SlideShare a Scribd company logo
ENZO EXPOSYTO
MATHS
SYMBOLS
PROPERTIES of EXPONENTIALS and LOGARITHMS

Enzo Exposyto 1
2X ex 2-x e-x
EXPONENTIALS
LOGARITHMS
log2(x) ln(x) log(x)

Enzo Exposyto 2


Enzo Exposyto 3
1 - Exponential - Definition 6
2 - Exponentials - Their Properties 8
3 - Exponentials and Logarithms 15
4 - Logarithm - Definition and Examples 25
5 - Logarithms - Their Properties 34
6 - log(y) and ln(y) - Properties 46
Enzo Exposyto 4
7 - logb(bx) = x - Proofs 61
8 - ylogb(y) = y - Proofs 64
9 - log of a Power - Proofs 68
10 - log of a Root - Proofs 71
11 - log of a Product - Proofs 74
12 - log of a Quotient - Proofs 77
13 - Change of Base - Proofs 82
14 - zlogb(y) = ylogb(z) - Proof 91
15 - SitoGraphy 93
Enzo Exposyto 5
EXPONENTIAL
-
DEFINITION
Enzo Exposyto 6
EXPONENTIAL - DEFINITION
DEFINITION Examples
DEFINITION
bx = y ...
2-1 = 1
2
...
20 = 1
...
21 = 2
...
b > 0 and b < > 1 (*)
x element of R
y > 0
"b" is the fixed base
x is the variable exponent
(*) The symbol < > and ≠ have the same meaning
Enzo Exposyto 7
EXPONENTIALS
-
THEIR PROPERTIES

Enzo Exposyto 8
EXPONENTIALS - THEIR PROPERTIES - 1
[b, c > 0 and b, c < > 1]
[x, y elements of R]
Z+ = {1, 2, 3, …}
Property Exponentials Exponents Exponentials Exponents Result
1st bx · by = bx + y 23 · 22 = 23 + 2 = 32
2nd
bx
=
by
bx -y
23
=
22
23 -2 = 2
3rd (bx)y = bx *y (23)2 = 23 *2 = 64
4th
n Z+ n√bx = bx : n 2√24 = 24 : 2 = 4
5th bx · cx = (b · c)x 22 · 32 = (2 · 3)2 = 36
6th
bx
———- =
cx
(_b_)x
c
43
———- =
23
(_4_)3
=
2
8
Enzo Exposyto 9
EXPONENTIALS - THEIR PROPERTIES - 2
[b, c > 0 and b, c < > 1]
[x, y elements of R]
Z+ = {1, 2, 3, …}
Property Exponents Exponentials Exponents Exponentials Result
1st bx + y = bx · by
23 + 2 = 23 · 22 = 32
2nd bx -y =
bx
———-
by
23 -2 =
23
=
22
2
3rd bx *y = (bx)y 23 *2 = (23)2 = 64
4th n Z+ bx : n = n√bx
24 : 2 = 2√24 = 4
5th (b · c)x = bx · cx (2 · 3)2 = 22 · 32 = 36
6th
(_b_)x =
c
bx
———-
cx
(_4_)3
=
2
43
———- =
23
8
Enzo Exposyto 10
Exponentials - 6 Properties - Proofs/Examples
PROOFS / EXAMPLES
[b, c > 0 and b, c < > 1]
1st b3 · b2 = (b · b · b) · (b · b) = b · b · b · b · b = b5 = b3 + 2
2nd b3 = (b · b · b) = b = b1 = b3 - 2
b2 (b · b)
3rd (b3)2 = (b · b · b) · (b · b · b) = b · b · b · b · b · b = b6 = b3 * 2
4th 2√b4 = 2√(b · b · b · b) = b · b = b2 = b4 : 2
5th b3 · c3 = (b · b · b) · (c · c · c) = b · c · b · c · b · c = … = (b·c)3
6th
b3 (b · b · b) b b b b
——- = ————— = —— . —— . —— = … = (—)3
c3 (c · c · c) c c c c
Enzo Exposyto 11
Exponentials - 2nd property - b superscript 0
EXPONENTIALS - THEIR PROPERTIES - 3
Reference Property Notice Proof Example
2nd
Property
b0 = 1
b > 0
b ≠ 1
x R
b0 = bx - x 20 = 23 - 3
= bx
bx
= 23
23
= 1 = 1
1 = b0 b > 0
b ≠ 1
1 = 20
Enzo Exposyto 12
Exponentials - 2nd property - b superscript (-x)
EXPONENTIALS - THEIR PROPERTIES - 4
Reference Property Notice Proof Example
2nd
Property
b-x = 1
bx
b > 0
b ≠ 1
x R
b-x = b0-x 2-3 = 20-3
= b0
bx
= 20
23
= 1
bx
= 1
23
1 = b-x
bx
b > 0
b ≠ 1
x R
1 = 2-3
23
Enzo Exposyto 13
Exponentials - 2nd property - Reciprocal of bx
EXPONENTIALS and THEIR PROPERTIES - 5
Reference Property Notice Proof Example
2nd
Property
bx = 1
b-x
b > 0
b ≠ 1
x R
23 = 1
2-3
1 = bx
b-x
b > 0
b ≠ 1
x R
1 = 23
2-3
Enzo Exposyto 14
EXPONENTIALS
and
LOGARITHMS

Enzo Exposyto 15
EXPONENTIAL BASE 2:
23 = 2 × 2 x 2 = 8
The LOGARITHM BASE 2 OF 8
goes the OTHER WAY:
Enzo Exposyto 16
The logarithm base 2 of 8 is 3,
BECAUSE
2 cubed is 8;
so the logarithm base 2 of 8 is 3:
Enzo Exposyto 17
THE LOGARITHM BASE 2 OF 8
IS THE OPERATION THAT ALLOWS US
OF GOING BACK TO THE EXPONENT 3
EXPONENTIAL 2x and LOGARITHM BASE 2
EXPONENT x 2x
1 2
2 4
3 8
4 16
Enzo Exposyto 18
In other words …
THE LOGARITHM BASE 2 OF 8
IS
THE EXPONENT 3
… MORE PRECISELY …
THE LOGARITHM "3"
IS THE EXPONENT
WHICH WE HAVE TO PUT ON
THE BASE “2”
TO GET “8”
Enzo Exposyto 19
Now, since
log2(8) = 3 and 8 = 23
then
log2(23) = 3
We can see that
THE LOGARITHM "3"
IS THE EXPONENT
WHICH WE HAVE TO PUT ON
THE BASE “2”
TO GET “23”

Enzo Exposyto 20
EXPONENTIAL and LOGARITHM
with the same base
CANCEL EACH OTHER.
This is true because
exponential and logarithm
with the same base
are INVERSE OPERATIONS
It is just like
Addition and Subtraction,
Multiplication and Division,
Exponentiation and Root, …
when they're
INVERSE OPERATIONS
Enzo Exposyto 21
Now, we can introduce
the ANTILOGARITHM BASE b:
antilogb(x) = bx
It's, simply, an EXPONENTIAL
and represents the antilogarithm
when we operate
with a logarithm …
It’s such that
logb(antilogb(x)) = x
The meaning is
logb(bx) = x
Enzo Exposyto 22
And, of course,
antilogb(logb(y)) = y
The meaning is
blogb(y) = y
Enzo Exposyto 23
These phrases - with 8 - are equivalent
log2(8) = 3 < = > 23 = 8
OR
23 = 8 < = > log2(8) = 3
These phrases - with 23 - are equivalent
log2(23) = 3 < = > 23 = 23
OR
23 = 23 < = > log2(23) = 3
Enzo Exposyto 24
LOGARITHM
-
DEFINITION
and
EXAMPLES
Enzo Exposyto 25
LOGARITHM - DEFINITION
DEFINITION Example
DEFINITION
logb(y) = x
iff (if and only if)
bx = y
log2(8) = 3
because
23 = 8
b > 0 and b < > 1
y > 0
x element of R
2 > 0 and 2 < > 1
8 > 0
3 element of R
The logarithm "x" is the exponent
which we have to put on
the base “b”
to get “y”
The logarithm
"3"
is the exponent
which we have
to put on
the base “2”
to get “8”
Enzo Exposyto 26
iff
bx = y
Enzo Exposyto 27
LOGARITHMS - EXAMPLES - 1
log DEFINITION because
log3(9) = 2
The logarithm "2" is the exponent
which we have to put on the base “3”
to get “9”
log3(9) = 2
because
32 = 9
log3(27) = 3
The logarithm "3" is the exponent
which we have to put on the base “3”
to get “27”
log3(27) = 3
because
33 = 27
log4(4) = 1
The logarithm "1" is the exponent
which we have to put on the base “4”
to get “(4)”
log4(4) = 1
because
41 = (4)
Enzo Exposyto 28
LOGARITHMS - EXAMPLES - 2
log DEFINITION because
log4(16) = 2
The logarithm "2" is the exponent
which we have to put on the base “4”
to get “16”
log4(16) = 2
because
42 = 16
log5(25) = 2
The logarithm "2" is the exponent
which we have to put on the base “5”
to get “25”
log5(25) = 2
because
52 = 25
log10(100) = 2
The logarithm "2" is the exponent
which we have to put on the base “10”
to get “100”
log10(100) = 2
because
102 = 100
Enzo Exposyto 29
LOGARITHMS - EXAMPLES - 3
log DEFINITION because
log4(1) = -1
4
The logarithm "-1" is the exponent
which we have to put on the base “4”
to get “1”
4
log4(1) = -1
4
because
4-1 = 1
4
log10( 1 ) = -1
10
The logarithm "-1" is the exponent
which we have to put on the base “10”
to get “ 1 ”
10
log10( 1 ) = -1
10
because
10-1 = 1
10
Enzo Exposyto 30
LOGARITHMS - EXAMPLES - 4
log DEFINITION because
log1/2(2) = -1
The logarithm "-1" is the exponent
which we have to put on the base “1”
2
to get “2”
log1/2(2) = -1
because
(1)-1 = 2
2
log1/4(4) = -1
The logarithm "-1" is the exponent
which we have to put on the base “1”
4
to get “4”
log1/4(4) = -1
because
(1)-1 = 4
4
Enzo Exposyto 31
LOGARITHMS - EXAMPLES - 5
log DEFINITION because
log1/2(4) = -2
The logarithm "-2" is the exponent
which we have to put on the base “1”
2
to get “4”
log1/2(4) = -2
because
(1)-2 = 4
2
log1/3(9) = -2
The logarithm "-2" is the exponent
which we have to put on the base “1”
3
to get “9”
log1/3(9) = -2
because
(1)-2 = 9
3
Enzo Exposyto 32
LOGARITHMS - EXAMPLES - 6
e = 2.718281828…
log DEFINITION because
loge(e) = 1
The logarithm "1" is the exponent
which we have to put on the base “e”
to get “(e)”
loge(e) = 1
because
e1 = (e)
loge(1) = 0
The logarithm "0" is the exponent
which we have to put on the base “e”
to get “1”
loge(1) = 0
because
e0 = 1
loge(e2) = 2
The logarithm "2" is the exponent
which we have to put on the base “e”
to get “(e2)”
loge(e2) = 2
because
e2 = (e2)
Enzo Exposyto 33
LOGARITHMS
-
THEIR PROPERTIES

