machine learning and optimization techniques for electrical drives.pptx
Machine learning and optimization techniques for electrical drives.pptxMachine learning and optimization techniques for electrical drives.pptx
Machine learning and optimization techniques for electrical drives.pptx
balafet
 
Q1’2024 Update: MYCI’s Leap Year Rebound
Q1’2024 Update: MYCI’s Leap Year ReboundQ1’2024 Update: MYCI’s Leap Year Rebound
Q1’2024 Update: MYCI’s Leap Year Rebound
Oppotus
 
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
AbhimanyuSinha9
 
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
vcaxypu
 
Data Centers - Striving Within A Narrow Range - Research Report - MCG - May 2...
Data Centers - Striving Within A Narrow Range - Research Report - MCG - May 2...Data Centers - Striving Within A Narrow Range - Research Report - MCG - May 2...
Data Centers - Striving Within A Narrow Range - Research Report - MCG - May 2...
pchutichetpong
 
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
mbawufebxi
 
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdfCh03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
haila53
 
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
slg6lamcq
 
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
slg6lamcq
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
vcaxypu
 
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
axoqas
 
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
ewymefz
 
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
oz8q3jxlp
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP
 

Recently uploaded (20)

Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
 
Opendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptxOpendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptx
 
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
 
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
 
standardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhstandardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghh
 
Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)
 
Machine learning and optimization techniques for electrical drives.pptx
Machine learning and optimization techniques for electrical drives.pptxMachine learning and optimization techniques for electrical drives.pptx
Machine learning and optimization techniques for electrical drives.pptx
 
Q1’2024 Update: MYCI’s Leap Year Rebound
Q1’2024 Update: MYCI’s Leap Year ReboundQ1’2024 Update: MYCI’s Leap Year Rebound
Q1’2024 Update: MYCI’s Leap Year Rebound
 
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
 
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
 
Data Centers - Striving Within A Narrow Range - Research Report - MCG - May 2...
Data Centers - Striving Within A Narrow Range - Research Report - MCG - May 2...Data Centers - Striving Within A Narrow Range - Research Report - MCG - May 2...
Data Centers - Striving Within A Narrow Range - Research Report - MCG - May 2...
 
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
 
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdfCh03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
 
