SlideShare a Scribd company logo
MEMS
Sensing in Textiles
Ashish Kapoor
2013TTE2756
Micro-Electro-Mechanical Systems is a technology that in its most general form can be
defined as miniaturized mechanical and electro-mechanical elements that are made
using the techniques of micro fabrication.
MEMS are made up of components between 1 to 100 micrometres in size (i.e. 0.001 to
0.1 mm), and MEMS devices generally range in size from 20 micrometres (20 millionths
of a metre) to a millimetre (i.e. 0.02 to 1.0 mm).

Because of the large surface area to volume ratio of MEMS, surface effects such as
electrostatics and wetting dominate over volume effects such as inertia or thermal mass.
Micro machines are divided into two functional groups: the sensors and the
actuators.
A sensor is defined as a device that provides a usable electrical output signal
in response to a signal. When a sensor is integrated with signal processing
circuits in a single package (usually a polysilicon chip), it is referred to as an
integrated sensor or smart sensor.
An actuator is a device that converts an electrical signal, which may be taken
from a sensor to an action.
A transducer is considered as a device that transforms one form of signal or
energy into another form. Therefore, the term transducer can be used to
include both sensors and actuators.
Smart Sensors
Smart sensors have all the electronic integrated in a MEMS structure. A photo
of a silicon wafer with one hundred microstructures.
Principles Used in Sensors
Physical principles or effects grouped according to the six forms of physical energy.
Advantages of MEMS devices
•The function is replicated numerous times giving a higher accuracy to the
measurement.
•Due to the replications, failure of some sensors would not affect the system
performance. Such system is usually referred to as an array of sensors.
• A small device interferes less with the environment that it is trying to
measure when it is of a smaller size.
• They can be placed in small places where traditional macro devices could
not fit.
• A higher precision is achieved with actuators. Motions of micrometer range
are precisely achievable.
MEMS FABRICATION
The micromechanical components are fabricated using compatible
"micromachining" processes that selectively etch away parts of the silicon wafer or
add new structural layers to form the mechanical and electromechanical devices.
Typical MEMS are miniature sensors and actuators.
Approaches to integrate the MEMS on textiles .
The first approach is trying to develop yarn-like electronics and transducers using
existing and new flexible materials in order to stitch up the sensors on the textile
directly, which may result in limited sensing capabilities and computation capabilities.
The other approach is trying to design and fabricate the silicon-based flexible sensors
with MEMS technology and then sew the flexible sensors array on the textile.
A MEMS device in general is rigid so that it cannot be bent. However, if MEMS devices
of the rigidity of these small size are fabricated on a flexible substrate in the form of
isolated islands, one flexible silicon sensor skin is then obtained The flexible substrate is
patterned with metal wires that are to be used as interconnects between the MEMS and
processing circuits. Then the intelligent textiles are obtained by sewing up this flexible
silicon sensor skin on the fabric.
In order to achieve flexible
skin, there are two approaches
to fabricate MEMS devices on
the flexible substrate: (1) First
we fabricate MEMS devices
using
"surface
additive
processes" after depositing a
layer of polymer on a fourinch wafer, and make MEMS
devices isolate each other and
obtain flexible silicon sensor
skin promptly to strip off the
coating polymer on the wafer.
(2) Second, here first we deposit a
layer of polymer on front side of
the wafer after fabricating MEMS
devices using "bulk subtractive
processes", then corrode the
reverse side of the wafer to make
MEMS devices form the detached
islands in isolation each other, later
deposit a layer of polymer and
obtain the base skin of flexible
silicon promptly on the wafer
reverse side again.

The bulk subtractive processes is more practical and cost effective.
The principle of the thermo resistive transducer is that the resistance changes
according to material heat change and the resistance (R) of the material can be
calculated according to the following formula:

ᵨ

where
is resistance coefficient of the material, L is the length of the material, and A is
the area of the material. For being compatible with MEMS, we have chosen the p-Doped
silicon as the resistance material, and the resistance coefficient of the p-Doped silicon can be
calculated according to the following formula:

where p is the carrier concentration, q is charge on electron, and µp is the hole mobility.
MEMS Fabrication on Fabrics
Fabrics present a very different substrate compared with a silicon wafer
– Rough, uneven surface with pilosity (hairiness).
– Flexible and elastic
– Suitable for low temperature processing
– Limited compatibility with solvents and chemicals
To use standard printing techniques to deposit a range of custom inks in order to realise
freestanding mechanical structures coupled with active films for sensing and actuating.
SCREEN PRINTING
Also known as thick-film printing, this is normally used in the fabrication
of hybridised circuits and in the manufacture of semiconductor packages.
Inkjet Printing
Non contact direct printing onto substrate, used for fabrics and electronics
applications.
Printed MEMS Process