Enzo Exposyto 34
LOGARITHMS - THEIR PROPERTIES - 1
Name Property Example
base = 0
log0(y) is undefined log0(2) is undefined
y > 0
For any x R-{0}, 0x ≠ 2
(really 0x = 0) and, then,
log0(2) Does Not Exist
base = 1
log1(y) is undefined log1(2) is undefined
y > 0
For any x R, 1x ≠ 2
(really 1x = 1) and, then,
log1(2) Does Not Exist
logb(0)
logb(0) is undefined log2(0) is undefined
b > 0 and b < > 1
For any x R, 2x ≠ 0
(really 2x > 0) and, then,
log2(0) Does Not Exist
Enzo Exposyto 35
LOGARITHMS - THEIR PROPERTIES - 2
Name Property Examples
logb(1)
logb(1) = 0 log2(1) = 0
because
20 = 1b > 0 and b < > 1
logb(b)
logb(b) = 1 log4(4) = 1
because
41 = (4)b > 0 and b < > 1
Enzo Exposyto 36
LOGARITHMS - THEIR PROPERTIES - 3
Name Property Example
logb(bx)
logb(bx) = x log2(23) = 3
because
23 = (23)
b > 0 and b < > 1
x element of R
blogb(y)
blogb(y) = y 2log2(8) = 8
because
23 = 8
b > 0 and b < > 1
y > 0
Enzo Exposyto 37
LOGARITHMS - THEIR PROPERTIES - 4
Name Property Examples
log of
a Power
logb(yz) = z logb(y) log2(42) = 2 log2(4)
b > 0 and b < > 1
y > 0
z element of R
b = 2
y = 4
z = 2
log of
a Reciprocal
logb(1) = logb(y-1) = - logb(y)
y
log2(1) = log2(4-1) = - log2(4)
4
b > 0 and b < > 1
y > 0
b = 2
y = 4
Enzo Exposyto 38
LOGARITHMS - THEIR PROPERTIES - 5
Name Property Examples
log of
a Root - 1
logb(n√y) = logb(y)
n
log2(3√8) = log2(8)
3
b > 0 and b < > 1
y > 0
n Z+
Z+ = {1, 2, 3, …}
b = 2
y = 8
n = 3
log of
a Root - 2
logb(n√yz) = z logb(y)
n
log2(3√26) = 6 log2(2)
3
b > 0 and b < > 1
y > 0
z element of R
n Z+
Z+ = {1, 2, 3, …}
b = 2
y = 2
z = 6
n = 3
Enzo Exposyto 39
LOGARITHMS - THEIR PROPERTIES - 6
Name Property Examples
log of a
Product - 1
logb(y z) = logb(y) + logb(z) log2(4 2) = log2(4) + log2(2)
b > 0 and b < > 1
y, z > 0
b = 2
y = 4; z = 2
log of a
Product - 2
logb(yn . zp) = n.logb(y)+p.logb(z) log2(43 . 24) = 3.log2(4)+4.log2(2)
b > 0 and b < > 1
y, z > 0
n, p elements of R
b = 2
y = 4; z = 2
n = 3; p = 4
Enzo Exposyto 40
LOGARITHMS - THEIR PROPERTIES - 7
Name Property Examples
log of a
Quotient - 1
logb(y) = logb(y.z-1) = logb(y)-logb(z)
z
log2(8) = log2(8.4-1) = log2(8) - log2(4)
4
b > 0 and b < > 1
y, z > 0
b = 2
y = 8; z = 4
log of a
Quotient - 2
logb(y) = logb(y) - logb(z)
z
log2(4) = log2(4) - log2(2)
2
b > 0 and b < > 1
y, z > 0
b = 2
y = 4; z = 2
log of a
Quotient - 3
logb(yn) = n.logb(y)-p.logb(z)
zp
log2(43) = 3.log2(4)-4.log2(2)
24
b > 0 and b < > 1
y, z > 0
n, p elements of R
b = 2
y = 4; z = 2
n = 3; p = 4
Enzo Exposyto 41
LOGARITHMS - THEIR PROPERTIES - 8
Name Property Examples
Base Change - 1
logb(y) = logc(y)
logc(b) log2(16) = log4(16) = 2 = 4
log4(2) 1
2b, c > 0 and b, c < > 1
y > 0
Base Switch - 1
logb(c) = logc(c) = 1
logc(b) logc(b)
log2(4) = log4(4) = 1
log4(2) log4(2)
logc(c) = 1 log4(4) = 1
b, c > 0 and b, c < > 1 b = 2; c= 4
Base Switch - 2 logb(c) * logc(b) = 1 log2(4) * log4(2) = 1
Enzo Exposyto 42
LOGARITHMS - THEIR PROPERTIES - 9
Name Property Examples
Base Change - 2
logbn(y) = logb(y)
n
log2-3(8) = log2(8)
-3
b > 0 and b < > 1
n element of R, n < > 0
y > 0
b = 2
n = -3
y = 8
Base Change - 3a
n . logbn(y) = logb(y) -3 . log2-3(8) = log2(8)
n element of R, n < > 0
b > 0 and b < > 1
y > 0
n = -3
b = 2
y = 8
Base Change - 3b
logb(y) = n . logbn(y) log2(4) = 2 . log22(4)
b > 0 and b < > 1
y > 0
n element of R, n < > 0
b = 2
y = 4
n = 2
Enzo Exposyto 43
LOGARITHMS - THEIR PROPERTIES - 10
Name Property Examples
Base Change - 4
log1/b(y) = - logb(y) log1/8(8) = - log8(8)
b > 0 and b < > 1
y > 0
b = 8
y = 8
Base Change - 5
logb(1) = log1/b(y)
y
log2(1) = log1/2(4)
4
b > 0 and b < > 1
y > 0
b = 2
y = 4
Enzo Exposyto 44
LOGARITHMS - THEIR PROPERTIES - 11
Name Property Examples
zlogb(y)
zlogb(y) = ylogb(z) 2log2(8) = 8log2(2)
z > 0
b > 0 and b < > 1
y > 0
z = 2
b = 2
y = 8
Enzo Exposyto 45
log(y) AND ln(y)
-
THEIR
PROPERTIES

Enzo Exposyto 46
log(y) AND ln(y) - THEIR PROPERTIES
REMARKS:
• log(y) always refers to log base 10,
i. e.,
log(y) = log10(y)
Therefore,
log(y) = x
if and only if
10x = y
Enzo Exposyto 47
• ln(y) is called the natural logarithm
and is used to represent loge(y),
where the irrational number e 2.718281828:
ln(y) = loge(y)
Therefore,
ln(y) = x
if and only if
ex = y
Enzo Exposyto 48
• Most calculators can directly compute
logs base 10
and/or
the natural log.
For any other base
it is necessary to use
the change of the base formula:
logb(y) = log10(y) = log(y) log2(8) = log(8)
log10(b) log(b). log(2)
or
logb(y) = ln(y) log2(8) = ln(8)
ln(b) ln(2)

