ENZO EXPOSYTO
MATHS
SYMBOLS
PROPERTIES of EXPONENTS

Enzo Exposyto 1
23 22 21 20
EXPONENTS
2-1 2-2 2-3 2-4

Enzo Exposyto 2


Enzo Exposyto 3
1 - Exponents and Their Properties - 1 5
2 - Exponents and Their Properties - 2 10
3 - Exponents and Their Properties - 3 13
4 - Exponents and Their Properties - 4 15
5 - SitoGraphy 19
Enzo Exposyto 4
EXPONENTS
and THEIR
PROPERTIES
(1)
Enzo Exposyto 5
a superscript n
an say: a superscript n;
(a^n) a is a positive number and n is a positive integer;
The base a is raised to the power of n;
an is equal to
(we write ‘a’, n times
and
the multiplication sign ‘×’, n-1 times):
an = a × a × ... × a
for example:
23 = 2 × 2 × 2 = 8
(3 times "2" and 3-1 times "x")
a1 say: a superscript 1
(a^1) It’s equal to a: a1= a;
for example:
51 = 5

Enzo Exposyto 6
a superscript n super superscript m
say: a superscript n super superscript m
a is a positive number; n and m are positive integers;
a^n^m It’s equal to a^(nm):
a^n^m = a^(nm);
for example:
2^3^2 = 2^(32) = 29 = 512

Enzo Exposyto 7
0 superscript n AND 0 superscript (-n)
0n n is a positive integer;
(0^n) it’s equal to 0:
0n = 0;
for example:
05 = 0 × 0 × 0 × 0 × 0 = 0
0-n n is a positive integer;
(0^(-n)) 0-n is impossible
and the result Does Not Exist (DNE)
for example:
0-1 = 1 = 1 is impossible (it’s impossible dividing 1 by 0)
01 0
and the result Does Not Exist (DNE)
Enzo Exposyto 8
1 superscript n AND (-1) superscript n
1n It is equal to 1:
(1^n) 1n = 1;
for example:
15 = 1 × 1 × 1 × 1 × 1 = 1
(-1)n n even;
it is equal to +1;
for example:
(-1)4 = (-1) × (-1) × (-1) × (-1) = +1
(-1)n n odd;
it is equal to -1;
for example
(-1)5 = (-1) × (-1) × (-1) × (-1) × (-1) = -1
Enzo Exposyto 9
EXPONENTS
and THEIR
PROPERTIES
(2)

Enzo Exposyto 10
Exponents - 6 Properties - 2A
EXPONENTS and THEIR PROPERTIES - 2A
[a, b elements of R+]
[m, n elements of Z+]
Z+ = {1, 2, 3, …}
Property Powers Exponents Powers Exponents Result
1st am · an = am + n 23 · 22 = 23 + 2 = 32
2nd am
=
an
am -n
23
=
22
23 -2 = 2
3rd (am)n = am *n (23)2 = 23 *2 = 64
4th n√am = am : n 2√24 = 24 : 2 = 4
5th an · bn = (a · b)n 22 · 32 = (2 · 3)2 = 36
6th
an
———- =
bn
(_a_)n
b
43
———- =
23
(_4_)3
=
2
8
Enzo Exposyto 11
Exponents - 6 Properties - 2B
EXPONENTS and THEIR PROPERTIES - 2B
[a, b elements of R+]
[m, n elements of Z+]
Z+ = {1, 2, 3, …}
Property Exponents Powers Exponents Powers Result
1st am + n = am · an
23 + 2 = 23 · 22 = 32
2nd
am -n = am
an
23 -2 = 23
=
22
2
3rd am *n = (am)n
23 *2 = (23)2 = 64
4th am : n = n√am 24 : 2 = 2√24 = 4
5th (a · b)n = an · bn (2 · 3)2 = 22 · 32 = 36
6th
(_a_)n =
b
an
———-
bn
(_4_)3
=
2
43
———- =
23
8
Enzo Exposyto 12
EXPONENTS
and THEIR
PROPERTIES
(3)