Sacrificial layer requirements:
 Printable
 Solid
 Compatible
 Easily removable without damaging fabric or other layers.
Structural layer requirements
 Suitable mechanical/functional properties.
Structural layer
Electrode

Piezoresistive layer

Sacrificial layer

Fabric
Interface layer
Case Study: Strain Gauge
Exploits the piezoresistive effect: the resistance of a printed film changes as it is
strained (stretched) due to a change in the resistivity of the material. Useful for
sensing movement, forces and strains.
Printed Sensor
Silver electrodes printed using a low temperature polymer silver paste.
Piezoresistive paste is based on graphite.
 Cured at 120-1250C
Ink types required

Printed Heater
•Simple heater is a current carrying conductive element.
•Existing heaters integrated in textiles by weaving or knitting.
•Woven approach limited by direction of warp and weft.
•Knitted solution requires specialist equipment .

Heated car seat element(BMW)
Interface layer
Overcomes surface roughness and pilosity of fabric substrate providing a continuous
planar surface for subsequent printed layers.

Cross-section SEM micrograph of 4
screen printed interface layers on
polyester cotton fabric
Screen Design
Heater has three layers: Interface, Conductor and Encapsulation.

•

Interface layer improves heater performance but increases fabric coverage to ~40% still below limit of 50%.
Finished Print
Piezoelectric Films
Piezoelectric materials expand when subject to an electrical field, similarly they produce
an electrical charge when strained.

Ideal material for sensing and actuating applications.
Piezoelectric Structure
Piezoelectric material sandwiched between electrodes.
Polarising voltage required after printing to make the piezoelectric active.
Cured at temperatures below 150 oC.
Textile-based (MEMS) Accelerometer for Pelvic Tilt Mesurement

An accelerometer is a device that measures
proper acceleration (in relativity theory, proper
acceleration is the physical acceleration
experienced by an object. It is thus acceleration
relative to a free fall, or inertial, observer who is
momentarily at rest relative to the object being
measured. Gravitation therefore does not cause
proper acceleration, since gravity acts upon the
inertial observer that any proper acceleration
must depart from (accelerate from). A corollary
is that all inertial observers always have a proper
acceleration of zero. The proper acceleration
measured by an accelerometer is not necessarily
the coordinate acceleration (rate of change of
velocity). Instead, the accelerometer sees the
acceleration associated with the phenomenon of
weight experienced by any test mass at rest in the
frame of the accelerometer device.
Micro Electro Mechanical System (MEMS) accelerometer is an electro-mechanical
device that measure acceleration force exerted on it. The development of textilesbased MEMS for pelvic tilt measurement is an effort to reduce the cost in medical
sensor devices.
The piezoresistive effect describes change in the electrical resistivity of a
semiconductor or metal when mechanical strain is applied. In contrast to the
piezoelectric effect, the piezoresistive effect only causes a change in electrical
resistance, not in electric potential.

Sensor Design
The accelerometer sensor is designed as a cantilever beam structure with suspended
mass at one end.
(a)Schematic drawing of accelerometer design. (b) Close-up drawing on conductive section of accelerometer.
(c) Actual photo of textile cantilever accelerometer.
Advantages
1. Textile-based accelerometer provides an alternative to the costly and hazardous
radiographic measurement of pelvic tilt.
2. The flexibility of textile structure makes it more advantageous to conform to body
contour than rigid digital inclinometer and more accurate than indirect
trigonometric
3. measurement
4. Textile material is relatively low-cost, flexible, lightweight, readily
available, environmental friendly and easy to use.
Silicon flexible skins
Other research areas and future scope
Monitoring warp end tension and breaks during fabric formation. A custom designed
micro machine sensor has been designed is being fabricated. It will replace the off shelves
sensors currently used to measure warp tension.
Manipulating and aligning micro fibres in up to 6 axes is the first step towards a micro
weaving machine. Future work could absolutely be the fabrication of this micro weaving
machine.
References
1. Rakesh B. Katragadda, Yong Xu, A novel intelligent textile technology based
on silicon flexible skins, ECE Department, Wayne State University, Detroit, MI
48202, USA.
2. S Beeby, M J Tudor, R Torah, K Yang, Y Wei, MICROFLEX Project: MEMS on
New Emerging Smart Textiles/Flexibles, Electronics and Computer Science, University of
Southampton.
3. Maozhou Meng, Yong Xu, Honghai Zhang, and Sheng Liu, Intelligent Textiles Based on
MEMS Technology, Division ofMOEMS, Wuhan National Laboratory for Optoelectronics
and Institute of Microsystems, Huazhong University of Science and Technology
1037 Luo Yu Road, Wuhan, Hubei 430074, China and Electrical and Computer
Engineering, Wayne State University, Detroit, Michigan, USA .
4. Nik Nur Zuliyana Mohd. Rajdia, Azam Ahmad Bakira, Syaidah Md. Saleha, and Dedy
H.B.
Wicaksonoa, Textile-based Micro Electro Mechanical System (MEMS) Accelerometer for
Pelvic Tilt Mesurement, International Symposium on Robotics and Intelligent Sensors
2012 (IRIS 2012).
5. S Beeby, R Torah, K Yang, Y Wei, J Tudor, MICROFLEX Project - Microtechnology in
Smart Fabrics, Electronics and Computer Science, University of Southampton.
MEMS Sensing in Textiles