Enzo Exposyto 49
log(y) AND ln(y) - THEIR PROPERTIES - 1
Property log ln
base = 0
base = 10 base = e
base = 1
base = 10 base = e
logb(0)
log(0) is undefined ln(0) is undefined
For any x R, 10x ≠ 0
(really 10x > 0) and, then,
log(0) Does Not Exist
For any x R, ex ≠ 0
(really ex > 0) and, then,
ln(0) Does Not Exist
Enzo Exposyto 50
log(x) AND ln(x) - THEIR PROPERTIES - 2
Property log ln
logb(1)
log(1) = 0 ln(1) = 0
because
100 = 1
because
e0 = 1
logb(b)
log(10) = 1 ln(e) = 1
because
101 = 10
because
e1 = e
Enzo Exposyto 51
log(y) AND ln(y) - THEIR PROPERTIES - 3
Property log ln
logb(bx)
log(10x) = x ln(ex) = x
x element of R x R
blogb(y)
10log(y) = y eln(y) = y
y > 0 y > 0
Enzo Exposyto 52
log(y) AND ln(y) - THEIR PROPERTIES - 4
Property log ln
log of a
Power
log(yz) = z log(y) ln(yz) = z ln(y)
y > 0
z element of R
y > 0
z element of R
log of
a Reciprocal
log(1) = log(y-1) = - log(y)
y
ln(1) = ln(y-1) = - ln(y)
y
y > 0 y > 0
Enzo Exposyto 53
log(y) AND ln(y) - THEIR PROPERTIES - 5
Property log ln
log of
a Root - 1
log(n√y) = log(y)
n
ln(n√y) = ln(y)
n
n Z+
Z+ = {1, 2, 3, …}
y > 0
n Z+
Z+ = {1, 2, 3, …}
y > 0
log of
a Root - 2
log(n√yz) = z log(y)
n
ln(n√yz) = z ln(y)
n
n element of Z+
Z+ = {1, 2, 3, …}
y > 0
z element of R
n element of Z+
Z+ = {1, 2, 3, …}
y > 0
z element of R
Enzo Exposyto 54
log(y) AND ln(y) - THEIR PROPERTIES - 6
Property log ln
log of a
Product - 1
log(y z) = log(y) + log(z) ln(y z) = ln(y) + ln(z)
y, z > 0 y, z > 0
log of a
Product - 2
log(yn . zp) = n.log(y)+p.log(z) ln(yn . zp) = n.ln(y)+p.ln(z)
y, z > 0
n, p elements of R
y, z > 0
n, p elements of R
Enzo Exposyto 55
log(y) AND ln(y) - THEIR PROPERTIES - 7
Property log ln
log of a
Quotient - 1
log(y) = log(y.z-1) = log(y)-log(z)
z
ln(y) = ln(y.z-1) = ln(y)-ln(z)
z
y, z > 0 y, z > 0
log of a
Quotient - 2
log(y) = log(y) - log(z)
z
ln(y) = ln(y) - ln(z)
z
y, z > 0 y, z > 0
log of a
Quotient - 3
log(yn) = n.log(y)-p.log(z)
zp
ln(yn) = n.ln(y)-p.ln(z)
zp
y, z > 0
n, p elements of R
y, z > 0
n, p elements of R
Enzo Exposyto 56
log(y) AND ln(y) - THEIR PROPERTIES - 8
Property log ln
Base Change - 1
log(y) = logc(y)
logc(10)
ln(y) = logc(y)
logc(e)
y > 0
c > 0 and c < > 1
y > 0
c > 0 and c < > 1
Base Switch - 1
log(c) = logc(c) = 1
logc(10) logc(10)
ln(c) = logc(c) = 1
logc(e) logc(e)
logc(c) = 1 logc(c) = 1
c > 0 and c < > 1 c > 0 and c < > 1
Base Switch - 2
log(c) * logc(10) = 1 ln(c) * logc(e) = 1
c > 0 and c < > 1 c > 0 and c < > 1
Enzo Exposyto 57
log10(y) AND loge(y) - THEIR PROPERTIES - 9
Property log10 loge
Base Change - 2
log10n(y) = log10(y)
n
logen(y) = loge(y)
n
n element of R, n < > 0
y > 0
n element of R, n < > 0
y > 0
Base Change - 3a
n . log10n(y) = log10(y) n . logen(y) = loge(y)
n element of R, n < > 0
y > 0
n element of R, n < > 0
y > 0
Base Change - 3b
log10(y) = n . log10n(y) loge(y) = n . logen(y)
y > 0
n element of R, n < > 0
y > 0
n element of R, n < > 0
Enzo Exposyto 58
log10(y) AND loge(y) - THEIR PROPERTIES - 10
Property log10 loge
Base Change - 4
log1/10(y) = - log10(y) log1/e(y) = - loge(y)
y > 0 y > 0
Base Change - 5
log10(1) = log1/10(y)
y
loge(1) = log1/e(y)
y
y > 0 y > 0
Enzo Exposyto 59
log10(y) AND loge(y) - THEIR PROPERTIES - 11
Property log10 loge
zlogb(y)
zlog10(y) = ylog10(z) zloge(y) = yloge(z)
z > 0
y > 0
z > 0
y > 0
Enzo Exposyto 60
logb(bx) = x
PROOFS

Enzo Exposyto 61
logb(bx) = x
a) The log of bx is the exponent which we have to put on the
base b to get bx itself and, therefore, it’s “x”
b) If,
from x, we ‘go’ to bx
and, then,
from bx, we ‘go’ to logb(bx),
since
logb(bx) is the inverse operation of bx,
we go back to x …
therefore,
logb(bx) = x
In other words
(remembering that bx = antilogb(x)):
logb(antilogb(x)) = x 

Enzo Exposyto 62
logb(bx) = x
c) Let's set
bx = y
and, then, we ‘do’ the logarithms in base b of both sides;
we get
logb(bx) = logb(y)
Since
bx = y <=> logb(y) = x
we can write
logb(bx) = logb(y)
= x
Therefore,
logb(bx) = x
Q.E.D.
Enzo Exposyto 63
blogb(y) = y
PROOFS


Enzo Exposyto 64
blogb(y) = y
a) If
from y, we ‘go’ to logb(y)
and, then,
from logb(y), we ‘go’ to blogb(y),
since
blogb(y) is the inverse operation of logb(y),
we go back to y …
therefore,
blogb(y) = y
In other words
(remembering that blogb(y) = antilogb(logb(y))):
antilogb(logb(y)) = y 

Enzo Exposyto 65
blogb(y) = y
b) Let's set
bx = y
and, then, we ‘do’ the log in base b of both sides; we get
logb(bx) = logb(y)
Remembering that (pages 62-63)
logb(bx) = x
we can write
logb(bx) = logb(y)
x = logb(y)
or
logb(y) = x
Now, we ‘do’ the exponentials in base b of both sides and we get
blogb(y) = bx
Since
bx = y
we get
blogb(y) = y
Q.E.D.
Enzo Exposyto 66
blogb(y) = y
c) Let's set
logb(y) = x
and, then,
on the left hand side of the equation,
we get
blogb(y) = bx
Since
logb(y) = x <=> bx = y
it's
blogb(y) = bx = y
and, therefore,
blogb(y) = y
Q.E.D.
Enzo Exposyto 67
log of
a POWER
PROOFS

Enzo Exposyto 68
logb(yz) = z . logb(y)
1) Let's set
logb(y) = l
and, then, the right hand side of the equation becomes
z . logb(y) = z . l
2) Since
logb(y) = l <=> bl = y
or y = bl
the left hand side of the equation becomes
logb(yz) = logb((bl)z)
= logb(blz)
Remembering that (pages 62-63)
logb(bx) = x
it's
logb(blz) = lz = z . l
and we can write
logb(yz) = logb(blz) = z . l
3) Since the left hand side and the right hand side are equal to z . l, they are equal:
logb(yz) = z . logb(y)
Q.E.D.
Enzo Exposyto 69
logb(1) = - logb(y)
y
OR
- logb(y) = logb(1)
y
Remembering that
logb(yz) = z . logb(y) [log of a Power, previous page]
we get
logb(1) = logb(y-1)
y
= (-1) . logb(y)
= - logb(y)
Q.E.D.

Enzo Exposyto 70
log of
a ROOT
PROOFS

Enzo Exposyto 71
logb(n√y) = logb(y)
n
Remembering that
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(n√y) = logb(y1/n)
= 1 logb(y)
n
= logb(y)
n
Q.E.D.

Enzo Exposyto 72
logb(n√yz) = z . logb(y)
n
Remembering that
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(n√yz) = logb(yz/n)
= z logb(y)
n
= z . logb(y)
n
Q.E.D.

Enzo Exposyto 73
log of
a PRODUCT
PROOFS

Enzo Exposyto 74
logb(y . z) = logb(y) + logb(z)
1) Let's set
logb(y) = l
logb(z) = m
and, then, the right hand side of the equation becomes
logb(y) + logb(z) = l + m
2) Since
logb(y) = l <=> bl = y or y = bl
logb(z) = m <=> bm = z or z = bm
the left hand side of the equation becomes
logb(y . z) = logb(bl . bm) = logb(bl+m)
Remembering that (pages 62-63)
logb(bx) = x
it's
logb(bl+m) = l + m
and we can write
logb(y . z) = logb(bl+m) = l + m
3) Since the left hand side and the right hand side are equal to l + m, they are equal:
logb(y . z) = logb(y) + logb(z)
Q.E.D.
Enzo Exposyto 75
logb(yn . zp) = n . logb(y) + p . logb(z)
Remembering that
logb(y . z) = logb(y) + logb(z) [previous page]
and
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(yn . zp) = logb(yn) + logb(zp)
= n . logb(y) + p . logb(z)
Q.E.D.