Enzo Exposyto 13
Exponents - 6 Properties - Proofs/Examples
PROOFS / EXAMPLES
[a, b elements of R+]
[the exponents m and n are elements of Z+]
Z+ = {1, 2, 3, …}
1st a3 · a2 = (a · a · a) · (a · a) = a · a · a · a · a = a5 = a3 + 2
2nd a3 = (a · a · a) = a = a1 = a3 - 2
a2 (a · a)
3rd (a3)2 = (a · a · a) · (a · a · a) = a · a · a · a · a · a = a6 = a3 * 2
4th 2√a4 = 2√(a · a · a · a) = a · a = a2 = a4 : 2
5th a3 · b3 = (a · a · a) · (b · b· b) = a · b · a · b · a · b = … = (a·b)3
6th
a3 (a · a · a) a a a a
——- = ————— = —— . —— . —— = … = (—)3
b3 (b · b· b) b b b b
Enzo Exposyto 14
EXPONENTS
and THEIR
PROPERTIES
(4)
Enzo Exposyto 15
Exponents - 2nd property- a superscript 0
EXPONENTS and THEIR PROPERTIES - 4A
Z+ = {1, 2, 3, …}
Reference Property Notice Proof Example
2nd
Property
a0 = 1
a ≠ 0
n Z+ a0 = an - n 20 = 23 - 3
= an
an
= 23
23
= 1 = 1
1 = a0 a ≠ 0 1 = 20
Enzo Exposyto 16
Exponents - 2nd property - a superscript (-n)
EXPONENTS and THEIR PROPERTIES - 4B
Z+ = {1, 2, 3, …}
Reference Property Notice Proof Example
2nd
Property
a-n = 1
an
a ≠ 0
n Z+ a-n = a0-n 2-3 = 20-3
= a0
an
= 20
23
= 1
an
= 1
23
1 = a-n
an
a ≠ 0
n Z+
1 = 2-3
23
Negative exponents are
the reciprocals of the positive exponents:
an = 1
a-n
a ≠ 0
n Z+
23 = 1
2-3
1 = an
a-n
a ≠ 0
n Z+
1 = 23
2-3
Enzo Exposyto 17
Exponents - 4th property - a superscript (1/n)
EXPONENTS and THEIR PROPERTIES - 4C
Z+ = {1, 2, 3, …}
Reference Property Notice Proof Example
4th
Property
n√a = a1/n
a ≥ 0
n Z+
n√a = n√a1 3√8 = 3√81
= a1/n = 81/3
a1/n = n√a
a ≥ 0
n Z+ 81/3 = 3√8
Enzo Exposyto 18
SitoGraphy
Enzo Exposyto 19
http://www.gh-mathspeak.com/examples/grammar-rules/?rule=scripts
http://www.rapidtables.com/math/number/exponent.htm
http://www.mathplanet.com/education/algebra-1/exponents-and-exponential-functions/properties-of-exponents
Enzo Exposyto 20