More Related Content

What's hot

Smart textiles
Smart textilesSmart textiles
Smart textiles
Neelima Gupta
 
Presentation on solar cell textiles
Presentation on solar cell textilesPresentation on solar cell textiles
Presentation on solar cell textiles
Rajkumar Shinkar
 
Seminar report on topic Smart Fabrics by Sunil Bandotra
Seminar report on topic Smart Fabrics by Sunil BandotraSeminar report on topic Smart Fabrics by Sunil Bandotra
Seminar report on topic Smart Fabrics by Sunil Bandotra
Sunil Kumar
 
Nonwovens as medical textiles (abhinav jagetiya)
Nonwovens as medical textiles (abhinav jagetiya)Nonwovens as medical textiles (abhinav jagetiya)
Nonwovens as medical textiles (abhinav jagetiya)Abhinav Jagetiya
 
Smart textile ppt
Smart textile pptSmart textile ppt
Smart textile ppt
Muzammel Ananda
 
Smart fabrics by radhika ...loyola academy...
Smart fabrics by radhika ...loyola  academy...Smart fabrics by radhika ...loyola  academy...
Smart fabrics by radhika ...loyola academy...akhil426713
 
Mechanical Properties Of Fiber | Mechanical Properties Of Textile Fiber
Mechanical Properties Of Fiber | Mechanical Properties Of Textile FiberMechanical Properties Of Fiber | Mechanical Properties Of Textile Fiber
Mechanical Properties Of Fiber | Mechanical Properties Of Textile Fiber
Md Rakibul Hassan
 
Smart Textiles
Smart TextilesSmart Textiles
Smart Textiles
Jutka Czirok
 
E textiles for military uniforms
E textiles for military uniformsE textiles for military uniforms
E textiles for military uniforms
KaleeswaranPalaniswamy
 
Smart textiles new possibilities in textile engineering
Smart textiles  new possibilities in textile engineeringSmart textiles  new possibilities in textile engineering
Smart textiles new possibilities in textile engineeringNasif Chowdhury
 
Smart textiles
Smart textilesSmart textiles
Smart textiles
kanhaiya kumawat
 
Smart Fabrics & Interactive Fabrics
Smart Fabrics &  Interactive FabricsSmart Fabrics &  Interactive Fabrics
Smart Fabrics & Interactive Fabrics
Akhil Kadangode
 
Presentation on Smart Textile
Presentation on Smart TextilePresentation on Smart Textile
Presentation on Smart Textile
Shawan Roy
 
Smart textiles 12.12.18
Smart textiles  12.12.18Smart textiles  12.12.18
Smart textiles 12.12.18
Ravikeerthi Rao
 
" Engineering Material use in Textile Industry "
" Engineering Material use in Textile Industry " " Engineering Material use in Textile Industry "
" Engineering Material use in Textile Industry "
Sayeed Ahmed
 
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
MD. SAJJADUL KARIM BHUIYAN
 
Medical textile
Medical textileMedical textile
biocomposite ppt.
biocomposite ppt.biocomposite ppt.
biocomposite ppt.
1shweta007
 
Smart textile introduction
Smart textile introductionSmart textile introduction
Smart textile introduction
kanhaiya kumawat
 

What's hot (20)

Smart textiles
Smart textilesSmart textiles
Smart textiles
 
Presentation on solar cell textiles
Presentation on solar cell textilesPresentation on solar cell textiles
Presentation on solar cell textiles
 
Seminar report on topic Smart Fabrics by Sunil Bandotra
Seminar report on topic Smart Fabrics by Sunil BandotraSeminar report on topic Smart Fabrics by Sunil Bandotra
Seminar report on topic Smart Fabrics by Sunil Bandotra
 
Nonwovens as medical textiles (abhinav jagetiya)
Nonwovens as medical textiles (abhinav jagetiya)Nonwovens as medical textiles (abhinav jagetiya)
Nonwovens as medical textiles (abhinav jagetiya)
 
Smart textile ppt
Smart textile pptSmart textile ppt
Smart textile ppt
 
Smart tex
Smart texSmart tex
Smart tex
 
Smart fabrics by radhika ...loyola academy...
Smart fabrics by radhika ...loyola  academy...Smart fabrics by radhika ...loyola  academy...
Smart fabrics by radhika ...loyola academy...
 
