This document proposes a linear programming (LP) based approach for solving maximum a posteriori (MAP) estimation problems on factor graphs that contain multiple-degree non-indicator functions. It presents an existing LP method for problems with single-degree functions, then introduces a transformation to handle multiple-degree functions by introducing auxiliary variables. This allows applying the existing LP method. As an example, it applies this to maximum likelihood decoding for the Gaussian multiple access channel. Simulation results demonstrate the LP approach decodes correctly with polynomial complexity.