Enzo Exposyto 76
log of
a QUOTIENT
PROOFS

Enzo Exposyto 77
logb(y) = logb(y) - logb(z)
z
Remembering that
logb(y . z) = logb(y) + logb(z) [page 75]
and
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(y) = logb(y . 1) = logb(y . z-1)
z z
= logb(y) + logb(z-1)
= logb(y) + (-1) . logb(z)
= logb(y) - logb(z)
Q.E.D.
Enzo Exposyto 78
logb(y) = logb(y) - logb(z)
z
1) Let's set
logb(y) = l
logb(z) = m
and, then, the right hand side of the equation becomes
logb(y) - logb(z) = l - m
2) Since
logb(y) = l <=> bl = y or y = bl
logb(z) = m <=> bm = z or z = bm
the left hand side of the equation becomes
logb(y) = logb(bl ) = logb(bl-m)
z bm
Remembering that (pages 62-63)
logb(bx) = x
it's
logb(bl-m) = l - m
and we can write
logb(y) = logb(bl-m) = l - m
z
Enzo Exposyto 79
logb(y) = logb(y) - logb(z)
z
3) Since the left hand side and the right hand side are equal to l - m, they are equal:
logb(y) = logb(y) - logb(z)
z
Q.E.D.
Enzo Exposyto 80
logb(yn) = n . logb(y) - p . logb(z)
zp
Remembering that
logb(y) = logb(y) - logb(z) [previous page]
z
and
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(yn) = logb(yn) - logb(zp)
zp
= n . logb(y) - p . logb(z)
Q.E.D.

Enzo Exposyto 81
CHANGE
of BASE
PROOFS

Enzo Exposyto 82
logb(y) = logc(y)
logc(b)
1) On the left hand side of the equation,
let's set
logb(y) = x
2) On the right hand side of the equation,
since
logb(y) = x <=> bx = y or y = bx
we substitute y by bx
logc(y) = logc(bx)
= x . logc(b) [log of a Power, page 69]
and we get
logc(y) = x . logc(b) = x
logc(b) logc(b)
3) Since the left hand side and the right hand side are equal to x, they are equal:
logb(y) = logc(y)
logc(b)
Q.E.D.
Enzo Exposyto 83
logb(c) = 1
logc(b)
It's
logb(c) = logc(c)
logc(b)
Since
logc(c) = 1
we get
logb(c) = logc(c)
logc(b)
= 1
logc(b)
and, then,
logb(c) = 1
logc(b)
Q.E.D.
Enzo Exposyto 84
logb(c) . logc(b) = 1
From
logb(c) = 1
logc(b)
multiplying both sides by logc(b), it’s
logb(c) logc(b) = 1 logc(b)
logc(b)
and, then,
logb(c) logc(b) = 1
Q.E.D.
Enzo Exposyto 85
logbn(y) = logb(y)
n
Let's change the base bn by b:
logbn(y) = logb(y)
logb(bn) [log of a Power, page 69]
= logb(y)
n logb(b) [remember: logb(b) = 1]
= logb(y)
n
Therefore:
logbn(y) = logb(y)
n
Q.E.D.
Enzo Exposyto 86
n . logbn(y) = logb(y)
OR
logb(y) = n . logbn(y)
From
logbn(y) = logb(y) [previous page]
n
multiplying both sides by n, it’s
n . logbn(y) = logb(y) . n
n
and, then,
n . logbn(y) = logb(y)
Q.E.D.

Enzo Exposyto 87
log1/b(y) = - logb(y)
a) From
logb(y) = n . logbn(y) [previous page]
if n = -1 we get
logb(y) = (-1) . logb-1(y) [remember: b-1 = 1]
b
logb(y) = - log1/b(y) [multiplying both sides by (-1)]
- logb(y) = log1/b(y)
and, then,
log1/b(y) = - logb(y)
Q.E.D.
Enzo Exposyto 88
log1/b(y) = - logb(y)
b) Let's change the base 1 by b:
b
log1/b(y) = logb(y)
logb(1) [remember: 1 = b-1]
b b
= logb(y)
logb(b-1) [log of a Power, page 69]
= logb(y)
(-1) logb(b) [remember: logb(b) = 1]
= logb(y)
(-1)
= - logb(y)
Q.E.D.
Enzo Exposyto 89
logb(1) = log1/b(y)
y
OR
log1/b(y) = logb(1)
y
1) From page 70:
logb(1) = - logb(y)
y
2) From previous page:
log1/b(y) = - logb(y)
3) Since the first and the second left hand side are equal to - logb(y), they are equal:
logb(1) = log1/b(y)
y
Q.E.D.
Enzo Exposyto 90
zlogb(y) = ylogb(z)
PROOF

Enzo Exposyto 91
zlogb(y) = ylogb(z)
1) On the left hand side of the equation,
let's set
logb(y) = x
and we get
zlogb(y) = zx
2) On the right hand side of the equation,
since
logb(y) = x <=> bx = y or y = bx
we substitute y by bx and we get
ylogb(z) = (bx)logb(z)
= bxlogb(z)
= blogb(zx) [log of a Power, page 69]
= zx [blogb(zx) = zx See blogb(y) = y (pages 65-67)]
3) Since the left hand side and the right hand side are equal to zx, they are equal:
zlogb(y) = ylogb(z)
Q.E.D.


Enzo Exposyto 92
SitoGraphy

Enzo Exposyto 93
https://en.m.wikipedia.org/wiki/List_of_logarithmic_identities
https://www.andrews.edu/~calkins/math/webtexts/numb17.htm
http://dl.uncw.edu/digilib/mathematics/algebra/mat111hb/eandl/logprop/logprop.html#sec2
Enzo Exposyto 94

More Related Content

What's hot

Supremum dan infimum
Supremum dan infimum  Supremum dan infimum
Supremum dan infimum
Rossi Fauzi
 
Contoh bukan subgrup normal
Contoh bukan subgrup normalContoh bukan subgrup normal
Contoh bukan subgrup normal
Nida Shafiyanti
 
Teori himpunan
Teori himpunanTeori himpunan
Teori himpunan
habibahnurul376
 
Ppt himpunan kelompok 7 [tanpa latihan soal]
Ppt himpunan kelompok 7 [tanpa latihan soal]Ppt himpunan kelompok 7 [tanpa latihan soal]
Ppt himpunan kelompok 7 [tanpa latihan soal]Diyah Sri Hariyanti
 
Order dari Elemen Grup
Order dari Elemen GrupOrder dari Elemen Grup
Order dari Elemen Grupwahyuhenky
 
Model RPP Matematika
Model RPP MatematikaModel RPP Matematika
Model RPP Matematika
Gilang Asri Devianty
 
BAB 2 Pencerminan (Refleksi)
BAB 2 Pencerminan (Refleksi)BAB 2 Pencerminan (Refleksi)
BAB 2 Pencerminan (Refleksi)
Nia Matus
 
BAB 1 Transformasi
BAB 1 Transformasi BAB 1 Transformasi
BAB 1 Transformasi
Nia Matus
 
Media pembelajaran Himpunan
Media pembelajaran HimpunanMedia pembelajaran Himpunan
Media pembelajaran Himpunan
Resty Anggre
 
Rangkuman materi Transformasi Kesebangunan
Rangkuman materi Transformasi KesebangunanRangkuman materi Transformasi Kesebangunan
Rangkuman materi Transformasi Kesebangunan
Nia Matus
 
Ring Polonomial
Ring PolonomialRing Polonomial
Ring Polonomial
Nailul Hasibuan
 
Rangkuman Geometri Transformasi
Rangkuman Geometri TransformasiRangkuman Geometri Transformasi
Rangkuman Geometri TransformasiIndah Wijayanti
 
Analisis Real
Analisis RealAnalisis Real
Analisis Real
Muhammad Isfendiyar
 
RPP OPERASI MATRIKS( penjumlahan, pengurangan, perkalian dengan sebuah bilang...
RPP OPERASI MATRIKS( penjumlahan, pengurangan, perkalian dengan sebuah bilang...RPP OPERASI MATRIKS( penjumlahan, pengurangan, perkalian dengan sebuah bilang...
RPP OPERASI MATRIKS( penjumlahan, pengurangan, perkalian dengan sebuah bilang...
Universitas Lambung Mangkurat
 

What's hot (20)

Bentuk aljabar
Bentuk aljabarBentuk aljabar
Bentuk aljabar
 
Supremum dan infimum
Supremum dan infimum  Supremum dan infimum
Supremum dan infimum
 
Contoh bukan subgrup normal
Contoh bukan subgrup normalContoh bukan subgrup normal
Contoh bukan subgrup normal
 
Limit
LimitLimit
Limit
 
Struktur aljabar-2
Struktur aljabar-2Struktur aljabar-2
Struktur aljabar-2
 
Teori himpunan
Teori himpunanTeori himpunan
Teori himpunan
 
Ppt himpunan kelompok 7 [tanpa latihan soal]
Ppt himpunan kelompok 7 [tanpa latihan soal]Ppt himpunan kelompok 7 [tanpa latihan soal]
Ppt himpunan kelompok 7 [tanpa latihan soal]
 
Order dari Elemen Grup
Order dari Elemen GrupOrder dari Elemen Grup
Order dari Elemen Grup
 
Model RPP Matematika
Model RPP MatematikaModel RPP Matematika
Model RPP Matematika
 
BAB 2 Pencerminan (Refleksi)
BAB 2 Pencerminan (Refleksi)BAB 2 Pencerminan (Refleksi)
BAB 2 Pencerminan (Refleksi)
 
BAB 1 Transformasi
BAB 1 Transformasi BAB 1 Transformasi
BAB 1 Transformasi
 
Media pembelajaran Himpunan
Media pembelajaran HimpunanMedia pembelajaran Himpunan
Media pembelajaran Himpunan
 
Rangkuman materi Transformasi Kesebangunan
Rangkuman materi Transformasi KesebangunanRangkuman materi Transformasi Kesebangunan
Rangkuman materi Transformasi Kesebangunan
 
Ring Polonomial
Ring PolonomialRing Polonomial
Ring Polonomial
 
Rangkuman Geometri Transformasi
Rangkuman Geometri TransformasiRangkuman Geometri Transformasi
Rangkuman Geometri Transformasi
 
Analisis real-lengkap-a1c
Analisis real-lengkap-a1cAnalisis real-lengkap-a1c
Analisis real-lengkap-a1c
 
Analisis Real
Analisis RealAnalisis Real
Analisis Real
 
RPP OPERASI MATRIKS( penjumlahan, pengurangan, perkalian dengan sebuah bilang...
RPP OPERASI MATRIKS( penjumlahan, pengurangan, perkalian dengan sebuah bilang...RPP OPERASI MATRIKS( penjumlahan, pengurangan, perkalian dengan sebuah bilang...
RPP OPERASI MATRIKS( penjumlahan, pengurangan, perkalian dengan sebuah bilang...
 