Mechanical Properties Of Fiber | Mechanical Properties Of Textile Fiber
Mechanical Properties Of Fiber | Mechanical Properties Of Textile FiberMechanical Properties Of Fiber | Mechanical Properties Of Textile Fiber
Mechanical Properties Of Fiber | Mechanical Properties Of Textile Fiber
 
Smart Textiles
Smart TextilesSmart Textiles
Smart Textiles
 
E textiles for military uniforms
E textiles for military uniformsE textiles for military uniforms
E textiles for military uniforms
 
Smart textiles new possibilities in textile engineering
Smart textiles  new possibilities in textile engineeringSmart textiles  new possibilities in textile engineering
Smart textiles new possibilities in textile engineering
 
Smart textiles
Smart textilesSmart textiles
Smart textiles
 
Smart Fabrics & Interactive Fabrics
Smart Fabrics &  Interactive FabricsSmart Fabrics &  Interactive Fabrics
Smart Fabrics & Interactive Fabrics
 
Presentation on Smart Textile
Presentation on Smart TextilePresentation on Smart Textile
Presentation on Smart Textile
 
Smart textiles 12.12.18
Smart textiles  12.12.18Smart textiles  12.12.18
Smart textiles 12.12.18
 
" Engineering Material use in Textile Industry "
" Engineering Material use in Textile Industry " " Engineering Material use in Textile Industry "
" Engineering Material use in Textile Industry "
 
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
 
Medical textile
Medical textileMedical textile
Medical textile
 
biocomposite ppt.
biocomposite ppt.biocomposite ppt.
biocomposite ppt.
 
Smart textile introduction
Smart textile introductionSmart textile introduction
Smart textile introduction
 

Viewers also liked

Flexible graphite
Flexible graphiteFlexible graphite
Flexible graphite
American Seal and Packing
 
COMSOL Multiphysics: Simulation and Development Toolbox for Clusters
COMSOL Multiphysics: Simulation and Development Toolbox for ClustersCOMSOL Multiphysics: Simulation and Development Toolbox for Clusters
COMSOL Multiphysics: Simulation and Development Toolbox for Clusters
Intel IT Center
 
BioMEMS Microfluidics (BioE 494) final presentation
BioMEMS Microfluidics (BioE 494) final presentationBioMEMS Microfluidics (BioE 494) final presentation
BioMEMS Microfluidics (BioE 494) final presentation
Kathleen Broughton
 
Micro electro-mechanical-systems-based-sensors
Micro electro-mechanical-systems-based-sensorsMicro electro-mechanical-systems-based-sensors
Micro electro-mechanical-systems-based-sensors
Muhammad Ali Amjad
 
Artificial retina implantaion using mems
Artificial retina implantaion using memsArtificial retina implantaion using mems
Artificial retina implantaion using mems
Chaithra D Pinku
 
Sk microfluidics and lab on-a-chip-ch1
Sk microfluidics and lab on-a-chip-ch1Sk microfluidics and lab on-a-chip-ch1
Sk microfluidics and lab on-a-chip-ch1stanislas547
 
Comsol Multiphysics Presentation
Comsol Multiphysics PresentationComsol Multiphysics Presentation
Comsol Multiphysics Presentation
Manish Kumar Shaw
 
Mems accelerometer designing and fabrication
Mems accelerometer designing and fabricationMems accelerometer designing and fabrication
Mems accelerometer designing and fabrication
prashant singh
 
Optical MEMS
Optical MEMSOptical MEMS
Optical MEMS
Anisha Singhal
 
COMSOL Multiphysics Tutorials - Akshansh
COMSOL Multiphysics Tutorials - AkshanshCOMSOL Multiphysics Tutorials - Akshansh
COMSOL Multiphysics Tutorials - Akshansh
Akshansh Chaudhary
 
Micro electro mechanical systems
Micro electro mechanical systemsMicro electro mechanical systems
Micro electro mechanical systems
sree navya
 
Mems technology
Mems technologyMems technology
Mems technology
Dhaval Kaneria
 
Piezo electric transducer
Piezo electric transducerPiezo electric transducer
Piezo electric transducerarvind venkat
 
Micro Electromechanical System (MEMS)
Micro Electromechanical System (MEMS)Micro Electromechanical System (MEMS)
Micro Electromechanical System (MEMS)
Navin Kumar
 
Simulation-Led Design Using SolidWorks® and COMSOL Multiphysics®
Simulation-Led Design Using SolidWorks® and COMSOL Multiphysics®Simulation-Led Design Using SolidWorks® and COMSOL Multiphysics®
Simulation-Led Design Using SolidWorks® and COMSOL Multiphysics®
Design World
 
Mems (Detail Presentation)
Mems (Detail Presentation)Mems (Detail Presentation)
Mems (Detail Presentation)
Vinayak Hegde
 
Piezoelectricity & Its Applications
Piezoelectricity & Its ApplicationsPiezoelectricity & Its Applications
Piezoelectricity & Its Applications
Tariq Tauheed
 
25 Most Interesting Medical MEMS and Sensors Projects
25 Most Interesting Medical MEMS and Sensors Projects25 Most Interesting Medical MEMS and Sensors Projects
25 Most Interesting Medical MEMS and Sensors Projects
MEMS Journal, Inc.
 