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
 
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
 
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
 
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
 
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 

DM_clustering.ppt

  • 1. What is Cluster Analysis? • Cluster: a collection of data objects – Similar to one another within the same cluster – Dissimilar to the objects in other clusters • Cluster analysis – Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters • Unsupervised learning: no predefined classes • Typical applications – As a stand-alone tool to get insight into data distribution – As a preprocessing step for other algorithms
  • 2. Clustering: Rich Applications and Multidisciplinary Efforts • Pattern Recognition • Spatial Data Analysis – Create thematic maps in GIS by clustering feature spaces – Detect spatial clusters or for other spatial mining tasks • Image Processing • Economic Science (especially market research) • WWW – Document classification – Cluster Weblog data to discover groups of similar access patterns
  • 3. Examples of Clustering Applications • Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs • Land use: Identification of areas of similar land use in an earth observation database • Insurance: Identifying groups of motor insurance policy holders with a high average claim cost • City-planning: Identifying groups of houses according to their house type, value, and geographical location • Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
  • 4. Quality: What Is Good Clustering? • A good clustering method will produce high quality clusters with – high intra-class similarity – low inter-class similarity • The quality of a clustering result depends on both the similarity measure used by the method and its implementation • The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns
  • 5. Measure the Quality of Clustering • Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: d(i, j) • There is a separate “quality” function that measures the “goodness” of a cluster. • The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables. • Weights should be associated with different variables based on applications and data semantics. • It is hard to define “similar enough” or “good enough” – the answer is typically highly subjective.
  • 6. Requirements of Clustering in Data Mining • Scalability • Ability to deal with different types of attributes • Ability to handle dynamic data • Discovery of clusters with arbitrary shape • Minimal requirements for domain knowledge to determine input parameters • Able to deal with noise and outliers • Insensitive to order of input records • High dimensionality • Incorporation of user-specified constraints • Interpretability and usability
  • 7. Similarity and Dissimilarity Between Objects • Distances are normally used to measure the similarity or dissimilarity between two data objects • Some popular ones include: Minkowski distance: where i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-dimensional data objects, and q is a positive integer q q p p q q j x i x j x i x j x i x j i d ) | | ... | | | (| ) , ( 2 2 1 1        | | ... | | | | ) , ( 2 2 1 1 p p j x i x j x i x j x i x j i d       
  • 8. Similarity and Dissimilarity Between Objects (Cont.) • If q = 2, d is Euclidean distance: – Properties • d(i,j)  0 • d(i,i) = 0 • d(i,j) = d(j,i) • d(i,j)  d(i,k) + d(k,j) • Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures ) | | ... | | | (| ) , ( 2 2 2 2 2 1 1 p p j x i x j x i x j x i x j i d       
  • 9. Major Clustering Approaches (I) • Partitioning approach: – Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors – Typical methods: k-means, k-medoids, CLARANS • Hierarchical approach: – Create a hierarchical decomposition of the set of data (or objects) using some criterion – Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON • Density-based approach: – Based on connectivity and density functions – Typical methods: DBSACN, OPTICS, DenClue
  • 10. Major Clustering Approaches (II) • Grid-based approach: – based on a multiple-level granularity structure – Typical methods: STING, WaveCluster, CLIQUE • Model-based: – A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other – Typical methods: EM, SOM, COBWEB • Frequent pattern-based: – Based on the analysis of frequent patterns – Typical methods: pCluster • User-guided or constraint-based: – Clustering by considering user-specified or application-specific constraints – Typical methods: COD (obstacles), constrained clustering
  • 11. Typical Alternatives to Calculate the Distance between Clusters • Single link: smallest distance between an element in one cluster and an element in the other, i.e., dis(Ki, Kj) = min(tip, tjq) • Complete link: largest distance between an element in one cluster and an element in the other, i.e., dis(Ki, Kj) = max(tip, tjq) • Average: avg distance between an element in one cluster and an element in the other, i.e., dis(Ki, Kj) = avg(tip, tjq) • Centroid: distance between the centroids of two
  • 12. The K-Means Clustering Method • Given k, the k-means algorithm is implemented in four steps: – Partition objects into k nonempty subsets – Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., mean point, of the cluster) – Assign each object to the cluster with the nearest seed point – Go back to Step 2, stop when no more new assignment
  • 13. The K-Means Clustering Method • Example 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 K=2 Arbitrarily choose K object as initial cluster center Assign each objects to most similar center Update the cluster means Update the cluster means reassign reassign
  • 14. Comments on the K-Means Method • Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n. • Comparing: PAM: O(k(n-k)2 ), CLARA: O(ks2 + k(n-k)) • Comment: Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms • Weakness – Applicable only when mean is defined, then what about categorical data? – Need to specify k, the number of clusters, in advance – Unable to handle noisy data and outliers – Not suitable to discover clusters with non-convex shapes
  • 15. What Is the Problem of the K-Means Method? • The k-means algorithm is sensitive to outliers ! – Since an object with an extremely large value may substantially distort the distribution of the data. • K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster. 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
  • 16. The K-Medoids Clustering Method • Find representative objects, called medoids, in clusters • PAM (Partitioning Around Medoids, 1987) – starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering – PAM works effectively for small data sets, but does not scale well for large data sets • CLARA (Kaufmann & Rousseeuw, 1990) • CLARANS (Ng & Han, 1994): Randomized sampling • Focusing + spatial data structure (Ester et al., 1995)
  • 17. Hierarchical Clustering • Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition Step 0 Step 1 Step 2 Step 3 Step 4 b d c e a a b d e c d e a b c d e Step 4 Step 3 Step 2 Step 1 Step 0 agglomerative divisive
  • 18. Dendrogram: Shows How the Clusters are Merged Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram. A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.
  • 19. What Is Outlier Discovery? • What are outliers? – The set of objects are considerably dissimilar from the remainder of the data – Example: Sports: Michael Jordon, Wayne Gretzky, ... • Problem: Define and find outliers in large data sets • Applications: – Credit card fraud detection – Telecom fraud detection – Customer segmentation – Medical analysis
  • 20. Summary • Cluster analysis groups objects based on their similarity and has wide applications • Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods • Outlier detection and analysis are very useful for fraud detection, etc.
  • 21. References (1) • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98 • M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973. • M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure, SIGMOD’99. • P. Arabie, L. J. Hubert, and G. De Soete. Clustering and Classification. World Scientific, 1996 • Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering", KDD'02 • M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying Density-Based Local Outliers. SIGMOD 2000. • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD'96. • M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. SSD'95. • D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
  • 22. References (2) • V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical Data Using Summaries. KDD'99. • D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. In Proc. VLDB’98. • S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. SIGMOD'98. • S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categorical attributes. In ICDE'99, pp. 512-521, Sydney, Australia, March 1999. • A. Hinneburg, D.l A. Keim: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. KDD’98. • A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988. • G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. COMPUTER, 32(8): 68-75, 1999. • L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990. • E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB’98. • G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
  • 23. References (3) • L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A Review , SIGKDD Explorations, 6(1), June 2004 • E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition,. • G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB’98. • A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based Clustering in Large Databases, ICDT'01. • A. K. H. Tung, J. Hou, and J. Han. Spatial Clustering in the Presence of Obstacles , ICDE'01 • H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data sets, SIGMOD’ 02. • W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB’97. • T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : an efficient data clustering method for very large databases. SIGMOD'96.