2.pencerminan
2.pencerminan2.pencerminan
2.pencerminan
 
Ring
RingRing
Ring
 

Similar to MATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIES

MATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIES
MATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIESMATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIES
MATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIES
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIESMATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
MATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLES
MATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLESMATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLES
MATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLES
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
MATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIES
MATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIESMATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIES
MATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIES
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMSMATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFSMATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
chapter3.ppt
chapter3.pptchapter3.ppt
chapter3.ppt
JudieLeeTandog1
 
MATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFS
MATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFSMATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFS
MATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFS
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
3.1 properties of logarithm
3.1 properties of logarithm3.1 properties of logarithm
3.1 properties of logarithmmath123c
 
MATHS SYMBOLS - OTHER OPERATIONS (2)
MATHS SYMBOLS - OTHER OPERATIONS (2)MATHS SYMBOLS - OTHER OPERATIONS (2)
MATHS SYMBOLS - OTHER OPERATIONS (2)
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
Business Math Chapter 2
Business Math Chapter 2Business Math Chapter 2
Business Math Chapter 2
Nazrin Nazdri
 
MATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFS
MATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFSMATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFS
MATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFS
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
MATHS SYMBOLS - PROPERTIES of EXPONENTS
MATHS SYMBOLS - PROPERTIES of EXPONENTSMATHS SYMBOLS - PROPERTIES of EXPONENTS
MATHS SYMBOLS - PROPERTIES of EXPONENTS
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
1528 exponential-log
1528 exponential-log1528 exponential-log
1528 exponential-log
Dr Fereidoun Dejahang
 
Logarithms
LogarithmsLogarithms
Logarithms
omar_egypt
 
Chapter 31 logarithms
Chapter 31 logarithmsChapter 31 logarithms
Chapter 31 logarithms
Sarah Sue Calbio
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
Pume Ananda
 
Exponential and logrithmic functions
Exponential and logrithmic functionsExponential and logrithmic functions
Exponential and logrithmic functionsMalikahmad105
 
Logarithmic Functions
Logarithmic FunctionsLogarithmic Functions
Logarithmic Functionsswartzje
 

Similar to MATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIES (20)

MATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIES
MATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIESMATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIES
MATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIES
 
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIESMATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
 
MATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLES
MATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLESMATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLES
MATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLES
 
MATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIES
MATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIESMATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIES
MATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIES
 
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMSMATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
 
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFSMATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
 
chapter3.ppt
chapter3.pptchapter3.ppt
chapter3.ppt
 
MATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFS
MATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFSMATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFS
MATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFS
 
3.1 properties of logarithm
3.1 properties of logarithm3.1 properties of logarithm
3.1 properties of logarithm
 
MATHS SYMBOLS - OTHER OPERATIONS (2)
MATHS SYMBOLS - OTHER OPERATIONS (2)MATHS SYMBOLS - OTHER OPERATIONS (2)
MATHS SYMBOLS - OTHER OPERATIONS (2)
 
Business Math Chapter 2
Business Math Chapter 2Business Math Chapter 2
Business Math Chapter 2
 
MATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFS
MATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFSMATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFS
MATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFS
 
MATHS SYMBOLS - PROPERTIES of EXPONENTS
MATHS SYMBOLS - PROPERTIES of EXPONENTSMATHS SYMBOLS - PROPERTIES of EXPONENTS
MATHS SYMBOLS - PROPERTIES of EXPONENTS
 
1528 exponential-log
1528 exponential-log1528 exponential-log
1528 exponential-log
 
Logarithms
LogarithmsLogarithms
Logarithms
 
Chapter 31 logarithms
Chapter 31 logarithmsChapter 31 logarithms
Chapter 31 logarithms
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Exponential and logrithmic functions
Exponential and logrithmic functionsExponential and logrithmic functions
Exponential and logrithmic functions
 
Logarithmic Functions
Logarithmic FunctionsLogarithmic Functions
Logarithmic Functions
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 

More from Ist. Superiore Marini-Gioia - Enzo Exposyto

Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti E...
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti  E...Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti  E...
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti E...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 2 MET...
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 2 MET...ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 2 MET...
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 2 MET...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ...ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ANALITICO - ...
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ANALITICO - ...EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ANALITICO - ...
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ANALITICO - ...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - METODO...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - METODO...ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - METODO...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - METODO...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 3 METODI ANALITICI...
EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 3 METODI ANALITICI...EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 3 METODI ANALITICI...
EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 3 METODI ANALITICI...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSOESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
Ist. Superiore Marini-Gioia - Enzo Exposyto
 

More from Ist. Superiore Marini-Gioia - Enzo Exposyto (20)

Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
 
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
 
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
 
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti E...
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti  E...Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti  E...
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti E...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
 
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 2 MET...
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 2 MET...ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 2 MET...
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 2 MET...
 
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ...ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ...
 
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ANALITICO - ...
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ANALITICO - ...EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ANALITICO - ...
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ANALITICO - ...
 
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - METODO...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - METODO...ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - METODO...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - METODO...
 
EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 3 METODI ANALITICI...
EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 3 METODI ANALITICI...EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 3 METODI ANALITICI...
EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 3 METODI ANALITICI...
 
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
 
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
 
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
 
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSOESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
 

Recently uploaded

A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
chanes7
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
kimdan468
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 

Recently uploaded (20)