Viewers also liked (20)

mems ppt
mems pptmems ppt
mems ppt
 
Flexible graphite
Flexible graphiteFlexible graphite
Flexible graphite
 
COMSOL Multiphysics: Simulation and Development Toolbox for Clusters
COMSOL Multiphysics: Simulation and Development Toolbox for ClustersCOMSOL Multiphysics: Simulation and Development Toolbox for Clusters
COMSOL Multiphysics: Simulation and Development Toolbox for Clusters
 
BioMEMS Microfluidics (BioE 494) final presentation
BioMEMS Microfluidics (BioE 494) final presentationBioMEMS Microfluidics (BioE 494) final presentation
BioMEMS Microfluidics (BioE 494) final presentation
 
Micro electro-mechanical-systems-based-sensors
Micro electro-mechanical-systems-based-sensorsMicro electro-mechanical-systems-based-sensors
Micro electro-mechanical-systems-based-sensors
 
Piezoelectric and piezo sensors
Piezoelectric and piezo sensorsPiezoelectric and piezo sensors
Piezoelectric and piezo sensors
 
Artificial retina implantaion using mems
Artificial retina implantaion using memsArtificial retina implantaion using mems
Artificial retina implantaion using mems
 
Sk microfluidics and lab on-a-chip-ch1
Sk microfluidics and lab on-a-chip-ch1Sk microfluidics and lab on-a-chip-ch1
Sk microfluidics and lab on-a-chip-ch1
 
Comsol Multiphysics Presentation
Comsol Multiphysics PresentationComsol Multiphysics Presentation
Comsol Multiphysics Presentation
 
Mems accelerometer designing and fabrication
Mems accelerometer designing and fabricationMems accelerometer designing and fabrication
Mems accelerometer designing and fabrication
 
Optical MEMS
Optical MEMSOptical MEMS
Optical MEMS
 
COMSOL Multiphysics Tutorials - Akshansh
COMSOL Multiphysics Tutorials - AkshanshCOMSOL Multiphysics Tutorials - Akshansh
COMSOL Multiphysics Tutorials - Akshansh
 
Micro electro mechanical systems
Micro electro mechanical systemsMicro electro mechanical systems
Micro electro mechanical systems
 
Mems technology
Mems technologyMems technology
Mems technology
 
Piezo electric transducer
Piezo electric transducerPiezo electric transducer
Piezo electric transducer
 
Micro Electromechanical System (MEMS)
Micro Electromechanical System (MEMS)Micro Electromechanical System (MEMS)
Micro Electromechanical System (MEMS)
 
Simulation-Led Design Using SolidWorks® and COMSOL Multiphysics®
Simulation-Led Design Using SolidWorks® and COMSOL Multiphysics®Simulation-Led Design Using SolidWorks® and COMSOL Multiphysics®
Simulation-Led Design Using SolidWorks® and COMSOL Multiphysics®
 
Mems (Detail Presentation)
Mems (Detail Presentation)Mems (Detail Presentation)
Mems (Detail Presentation)
 
Piezoelectricity & Its Applications
Piezoelectricity & Its ApplicationsPiezoelectricity & Its Applications
Piezoelectricity & Its Applications
 
25 Most Interesting Medical MEMS and Sensors Projects
25 Most Interesting Medical MEMS and Sensors Projects25 Most Interesting Medical MEMS and Sensors Projects
25 Most Interesting Medical MEMS and Sensors Projects
 

Similar to MEMS Sensing in Textiles

Mems (Report)
Mems (Report)Mems (Report)
Mems (Report)
Vinayak Hegde
 
Micro-Electromechanical Systems (Mems)
Micro-Electromechanical Systems (Mems)Micro-Electromechanical Systems (Mems)
Micro-Electromechanical Systems (Mems)
IJMER
 
Mems technologies and analysis of merits and demerits
Mems technologies and analysis of merits and demeritsMems technologies and analysis of merits and demerits
Mems technologies and analysis of merits and demerits
Biprasish Ray
 
Mems technology
Mems technologyMems technology
Mems technology
amit parcha
 
MEMS Chapter 2
MEMS Chapter 2MEMS Chapter 2
MEMS Chapter 2
sumedhjadhav
 
IRJET- Fabrication, Sensing and Applications of NEMS/MEMS Technology
IRJET- Fabrication, Sensing and Applications of NEMS/MEMS TechnologyIRJET- Fabrication, Sensing and Applications of NEMS/MEMS Technology
IRJET- Fabrication, Sensing and Applications of NEMS/MEMS Technology
IRJET Journal
 