MATHS SYMBOLS - PROPERTIES of EXPONENTS

  • 1.
    ENZO EXPOSYTO MATHS SYMBOLS PROPERTIES ofEXPONENTS
 Enzo Exposyto 1
  • 2.
    23 22 2120 EXPONENTS 2-1 2-2 2-3 2-4
 Enzo Exposyto 2
  • 3.
  • 4.
    1 - Exponentsand Their Properties - 1 5 2 - Exponents and Their Properties - 2 10 3 - Exponents and Their Properties - 3 13 4 - Exponents and Their Properties - 4 15 5 - SitoGraphy 19 Enzo Exposyto 4
  • 5.
  • 6.
    a superscript n ansay: a superscript n; (a^n) a is a positive number and n is a positive integer; The base a is raised to the power of n; an is equal to (we write ‘a’, n times and the multiplication sign ‘×’, n-1 times): an = a × a × ... × a for example: 23 = 2 × 2 × 2 = 8 (3 times "2" and 3-1 times "x") a1 say: a superscript 1 (a^1) It’s equal to a: a1= a; for example: 51 = 5
 Enzo Exposyto 6
  • 7.
    a superscript nsuper superscript m say: a superscript n super superscript m a is a positive number; n and m are positive integers; a^n^m It’s equal to a^(nm): a^n^m = a^(nm); for example: 2^3^2 = 2^(32) = 29 = 512
 Enzo Exposyto 7
  • 8.
    0 superscript nAND 0 superscript (-n) 0n n is a positive integer; (0^n) it’s equal to 0: 0n = 0; for example: 05 = 0 × 0 × 0 × 0 × 0 = 0 0-n n is a positive integer; (0^(-n)) 0-n is impossible and the result Does Not Exist (DNE) for example: 0-1 = 1 = 1 is impossible (it’s impossible dividing 1 by 0) 01 0 and the result Does Not Exist (DNE) Enzo Exposyto 8
  • 9.
    1 superscript nAND (-1) superscript n 1n It is equal to 1: (1^n) 1n = 1; for example: 15 = 1 × 1 × 1 × 1 × 1 = 1 (-1)n n even; it is equal to +1; for example: (-1)4 = (-1) × (-1) × (-1) × (-1) = +1 (-1)n n odd; it is equal to -1; for example (-1)5 = (-1) × (-1) × (-1) × (-1) × (-1) = -1 Enzo Exposyto 9
  • 10.
  • 11.
    Exponents - 6Properties - 2A EXPONENTS and THEIR PROPERTIES - 2A [a, b elements of R+] [m, n elements of Z+] Z+ = {1, 2, 3, …} Property Powers Exponents Powers Exponents Result 1st am · an = am + n 23 · 22 = 23 + 2 = 32 2nd am = an am -n 23 = 22 23 -2 = 2 3rd (am)n = am *n (23)2 = 23 *2 = 64 4th n√am = am : n 2√24 = 24 : 2 = 4 5th an · bn = (a · b)n 22 · 32 = (2 · 3)2 = 36 6th an ———- = bn (_a_)n b 43 ———- = 23 (_4_)3 = 2 8 Enzo Exposyto 11
  • 12.
    Exponents - 6Properties - 2B EXPONENTS and THEIR PROPERTIES - 2B [a, b elements of R+] [m, n elements of Z+] Z+ = {1, 2, 3, …} Property Exponents Powers Exponents Powers Result 1st am + n = am · an 23 + 2 = 23 · 22 = 32 2nd am -n = am an 23 -2 = 23 = 22 2 3rd am *n = (am)n 23 *2 = (23)2 = 64 4th am : n = n√am 24 : 2 = 2√24 = 4 5th (a · b)n = an · bn (2 · 3)2 = 22 · 32 = 36 6th (_a_)n = b an ———- bn (_4_)3 = 2 43 ———- = 23 8 Enzo Exposyto 12
  • 13.
  • 14.
    Exponents - 6Properties - Proofs/Examples PROOFS / EXAMPLES [a, b elements of R+] [the exponents m and n are elements of Z+] Z+ = {1, 2, 3, …} 1st a3 · a2 = (a · a · a) · (a · a) = a · a · a · a · a = a5 = a3 + 2 2nd a3 = (a · a · a) = a = a1 = a3 - 2 a2 (a · a) 3rd (a3)2 = (a · a · a) · (a · a · a) = a · a · a · a · a · a = a6 = a3 * 2 4th 2√a4 = 2√(a · a · a · a) = a · a = a2 = a4 : 2 5th a3 · b3 = (a · a · a) · (b · b· b) = a · b · a · b · a · b = … = (a·b)3 6th a3 (a · a · a) a a a a ——- = ————— = —— . —— . —— = … = (—)3 b3 (b · b· b) b b b b Enzo Exposyto 14
  • 15.
  • 16.
    Exponents - 2ndproperty- a superscript 0 EXPONENTS and THEIR PROPERTIES - 4A Z+ = {1, 2, 3, …} Reference Property Notice Proof Example 2nd Property a0 = 1 a ≠ 0 n Z+ a0 = an - n 20 = 23 - 3 = an an = 23 23 = 1 = 1 1 = a0 a ≠ 0 1 = 20 Enzo Exposyto 16
  • 17.
    Exponents - 2ndproperty - a superscript (-n) EXPONENTS and THEIR PROPERTIES - 4B Z+ = {1, 2, 3, …} Reference Property Notice Proof Example 2nd Property a-n = 1 an a ≠ 0 n Z+ a-n = a0-n 2-3 = 20-3 = a0 an = 20 23 = 1 an = 1 23 1 = a-n an a ≠ 0 n Z+ 1 = 2-3 23 Negative exponents are the reciprocals of the positive exponents: an = 1 a-n a ≠ 0 n Z+ 23 = 1 2-3 1 = an a-n a ≠ 0 n Z+ 1 = 23 2-3 Enzo Exposyto 17
  • 18.
    Exponents - 4thproperty - a superscript (1/n) EXPONENTS and THEIR PROPERTIES - 4C Z+ = {1, 2, 3, …} Reference Property Notice Proof Example 4th Property n√a = a1/n a ≥ 0 n Z+ n√a = n√a1 3√8 = 3√81 = a1/n = 81/3 a1/n = n√a a ≥ 0 n Z+ 81/3 = 3√8 Enzo Exposyto 18
  • 19.
  • 20.