A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 

MATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIES

  • 1. ENZO EXPOSYTO MATHS SYMBOLS PROPERTIES of EXPONENTIALS and LOGARITHMS
 Enzo Exposyto 1
  • 2. 2X ex 2-x e-x EXPONENTIALS LOGARITHMS log2(x) ln(x) log(x)
 Enzo Exposyto 2
  • 4. 1 - Exponential - Definition 6 2 - Exponentials - Their Properties 8 3 - Exponentials and Logarithms 15 4 - Logarithm - Definition and Examples 25 5 - Logarithms - Their Properties 34 6 - log(y) and ln(y) - Properties 46 Enzo Exposyto 4
  • 5. 7 - logb(bx) = x - Proofs 61 8 - ylogb(y) = y - Proofs 64 9 - log of a Power - Proofs 68 10 - log of a Root - Proofs 71 11 - log of a Product - Proofs 74 12 - log of a Quotient - Proofs 77 13 - Change of Base - Proofs 82 14 - zlogb(y) = ylogb(z) - Proof 91 15 - SitoGraphy 93 Enzo Exposyto 5
  • 7. EXPONENTIAL - DEFINITION DEFINITION Examples DEFINITION bx = y ... 2-1 = 1 2 ... 20 = 1 ... 21 = 2 ... b > 0 and b < > 1 (*) x element of R y > 0 "b" is the fixed base x is the variable exponent (*) The symbol < > and ≠ have the same meaning Enzo Exposyto 7
  • 9. EXPONENTIALS - THEIR PROPERTIES - 1 [b, c > 0 and b, c < > 1] [x, y elements of R] Z+ = {1, 2, 3, …} Property Exponentials Exponents Exponentials Exponents Result 1st bx · by = bx + y 23 · 22 = 23 + 2 = 32 2nd bx = by bx -y 23 = 22 23 -2 = 2 3rd (bx)y = bx *y (23)2 = 23 *2 = 64 4th n Z+ n√bx = bx : n 2√24 = 24 : 2 = 4 5th bx · cx = (b · c)x 22 · 32 = (2 · 3)2 = 36 6th bx ———- = cx (_b_)x c 43 ———- = 23 (_4_)3 = 2 8 Enzo Exposyto 9
  • 10. EXPONENTIALS - THEIR PROPERTIES - 2 [b, c > 0 and b, c < > 1] [x, y elements of R] Z+ = {1, 2, 3, …} Property Exponents Exponentials Exponents Exponentials Result 1st bx + y = bx · by 23 + 2 = 23 · 22 = 32 2nd bx -y = bx ———- by 23 -2 = 23 = 22 2 3rd bx *y = (bx)y 23 *2 = (23)2 = 64 4th n Z+ bx : n = n√bx 24 : 2 = 2√24 = 4 5th (b · c)x = bx · cx (2 · 3)2 = 22 · 32 = 36 6th (_b_)x = c bx ———- cx (_4_)3 = 2 43 ———- = 23 8 Enzo Exposyto 10
  • 11. Exponentials - 6 Properties - Proofs/Examples PROOFS / EXAMPLES [b, c > 0 and b, c < > 1] 1st b3 · b2 = (b · b · b) · (b · b) = b · b · b · b · b = b5 = b3 + 2 2nd b3 = (b · b · b) = b = b1 = b3 - 2 b2 (b · b) 3rd (b3)2 = (b · b · b) · (b · b · b) = b · b · b · b · b · b = b6 = b3 * 2 4th 2√b4 = 2√(b · b · b · b) = b · b = b2 = b4 : 2 5th b3 · c3 = (b · b · b) · (c · c · c) = b · c · b · c · b · c = … = (b·c)3 6th b3 (b · b · b) b b b b ——- = ————— = —— . —— . —— = … = (—)3 c3 (c · c · c) c c c c Enzo Exposyto 11
  • 12. Exponentials - 2nd property - b superscript 0 EXPONENTIALS - THEIR PROPERTIES - 3 Reference Property Notice Proof Example 2nd Property b0 = 1 b > 0 b ≠ 1 x R b0 = bx - x 20 = 23 - 3 = bx bx = 23 23 = 1 = 1 1 = b0 b > 0 b ≠ 1 1 = 20 Enzo Exposyto 12
  • 13. Exponentials - 2nd property - b superscript (-x) EXPONENTIALS - THEIR PROPERTIES - 4 Reference Property Notice Proof Example 2nd Property b-x = 1 bx b > 0 b ≠ 1 x R b-x = b0-x 2-3 = 20-3 = b0 bx = 20 23 = 1 bx = 1 23 1 = b-x bx b > 0 b ≠ 1 x R 1 = 2-3 23 Enzo Exposyto 13
  • 14. Exponentials - 2nd property - Reciprocal of bx EXPONENTIALS and THEIR PROPERTIES - 5 Reference Property Notice Proof Example 2nd Property bx = 1 b-x b > 0 b ≠ 1 x R 23 = 1 2-3 1 = bx b-x b > 0 b ≠ 1 x R 1 = 23 2-3 Enzo Exposyto 14
  • 16. EXPONENTIAL BASE 2: 23 = 2 × 2 x 2 = 8 The LOGARITHM BASE 2 OF 8 goes the OTHER WAY: Enzo Exposyto 16
  • 17. The logarithm base 2 of 8 is 3, BECAUSE 2 cubed is 8; so the logarithm base 2 of 8 is 3: Enzo Exposyto 17
  • 18. THE LOGARITHM BASE 2 OF 8 IS THE OPERATION THAT ALLOWS US OF GOING BACK TO THE EXPONENT 3 EXPONENTIAL 2x and LOGARITHM BASE 2 EXPONENT x 2x 1 2 2 4 3 8 4 16 Enzo Exposyto 18
  • 19. In other words … THE LOGARITHM BASE 2 OF 8 IS THE EXPONENT 3 … MORE PRECISELY … THE LOGARITHM "3" IS THE EXPONENT WHICH WE HAVE TO PUT ON THE BASE “2” TO GET “8” Enzo Exposyto 19
  • 20. Now, since log2(8) = 3 and 8 = 23 then log2(23) = 3 We can see that THE LOGARITHM "3" IS THE EXPONENT WHICH WE HAVE TO PUT ON THE BASE “2” TO GET “23”
 Enzo Exposyto 20
  • 21. EXPONENTIAL and LOGARITHM with the same base CANCEL EACH OTHER. This is true because exponential and logarithm with the same base are INVERSE OPERATIONS It is just like Addition and Subtraction, Multiplication and Division, Exponentiation and Root, … when they're INVERSE OPERATIONS Enzo Exposyto 21
  • 22. Now, we can introduce the ANTILOGARITHM BASE b: antilogb(x) = bx It's, simply, an EXPONENTIAL and represents the antilogarithm when we operate with a logarithm … It’s such that logb(antilogb(x)) = x The meaning is logb(bx) = x Enzo Exposyto 22
  • 23. And, of course, antilogb(logb(y)) = y The meaning is blogb(y) = y Enzo Exposyto 23
  • 24. These phrases - with 8 - are equivalent log2(8) = 3 < = > 23 = 8 OR 23 = 8 < = > log2(8) = 3 These phrases - with 23 - are equivalent log2(23) = 3 < = > 23 = 23 OR 23 = 23 < = > log2(23) = 3 Enzo Exposyto 24
  • 26. LOGARITHM - DEFINITION DEFINITION Example DEFINITION logb(y) = x iff (if and only if) bx = y log2(8) = 3 because 23 = 8 b > 0 and b < > 1 y > 0 x element of R 2 > 0 and 2 < > 1 8 > 0 3 element of R The logarithm "x" is the exponent which we have to put on the base “b” to get “y” The logarithm "3" is the exponent which we have to put on the base “2” to get “8” Enzo Exposyto 26
  • 27. iff bx = y
Enzo Exposyto 27
  • 28. LOGARITHMS - EXAMPLES - 1 log DEFINITION because log3(9) = 2 The logarithm "2" is the exponent which we have to put on the base “3” to get “9” log3(9) = 2 because 32 = 9 log3(27) = 3 The logarithm "3" is the exponent which we have to put on the base “3” to get “27” log3(27) = 3 because 33 = 27 log4(4) = 1 The logarithm "1" is the exponent which we have to put on the base “4” to get “(4)” log4(4) = 1 because 41 = (4) Enzo Exposyto 28
  • 29. LOGARITHMS - EXAMPLES - 2 log DEFINITION because log4(16) = 2 The logarithm "2" is the exponent which we have to put on the base “4” to get “16” log4(16) = 2 because 42 = 16 log5(25) = 2 The logarithm "2" is the exponent which we have to put on the base “5” to get “25” log5(25) = 2 because 52 = 25 log10(100) = 2 The logarithm "2" is the exponent which we have to put on the base “10” to get “100” log10(100) = 2 because 102 = 100 Enzo Exposyto 29
  • 30. LOGARITHMS - EXAMPLES - 3 log DEFINITION because log4(1) = -1 4 The logarithm "-1" is the exponent which we have to put on the base “4” to get “1” 4 log4(1) = -1 4 because 4-1 = 1 4 log10( 1 ) = -1 10 The logarithm "-1" is the exponent which we have to put on the base “10” to get “ 1 ” 10 log10( 1 ) = -1 10 because 10-1 = 1 10 Enzo Exposyto 30
  • 31. LOGARITHMS - EXAMPLES - 4 log DEFINITION because log1/2(2) = -1 The logarithm "-1" is the exponent which we have to put on the base “1” 2 to get “2” log1/2(2) = -1 because (1)-1 = 2 2 log1/4(4) = -1 The logarithm "-1" is the exponent which we have to put on the base “1” 4 to get “4” log1/4(4) = -1 because (1)-1 = 4 4 Enzo Exposyto 31
  • 32. LOGARITHMS - EXAMPLES - 5 log DEFINITION because log1/2(4) = -2 The logarithm "-2" is the exponent which we have to put on the base “1” 2 to get “4” log1/2(4) = -2 because (1)-2 = 4 2 log1/3(9) = -2 The logarithm "-2" is the exponent which we have to put on the base “1” 3 to get “9” log1/3(9) = -2 because (1)-2 = 9 3 Enzo Exposyto 32
  • 33. LOGARITHMS - EXAMPLES - 6 e = 2.718281828… log DEFINITION because loge(e) = 1 The logarithm "1" is the exponent which we have to put on the base “e” to get “(e)” loge(e) = 1 because e1 = (e) loge(1) = 0 The logarithm "0" is the exponent which we have to put on the base “e” to get “1” loge(1) = 0 because e0 = 1 loge(e2) = 2 The logarithm "2" is the exponent which we have to put on the base “e” to get “(e2)” loge(e2) = 2 because e2 = (e2) Enzo Exposyto 33