MEMS CAPACITIVE ACCELEROMETER
MEMS CAPACITIVE ACCELEROMETERMEMS CAPACITIVE ACCELEROMETER
MEMS CAPACITIVE ACCELEROMETER
GUTTI VENKATA YESWANTH
 
Micro_Electro_mechanical_system
Micro_Electro_mechanical_systemMicro_Electro_mechanical_system
Micro_Electro_mechanical_system
abhijithpm4
 
Innovative approach in mems
Innovative approach in memsInnovative approach in mems
Innovative approach in mems
DIBYARANJAN SAHOO
 
MEMS and Solar Sail for Space Application
MEMS and Solar Sail for Space ApplicationMEMS and Solar Sail for Space Application
MEMS and Solar Sail for Space Application
Ramesh Tholiya
 
Introduction to mems
Introduction to memsIntroduction to mems
Introduction to mems
Kaushal Pant
 
Introduction to mems
Introduction to memsIntroduction to mems
Introduction to mems
Kaushal Pant
 
MEMS & micro systems
MEMS & micro systemsMEMS & micro systems
MEMS & micro systems
Mustafa Memon
 
micro electro mechnical system
micro electro mechnical systemmicro electro mechnical system
micro electro mechnical system
Abhishek Mahajan
 
1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf
Burdwan University
 
BME PE501 BIO MEMS K.BASHKARAN.pptx
BME PE501 BIO MEMS K.BASHKARAN.pptxBME PE501 BIO MEMS K.BASHKARAN.pptx
BME PE501 BIO MEMS K.BASHKARAN.pptx
BashkaranK
 
Mems project by abhishek mahajan
Mems project by abhishek mahajanMems project by abhishek mahajan
Mems project by abhishek mahajan
Abhishek Mahajan
 

Similar to MEMS Sensing in Textiles (20)

Mems (Report)
Mems (Report)Mems (Report)
Mems (Report)
 
NEMS MEMS PAPER
NEMS MEMS PAPERNEMS MEMS PAPER
NEMS MEMS PAPER
 
Micro-Electromechanical Systems (Mems)
Micro-Electromechanical Systems (Mems)Micro-Electromechanical Systems (Mems)
Micro-Electromechanical Systems (Mems)
 
Mems technologies and analysis of merits and demerits
Mems technologies and analysis of merits and demeritsMems technologies and analysis of merits and demerits
Mems technologies and analysis of merits and demerits
 
Mems technology
Mems technologyMems technology
Mems technology
 
MEMS Chapter 2
MEMS Chapter 2MEMS Chapter 2
MEMS Chapter 2
 
IRJET- Fabrication, Sensing and Applications of NEMS/MEMS Technology
IRJET- Fabrication, Sensing and Applications of NEMS/MEMS TechnologyIRJET- Fabrication, Sensing and Applications of NEMS/MEMS Technology
IRJET- Fabrication, Sensing and Applications of NEMS/MEMS Technology
 
MEMS CAPACITIVE ACCELEROMETER
MEMS CAPACITIVE ACCELEROMETERMEMS CAPACITIVE ACCELEROMETER
MEMS CAPACITIVE ACCELEROMETER
 
Micro_Electro_mechanical_system
Micro_Electro_mechanical_systemMicro_Electro_mechanical_system
Micro_Electro_mechanical_system
 
Innovative approach in mems
Innovative approach in memsInnovative approach in mems
Innovative approach in mems
 
Mems
MemsMems
Mems
 
MEMS and Solar Sail for Space Application
MEMS and Solar Sail for Space ApplicationMEMS and Solar Sail for Space Application
MEMS and Solar Sail for Space Application
 
Introduction to mems
Introduction to memsIntroduction to mems
Introduction to mems
 
Introduction to mems
Introduction to memsIntroduction to mems
Introduction to mems
 
MEMS & micro systems
MEMS & micro systemsMEMS & micro systems
MEMS & micro systems
 
micro electro mechnical system
micro electro mechnical systemmicro electro mechnical system
micro electro mechnical system
 
Microelectronic mechanical system
Microelectronic mechanical systemMicroelectronic mechanical system
Microelectronic mechanical system
 
1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf
 
BME PE501 BIO MEMS K.BASHKARAN.pptx
BME PE501 BIO MEMS K.BASHKARAN.pptxBME PE501 BIO MEMS K.BASHKARAN.pptx
BME PE501 BIO MEMS K.BASHKARAN.pptx
 
Mems project by abhishek mahajan
Mems project by abhishek mahajanMems project by abhishek mahajan
Mems project by abhishek mahajan
 

Recently uploaded

Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 

Recently uploaded (20)

Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 

MEMS Sensing in Textiles

  • 1. MEMS Sensing in Textiles Ashish Kapoor 2013TTE2756
  • 2. Micro-Electro-Mechanical Systems is a technology that in its most general form can be defined as miniaturized mechanical and electro-mechanical elements that are made using the techniques of micro fabrication. MEMS are made up of components between 1 to 100 micrometres in size (i.e. 0.001 to 0.1 mm), and MEMS devices generally range in size from 20 micrometres (20 millionths of a metre) to a millimetre (i.e. 0.02 to 1.0 mm). Because of the large surface area to volume ratio of MEMS, surface effects such as electrostatics and wetting dominate over volume effects such as inertia or thermal mass.
  • 3. Micro machines are divided into two functional groups: the sensors and the actuators. A sensor is defined as a device that provides a usable electrical output signal in response to a signal. When a sensor is integrated with signal processing circuits in a single package (usually a polysilicon chip), it is referred to as an integrated sensor or smart sensor. An actuator is a device that converts an electrical signal, which may be taken from a sensor to an action. A transducer is considered as a device that transforms one form of signal or energy into another form. Therefore, the term transducer can be used to include both sensors and actuators. Smart Sensors Smart sensors have all the electronic integrated in a MEMS structure. A photo of a silicon wafer with one hundred microstructures.
  • 4. Principles Used in Sensors Physical principles or effects grouped according to the six forms of physical energy.
  • 5. Advantages of MEMS devices •The function is replicated numerous times giving a higher accuracy to the measurement. •Due to the replications, failure of some sensors would not affect the system performance. Such system is usually referred to as an array of sensors. • A small device interferes less with the environment that it is trying to measure when it is of a smaller size. • They can be placed in small places where traditional macro devices could not fit. • A higher precision is achieved with actuators. Motions of micrometer range are precisely achievable.
  • 6. MEMS FABRICATION The micromechanical components are fabricated using compatible "micromachining" processes that selectively etch away parts of the silicon wafer or add new structural layers to form the mechanical and electromechanical devices. Typical MEMS are miniature sensors and actuators.
  • 7. Approaches to integrate the MEMS on textiles . The first approach is trying to develop yarn-like electronics and transducers using existing and new flexible materials in order to stitch up the sensors on the textile directly, which may result in limited sensing capabilities and computation capabilities. The other approach is trying to design and fabricate the silicon-based flexible sensors with MEMS technology and then sew the flexible sensors array on the textile. A MEMS device in general is rigid so that it cannot be bent. However, if MEMS devices of the rigidity of these small size are fabricated on a flexible substrate in the form of isolated islands, one flexible silicon sensor skin is then obtained The flexible substrate is patterned with metal wires that are to be used as interconnects between the MEMS and processing circuits. Then the intelligent textiles are obtained by sewing up this flexible silicon sensor skin on the fabric.
  • 8. In order to achieve flexible skin, there are two approaches to fabricate MEMS devices on the flexible substrate: (1) First we fabricate MEMS devices using "surface additive processes" after depositing a layer of polymer on a fourinch wafer, and make MEMS devices isolate each other and obtain flexible silicon sensor skin promptly to strip off the coating polymer on the wafer.
  • 9. (2) Second, here first we deposit a layer of polymer on front side of the wafer after fabricating MEMS devices using "bulk subtractive processes", then corrode the reverse side of the wafer to make MEMS devices form the detached islands in isolation each other, later deposit a layer of polymer and obtain the base skin of flexible silicon promptly on the wafer reverse side again. The bulk subtractive processes is more practical and cost effective.
  • 10. The principle of the thermo resistive transducer is that the resistance changes according to material heat change and the resistance (R) of the material can be calculated according to the following formula: ᵨ where is resistance coefficient of the material, L is the length of the material, and A is the area of the material. For being compatible with MEMS, we have chosen the p-Doped silicon as the resistance material, and the resistance coefficient of the p-Doped silicon can be calculated according to the following formula: where p is the carrier concentration, q is charge on electron, and µp is the hole mobility.
  • 11. MEMS Fabrication on Fabrics Fabrics present a very different substrate compared with a silicon wafer – Rough, uneven surface with pilosity (hairiness). – Flexible and elastic – Suitable for low temperature processing – Limited compatibility with solvents and chemicals To use standard printing techniques to deposit a range of custom inks in order to realise freestanding mechanical structures coupled with active films for sensing and actuating.
  • 12. SCREEN PRINTING Also known as thick-film printing, this is normally used in the fabrication of hybridised circuits and in the manufacture of semiconductor packages.