  • 35. LOGARITHMS - THEIR PROPERTIES - 1 Name Property Example base = 0 log0(y) is undefined log0(2) is undefined y > 0 For any x R-{0}, 0x ≠ 2 (really 0x = 0) and, then, log0(2) Does Not Exist base = 1 log1(y) is undefined log1(2) is undefined y > 0 For any x R, 1x ≠ 2 (really 1x = 1) and, then, log1(2) Does Not Exist logb(0) logb(0) is undefined log2(0) is undefined b > 0 and b < > 1 For any x R, 2x ≠ 0 (really 2x > 0) and, then, log2(0) Does Not Exist Enzo Exposyto 35
  • 36. LOGARITHMS - THEIR PROPERTIES - 2 Name Property Examples logb(1) logb(1) = 0 log2(1) = 0 because 20 = 1b > 0 and b < > 1 logb(b) logb(b) = 1 log4(4) = 1 because 41 = (4)b > 0 and b < > 1 Enzo Exposyto 36
  • 37. LOGARITHMS - THEIR PROPERTIES - 3 Name Property Example logb(bx) logb(bx) = x log2(23) = 3 because 23 = (23) b > 0 and b < > 1 x element of R blogb(y) blogb(y) = y 2log2(8) = 8 because 23 = 8 b > 0 and b < > 1 y > 0 Enzo Exposyto 37
  • 38. LOGARITHMS - THEIR PROPERTIES - 4 Name Property Examples log of a Power logb(yz) = z logb(y) log2(42) = 2 log2(4) b > 0 and b < > 1 y > 0 z element of R b = 2 y = 4 z = 2 log of a Reciprocal logb(1) = logb(y-1) = - logb(y) y log2(1) = log2(4-1) = - log2(4) 4 b > 0 and b < > 1 y > 0 b = 2 y = 4 Enzo Exposyto 38
  • 39. LOGARITHMS - THEIR PROPERTIES - 5 Name Property Examples log of a Root - 1 logb(n√y) = logb(y) n log2(3√8) = log2(8) 3 b > 0 and b < > 1 y > 0 n Z+ Z+ = {1, 2, 3, …} b = 2 y = 8 n = 3 log of a Root - 2 logb(n√yz) = z logb(y) n log2(3√26) = 6 log2(2) 3 b > 0 and b < > 1 y > 0 z element of R n Z+ Z+ = {1, 2, 3, …} b = 2 y = 2 z = 6 n = 3 Enzo Exposyto 39
  • 40. LOGARITHMS - THEIR PROPERTIES - 6 Name Property Examples log of a Product - 1 logb(y z) = logb(y) + logb(z) log2(4 2) = log2(4) + log2(2) b > 0 and b < > 1 y, z > 0 b = 2 y = 4; z = 2 log of a Product - 2 logb(yn . zp) = n.logb(y)+p.logb(z) log2(43 . 24) = 3.log2(4)+4.log2(2) b > 0 and b < > 1 y, z > 0 n, p elements of R b = 2 y = 4; z = 2 n = 3; p = 4 Enzo Exposyto 40
  • 41. LOGARITHMS - THEIR PROPERTIES - 7 Name Property Examples log of a Quotient - 1 logb(y) = logb(y.z-1) = logb(y)-logb(z) z log2(8) = log2(8.4-1) = log2(8) - log2(4) 4 b > 0 and b < > 1 y, z > 0 b = 2 y = 8; z = 4 log of a Quotient - 2 logb(y) = logb(y) - logb(z) z log2(4) = log2(4) - log2(2) 2 b > 0 and b < > 1 y, z > 0 b = 2 y = 4; z = 2 log of a Quotient - 3 logb(yn) = n.logb(y)-p.logb(z) zp log2(43) = 3.log2(4)-4.log2(2) 24 b > 0 and b < > 1 y, z > 0 n, p elements of R b = 2 y = 4; z = 2 n = 3; p = 4 Enzo Exposyto 41
  • 42. LOGARITHMS - THEIR PROPERTIES - 8 Name Property Examples Base Change - 1 logb(y) = logc(y) logc(b) log2(16) = log4(16) = 2 = 4 log4(2) 1 2b, c > 0 and b, c < > 1 y > 0 Base Switch - 1 logb(c) = logc(c) = 1 logc(b) logc(b) log2(4) = log4(4) = 1 log4(2) log4(2) logc(c) = 1 log4(4) = 1 b, c > 0 and b, c < > 1 b = 2; c= 4 Base Switch - 2 logb(c) * logc(b) = 1 log2(4) * log4(2) = 1 Enzo Exposyto 42
  • 43. LOGARITHMS - THEIR PROPERTIES - 9 Name Property Examples Base Change - 2 logbn(y) = logb(y) n log2-3(8) = log2(8) -3 b > 0 and b < > 1 n element of R, n < > 0 y > 0 b = 2 n = -3 y = 8 Base Change - 3a n . logbn(y) = logb(y) -3 . log2-3(8) = log2(8) n element of R, n < > 0 b > 0 and b < > 1 y > 0 n = -3 b = 2 y = 8 Base Change - 3b logb(y) = n . logbn(y) log2(4) = 2 . log22(4) b > 0 and b < > 1 y > 0 n element of R, n < > 0 b = 2 y = 4 n = 2 Enzo Exposyto 43
  • 44. LOGARITHMS - THEIR PROPERTIES - 10 Name Property Examples Base Change - 4 log1/b(y) = - logb(y) log1/8(8) = - log8(8) b > 0 and b < > 1 y > 0 b = 8 y = 8 Base Change - 5 logb(1) = log1/b(y) y log2(1) = log1/2(4) 4 b > 0 and b < > 1 y > 0 b = 2 y = 4 Enzo Exposyto 44
  • 45. LOGARITHMS - THEIR PROPERTIES - 11 Name Property Examples zlogb(y) zlogb(y) = ylogb(z) 2log2(8) = 8log2(2) z > 0 b > 0 and b < > 1 y > 0 z = 2 b = 2 y = 8 Enzo Exposyto 45
  • 47. log(y) AND ln(y) - THEIR PROPERTIES REMARKS: • log(y) always refers to log base 10, i. e., log(y) = log10(y) Therefore, log(y) = x if and only if 10x = y Enzo Exposyto 47
  • 48. • ln(y) is called the natural logarithm and is used to represent loge(y), where the irrational number e 2.718281828: ln(y) = loge(y) Therefore, ln(y) = x if and only if ex = y Enzo Exposyto 48
  • 49. • Most calculators can directly compute logs base 10 and/or the natural log. For any other base it is necessary to use the change of the base formula: logb(y) = log10(y) = log(y) log2(8) = log(8) log10(b) log(b). log(2) or logb(y) = ln(y) log2(8) = ln(8) ln(b) ln(2)
 Enzo Exposyto 49
  • 50. log(y) AND ln(y) - THEIR PROPERTIES - 1 Property log ln base = 0 base = 10 base = e base = 1 base = 10 base = e logb(0) log(0) is undefined ln(0) is undefined For any x R, 10x ≠ 0 (really 10x > 0) and, then, log(0) Does Not Exist For any x R, ex ≠ 0 (really ex > 0) and, then, ln(0) Does Not Exist Enzo Exposyto 50
  • 51. log(x) AND ln(x) - THEIR PROPERTIES - 2 Property log ln logb(1) log(1) = 0 ln(1) = 0 because 100 = 1 because e0 = 1 logb(b) log(10) = 1 ln(e) = 1 because 101 = 10 because e1 = e Enzo Exposyto 51
  • 52. log(y) AND ln(y) - THEIR PROPERTIES - 3 Property log ln logb(bx) log(10x) = x ln(ex) = x x element of R x R blogb(y) 10log(y) = y eln(y) = y y > 0 y > 0 Enzo Exposyto 52
  • 53. log(y) AND ln(y) - THEIR PROPERTIES - 4 Property log ln log of a Power log(yz) = z log(y) ln(yz) = z ln(y) y > 0 z element of R y > 0 z element of R log of a Reciprocal log(1) = log(y-1) = - log(y) y ln(1) = ln(y-1) = - ln(y) y y > 0 y > 0 Enzo Exposyto 53
  • 54. log(y) AND ln(y) - THEIR PROPERTIES - 5 Property log ln log of a Root - 1 log(n√y) = log(y) n ln(n√y) = ln(y) n n Z+ Z+ = {1, 2, 3, …} y > 0 n Z+ Z+ = {1, 2, 3, …} y > 0 log of a Root - 2 log(n√yz) = z log(y) n ln(n√yz) = z ln(y) n n element of Z+ Z+ = {1, 2, 3, …} y > 0 z element of R n element of Z+ Z+ = {1, 2, 3, …} y > 0 z element of R Enzo Exposyto 54
  • 55. log(y) AND ln(y) - THEIR PROPERTIES - 6 Property log ln log of a Product - 1 log(y z) = log(y) + log(z) ln(y z) = ln(y) + ln(z) y, z > 0 y, z > 0 log of a Product - 2 log(yn . zp) = n.log(y)+p.log(z) ln(yn . zp) = n.ln(y)+p.ln(z) y, z > 0 n, p elements of R y, z > 0 n, p elements of R Enzo Exposyto 55
  • 56. log(y) AND ln(y) - THEIR PROPERTIES - 7 Property log ln log of a Quotient - 1 log(y) = log(y.z-1) = log(y)-log(z) z ln(y) = ln(y.z-1) = ln(y)-ln(z) z y, z > 0 y, z > 0 log of a Quotient - 2 log(y) = log(y) - log(z) z ln(y) = ln(y) - ln(z) z y, z > 0 y, z > 0 log of a Quotient - 3 log(yn) = n.log(y)-p.log(z) zp ln(yn) = n.ln(y)-p.ln(z) zp y, z > 0 n, p elements of R y, z > 0 n, p elements of R Enzo Exposyto 56
  • 57. log(y) AND ln(y) - THEIR PROPERTIES - 8 Property log ln Base Change - 1 log(y) = logc(y) logc(10) ln(y) = logc(y) logc(e) y > 0 c > 0 and c < > 1 y > 0 c > 0 and c < > 1 Base Switch - 1 log(c) = logc(c) = 1 logc(10) logc(10) ln(c) = logc(c) = 1 logc(e) logc(e) logc(c) = 1 logc(c) = 1 c > 0 and c < > 1 c > 0 and c < > 1 Base Switch - 2 log(c) * logc(10) = 1 ln(c) * logc(e) = 1 c > 0 and c < > 1 c > 0 and c < > 1 Enzo Exposyto 57
  • 58. log10(y) AND loge(y) - THEIR PROPERTIES - 9 Property log10 loge Base Change - 2 log10n(y) = log10(y) n logen(y) = loge(y) n n element of R, n < > 0 y > 0 n element of R, n < > 0 y > 0 Base Change - 3a n . log10n(y) = log10(y) n . logen(y) = loge(y) n element of R, n < > 0 y > 0 n element of R, n < > 0 y > 0 Base Change - 3b log10(y) = n . log10n(y) loge(y) = n . logen(y) y > 0 n element of R, n < > 0 y > 0 n element of R, n < > 0 Enzo Exposyto 58
  • 59. log10(y) AND loge(y) - THEIR PROPERTIES - 10 Property log10 loge Base Change - 4 log1/10(y) = - log10(y) log1/e(y) = - loge(y) y > 0 y > 0 Base Change - 5 log10(1) = log1/10(y) y loge(1) = log1/e(y) y y > 0 y > 0 Enzo Exposyto 59
  • 60. log10(y) AND loge(y) - THEIR PROPERTIES - 11 Property log10 loge zlogb(y) zlog10(y) = ylog10(z) zloge(y) = yloge(z) z > 0 y > 0 z > 0 y > 0 Enzo Exposyto 60
  • 62. logb(bx) = x a) The log of bx is the exponent which we have to put on the base b to get bx itself and, therefore, it’s “x” b) If, from x, we ‘go’ to bx and, then, from bx, we ‘go’ to logb(bx), since logb(bx) is the inverse operation of bx, we go back to x … therefore, logb(bx) = x In other words (remembering that bx = antilogb(x)): logb(antilogb(x)) = x 
 Enzo Exposyto 62
  • 63. logb(bx) = x c) Let's set bx = y and, then, we ‘do’ the logarithms in base b of both sides; we get logb(bx) = logb(y) Since bx = y <=> logb(y) = x we can write logb(bx) = logb(y) = x Therefore, logb(bx) = x Q.E.D. Enzo Exposyto 63
  • 65. blogb(y) = y a) If from y, we ‘go’ to logb(y) and, then, from logb(y), we ‘go’ to blogb(y), since blogb(y) is the inverse operation of logb(y), we go back to y … therefore, blogb(y) = y In other words (remembering that blogb(y) = antilogb(logb(y))): antilogb(logb(y)) = y 
 Enzo Exposyto 65
  • 66. blogb(y) = y b) Let's set bx = y and, then, we ‘do’ the log in base b of both sides; we get logb(bx) = logb(y) Remembering that (pages 62-63) logb(bx) = x we can write logb(bx) = logb(y) x = logb(y) or logb(y) = x Now, we ‘do’ the exponentials in base b of both sides and we get blogb(y) = bx Since bx = y we get blogb(y) = y Q.E.D. Enzo Exposyto 66
  • 67. blogb(y) = y c) Let's set logb(y) = x and, then, on the left hand side of the equation, we get blogb(y) = bx Since logb(y) = x <=> bx = y it's blogb(y) = bx = y and, therefore, blogb(y) = y Q.E.D. Enzo Exposyto 67
  • 69. logb(yz) = z . logb(y) 1) Let's set logb(y) = l and, then, the right hand side of the equation becomes z . logb(y) = z . l 2) Since logb(y) = l <=> bl = y or y = bl the left hand side of the equation becomes logb(yz) = logb((bl)z) = logb(blz) Remembering that (pages 62-63) logb(bx) = x it's logb(blz) = lz = z . l and we can write logb(yz) = logb(blz) = z . l 3) Since the left hand side and the right hand side are equal to z . l, they are equal: logb(yz) = z . logb(y) Q.E.D. Enzo Exposyto 69
  • 70. logb(1) = - logb(y) y OR - logb(y) = logb(1) y Remembering that logb(yz) = z . logb(y) [log of a Power, previous page] we get logb(1) = logb(y-1) y = (-1) . logb(y) = - logb(y) Q.E.D.
 Enzo Exposyto 70
  • 72. logb(n√y) = logb(y) n Remembering that logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(n√y) = logb(y1/n) = 1 logb(y) n = logb(y) n Q.E.D.
 Enzo Exposyto 72
  • 73. logb(n√yz) = z . logb(y) n Remembering that logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(n√yz) = logb(yz/n) = z logb(y) n = z . logb(y) n Q.E.D.
 Enzo Exposyto 73
  • 75. logb(y . z) = logb(y) + logb(z) 1) Let's set logb(y) = l logb(z) = m and, then, the right hand side of the equation becomes logb(y) + logb(z) = l + m 2) Since logb(y) = l <=> bl = y or y = bl logb(z) = m <=> bm = z or z = bm the left hand side of the equation becomes logb(y . z) = logb(bl . bm) = logb(bl+m) Remembering that (pages 62-63) logb(bx) = x it's logb(bl+m) = l + m and we can write logb(y . z) = logb(bl+m) = l + m 3) Since the left hand side and the right hand side are equal to l + m, they are equal: logb(y . z) = logb(y) + logb(z) Q.E.D. Enzo Exposyto 75
  • 76. logb(yn . zp) = n . logb(y) + p . logb(z) Remembering that logb(y . z) = logb(y) + logb(z) [previous page] and logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(yn . zp) = logb(yn) + logb(zp) = n . logb(y) + p . logb(z) Q.E.D.
 Enzo Exposyto 76
  • 78. logb(y) = logb(y) - logb(z) z Remembering that logb(y . z) = logb(y) + logb(z) [page 75] and logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(y) = logb(y . 1) = logb(y . z-1) z z = logb(y) + logb(z-1) = logb(y) + (-1) . logb(z) = logb(y) - logb(z) Q.E.D. Enzo Exposyto 78
  • 79. logb(y) = logb(y) - logb(z) z 1) Let's set logb(y) = l logb(z) = m and, then, the right hand side of the equation becomes logb(y) - logb(z) = l - m 2) Since logb(y) = l <=> bl = y or y = bl logb(z) = m <=> bm = z or z = bm the left hand side of the equation becomes logb(y) = logb(bl ) = logb(bl-m) z bm Remembering that (pages 62-63) logb(bx) = x it's logb(bl-m) = l - m and we can write logb(y) = logb(bl-m) = l - m z Enzo Exposyto 79
  • 80. logb(y) = logb(y) - logb(z) z 3) Since the left hand side and the right hand side are equal to l - m, they are equal: logb(y) = logb(y) - logb(z) z Q.E.D. Enzo Exposyto 80
  • 81. logb(yn) = n . logb(y) - p . logb(z) zp Remembering that logb(y) = logb(y) - logb(z) [previous page] z and logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(yn) = logb(yn) - logb(zp) zp = n . logb(y) - p . logb(z) Q.E.D.
 Enzo Exposyto 81
  • 83. logb(y) = logc(y) logc(b) 1) On the left hand side of the equation, let's set logb(y) = x 2) On the right hand side of the equation, since logb(y) = x <=> bx = y or y = bx we substitute y by bx logc(y) = logc(bx) = x . logc(b) [log of a Power, page 69] and we get logc(y) = x . logc(b) = x logc(b) logc(b) 3) Since the left hand side and the right hand side are equal to x, they are equal: logb(y) = logc(y) logc(b) Q.E.D. Enzo Exposyto 83
  • 84. logb(c) = 1 logc(b) It's logb(c) = logc(c) logc(b) Since logc(c) = 1 we get logb(c) = logc(c) logc(b) = 1 logc(b) and, then, logb(c) = 1 logc(b) Q.E.D. Enzo Exposyto 84
  • 85. logb(c) . logc(b) = 1 From logb(c) = 1 logc(b) multiplying both sides by logc(b), it’s logb(c) logc(b) = 1 logc(b) logc(b) and, then, logb(c) logc(b) = 1 Q.E.D. Enzo Exposyto 85
  • 86. logbn(y) = logb(y) n Let's change the base bn by b: logbn(y) = logb(y) logb(bn) [log of a Power, page 69] = logb(y) n logb(b) [remember: logb(b) = 1] = logb(y) n Therefore: logbn(y) = logb(y) n Q.E.D. Enzo Exposyto 86
  • 87. n . logbn(y) = logb(y) OR logb(y) = n . logbn(y) From logbn(y) = logb(y) [previous page] n multiplying both sides by n, it’s n . logbn(y) = logb(y) . n n and, then, n . logbn(y) = logb(y) Q.E.D.
 Enzo Exposyto 87
  • 88. log1/b(y) = - logb(y) a) From logb(y) = n . logbn(y) [previous page] if n = -1 we get logb(y) = (-1) . logb-1(y) [remember: b-1 = 1] b logb(y) = - log1/b(y) [multiplying both sides by (-1)] - logb(y) = log1/b(y) and, then, log1/b(y) = - logb(y) Q.E.D. Enzo Exposyto 88
  • 89. log1/b(y) = - logb(y) b) Let's change the base 1 by b: b log1/b(y) = logb(y) logb(1) [remember: 1 = b-1] b b = logb(y) logb(b-1) [log of a Power, page 69] = logb(y) (-1) logb(b) [remember: logb(b) = 1] = logb(y) (-1) = - logb(y) Q.E.D. Enzo Exposyto 89
  • 90. logb(1) = log1/b(y) y OR log1/b(y) = logb(1) y 1) From page 70: logb(1) = - logb(y) y 2) From previous page: log1/b(y) = - logb(y) 3) Since the first and the second left hand side are equal to - logb(y), they are equal: logb(1) = log1/b(y) y Q.E.D. Enzo Exposyto 90
  • 92. zlogb(y) = ylogb(z) 1) On the left hand side of the equation, let's set logb(y) = x and we get zlogb(y) = zx 2) On the right hand side of the equation, since logb(y) = x <=> bx = y or y = bx we substitute y by bx and we get ylogb(z) = (bx)logb(z) = bxlogb(z) = blogb(zx) [log of a Power, page 69] = zx [blogb(zx) = zx See blogb(y) = y (pages 65-67)] 3) Since the left hand side and the right hand side are equal to zx, they are equal: zlogb(y) = ylogb(z) Q.E.D. 
 Enzo Exposyto 92