  • 13. Inkjet Printing Non contact direct printing onto substrate, used for fabrics and electronics applications.
  • 14. Printed MEMS Process Sacrificial layer requirements:  Printable  Solid  Compatible  Easily removable without damaging fabric or other layers. Structural layer requirements  Suitable mechanical/functional properties.
  • 16. Case Study: Strain Gauge Exploits the piezoresistive effect: the resistance of a printed film changes as it is strained (stretched) due to a change in the resistivity of the material. Useful for sensing movement, forces and strains. Printed Sensor Silver electrodes printed using a low temperature polymer silver paste. Piezoresistive paste is based on graphite.  Cured at 120-1250C
  • 17. Ink types required Printed Heater •Simple heater is a current carrying conductive element. •Existing heaters integrated in textiles by weaving or knitting. •Woven approach limited by direction of warp and weft. •Knitted solution requires specialist equipment . Heated car seat element(BMW)
  • 18. Interface layer Overcomes surface roughness and pilosity of fabric substrate providing a continuous planar surface for subsequent printed layers. Cross-section SEM micrograph of 4 screen printed interface layers on polyester cotton fabric
  • 19. Screen Design Heater has three layers: Interface, Conductor and Encapsulation. • Interface layer improves heater performance but increases fabric coverage to ~40% still below limit of 50%.
  • 21. Piezoelectric Films Piezoelectric materials expand when subject to an electrical field, similarly they produce an electrical charge when strained. Ideal material for sensing and actuating applications.
  • 22. Piezoelectric Structure Piezoelectric material sandwiched between electrodes. Polarising voltage required after printing to make the piezoelectric active. Cured at temperatures below 150 oC.
  • 23. Textile-based (MEMS) Accelerometer for Pelvic Tilt Mesurement An accelerometer is a device that measures proper acceleration (in relativity theory, proper acceleration is the physical acceleration experienced by an object. It is thus acceleration relative to a free fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, since gravity acts upon the inertial observer that any proper acceleration must depart from (accelerate from). A corollary is that all inertial observers always have a proper acceleration of zero. The proper acceleration measured by an accelerometer is not necessarily the coordinate acceleration (rate of change of velocity). Instead, the accelerometer sees the acceleration associated with the phenomenon of weight experienced by any test mass at rest in the frame of the accelerometer device.
  • 24. Micro Electro Mechanical System (MEMS) accelerometer is an electro-mechanical device that measure acceleration force exerted on it. The development of textilesbased MEMS for pelvic tilt measurement is an effort to reduce the cost in medical sensor devices. The piezoresistive effect describes change in the electrical resistivity of a semiconductor or metal when mechanical strain is applied. In contrast to the piezoelectric effect, the piezoresistive effect only causes a change in electrical resistance, not in electric potential. Sensor Design The accelerometer sensor is designed as a cantilever beam structure with suspended mass at one end.
  • 25. (a)Schematic drawing of accelerometer design. (b) Close-up drawing on conductive section of accelerometer. (c) Actual photo of textile cantilever accelerometer.
  • 26. Advantages 1. Textile-based accelerometer provides an alternative to the costly and hazardous radiographic measurement of pelvic tilt. 2. The flexibility of textile structure makes it more advantageous to conform to body contour than rigid digital inclinometer and more accurate than indirect trigonometric 3. measurement 4. Textile material is relatively low-cost, flexible, lightweight, readily available, environmental friendly and easy to use.
  • 28.
  • 29. Other research areas and future scope Monitoring warp end tension and breaks during fabric formation. A custom designed micro machine sensor has been designed is being fabricated. It will replace the off shelves sensors currently used to measure warp tension. Manipulating and aligning micro fibres in up to 6 axes is the first step towards a micro weaving machine. Future work could absolutely be the fabrication of this micro weaving machine.
  • 30. References 1. Rakesh B. Katragadda, Yong Xu, A novel intelligent textile technology based on silicon flexible skins, ECE Department, Wayne State University, Detroit, MI 48202, USA. 2. S Beeby, M J Tudor, R Torah, K Yang, Y Wei, MICROFLEX Project: MEMS on New Emerging Smart Textiles/Flexibles, Electronics and Computer Science, University of Southampton. 3. Maozhou Meng, Yong Xu, Honghai Zhang, and Sheng Liu, Intelligent Textiles Based on MEMS Technology, Division ofMOEMS, Wuhan National Laboratory for Optoelectronics and Institute of Microsystems, Huazhong University of Science and Technology 1037 Luo Yu Road, Wuhan, Hubei 430074, China and Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, USA . 4. Nik Nur Zuliyana Mohd. Rajdia, Azam Ahmad Bakira, Syaidah Md. Saleha, and Dedy H.B. Wicaksonoa, Textile-based Micro Electro Mechanical System (MEMS) Accelerometer for Pelvic Tilt Mesurement, International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012). 5. S Beeby, R Torah, K Yang, Y Wei, J Tudor, MICROFLEX Project - Microtechnology in Smart Fabrics, Electronics and Computer Science, University of Southampton.