SlideShare a Scribd company logo
Institute of Structural Engineering Page 1
Method of Finite Elements I
Chapter 3
Variational Formulation &
the Galerkin Method
Institute of Structural Engineering Page 2
Method of Finite Elements I
Today’s  Lecture  Contents:	
• Introduction	
• Differential  formulation	
• Principle  of  Virtual  Work	
• Variational  formulations	
• Approximative  methods	
• The  Galerkin  Approach
Institute of Structural Engineering Page 3
Method of Finite Elements I
The  differential  form  of  physical  processes	
Physical  processes  are  governed  by  laws  (equations)  most  probably  
expressed  in  a  differential  form:	
	
•  The  Laplace  equation  in  two  
dimensions:	
(e.g.  the  heat  conduction  problem)	
•  The  isotropic  slab  equation:	
•  The  axially  loaded  bar  equation:
Institute of Structural Engineering Page 4
Method of Finite Elements I
The  differential  form  of  physical  processes	
Focus:  The  axially  loaded  bar  example.	
Consider  a  bar  loaded  with  constant  end  load  R.	
	
Given:  Length  L,  Section  Area  A,  Young'ʹs  modulus  E	
Find:  stresses  and  deformations.	
	
Assumptions:	
The  cross-­‐‑section  of  the  bar  does  not  change  after  loading.	
The  material  is  linear  elastic,  isotropic,  and  homogeneous.	
The  load  is  centric.	
End-­‐‑effects  are  not  of  interest  to  us.	
Strength  of  Materials  Approach	
Equilibrium equation
( )( )
R
f x R x
A
σ= ⇒ =
x	
  
R	
  
R	
  
L-­‐x	
  
f(x)	
  
Constitutive equation (Hooke’s Law)
( )( )
x R
x
E AE
σ
ε = =
Kinematics equation
ε x( )=
δ(x)
x
δ x( )=
Rx
AE
Institute of Structural Engineering Page 5
Method of Finite Elements I
The  differential  form  of  physical  processes	
Focus:  The  axially  loaded  bar  example.	
Consider  and  infinitesimal  element  of  the  bar:	
	
Given:  Length  L,  Section  Area  A,  Young'ʹs  modulus  E	
Find:  stresses  and  deformations.	
	
Assumptions:	
The  cross-­‐‑section  of  the  bar  does  not  change  after  loading.	
The  material  is  linear  elastic,  isotropic,  and  homogeneous.	
The  load  is  centric.	
End-­‐‑effects  are  not  of  interest  to  us.	
The  Differential  Approach	
Equilibrium equation
Constitutive equation (Hooke’s Law)
Eσ ε=
Kinematics equation
du
dx
ε =
Aσ = A(σ + Δσ ) ⇒ A lim
Δx→0
!
Δσ
Δx
= 0 ⇒ A
dσ
dx
= 0
AE
d2
u
dx2
= 0 Strong Form
Boundary Conditions (BC)
u(0) = 0 Essential BC
σ L( )= 0 ⇒
AE
du
dx x=L
= R Natural BC
Institute of Structural Engineering Page 6
Method of Finite Elements I
The  differential  form  of  physical  processes	
Definition	
The  strong  form  of  a  physical  process  is  the  well  posed  
set  of  the  underlying  differential  equation  with  the  
accompanying    boundary  conditions	
Focus:  The  axially  loaded  bar  example.	
	
The  Differential  Approach	
AE
d2
u
dx2
= 0 Strong Form
u(0) = 0 Essential BC
AE
du
dx x=L
= R Natural BCx	
  
R	
  
Institute of Structural Engineering Page 7
Method of Finite Elements I
The  differential  form  of  physical  processes	
Analytical  Solution:  	
u(x) = uh
= C1
x + C2
& ε(x) =
du(x)
dx
= C1
= const!
v This  is  a  homogeneous  2nd  order  ODE  with  known  solution:	
Focus:  The  axially  loaded  bar  example.	
	
The  Differential  Approach	
AE
d2
u
dx2
= 0 Strong Form
u(0) = 0 Essential BC
AE
du
dx x=L
= R Natural BCx	
  
R	
  
Institute of Structural Engineering Page 8
Method of Finite Elements I
The  differential  form  of  physical  processes	
Focus:  The  axially  loaded  bar  example.	
	
The  Differential  Approach	
Analytical  Solution:  	
u(x) = uh
= C1
x + C2
u(0)=0
du
dx x=L
=
R
EA
⎯ →⎯⎯⎯
C2
= 0
C1
=
R
EA
AE
d2
u
dx2
= 0 Strong Form
u(0) = 0 Essential BC
AE
du
dx x=L
= R Natural BC
⇒ u x( )=
Rx
AE
v  Same  as  in  the  mechanical  approach!	
x	
  
R	
  
To  fully  define  the  solution  (i.e.,  to  evaluate  the  values  of  parameters                            )  
we  have  to  use  the  given  boundary  conditions  (BC):	
C1
,C2
Institute of Structural Engineering Page 9
Method of Finite Elements I
The  Strong  form  –  2D  case	
A  generic  expression  of  the  two-­‐‑dimensional  strong  form  is:	
	
and  a  generic  expression  of  the  accompanying  set  of  boundary  conditions:	
	
:  Essential  or  Dirichlet  BCs	
	
:  Natural  or  von  Neumann  BCs	
	
Disadvantages	
The  analytical  solution  in  such  equations  is  	
i.  In  many  cases  difficult  to  be  evaluated	
ii.  In  most  cases  CANNOT  be  evaluated  at  all.  Why?	
•  Complex  geometries	
•  Complex  loading  and  boundary  conditions
Institute of Structural Engineering Page 10
Method of Finite Elements I
su
: supported area with prescribed displacements U
su
sf
: surface with prescribed forces f
sf
f B
: body forces (per unit volume)
U : displacement vector
ε : strain tensor (vector)
σ : stress tensor (vector)
Deriving  the  Strong  form  –  3D  case
Institute of Structural Engineering Page 11
Method of Finite Elements I
Kinematic  Relations	
U =
U
V
W
⎡
⎣
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
, L =
∂
∂x
0 0
0
∂
∂y
0
0 0
∂
∂z
∂
∂y
∂
∂x
0
0
∂
∂z
∂
∂y
∂
∂z
0
∂
∂x
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
, εT
= εxx
εyy
εzz
2εxy
2εyz
2εxz
⎡
⎣⎢
⎤
⎦⎥
ε = LU
Deriving  the  Strong  form  –  3D  case
Institute of Structural Engineering Page 12
Method of Finite Elements I
2 2 2
2 2
2 2 2
2 2
2 2 2
2 2
1 2 2 2 2
2
2 2 2 2
2
2 2 2 2
2
0 2 0 0
0 0 2 0
0 0 0 2
0 0
0 0
0 0
y x x y
z y y z
z x x z
y z x z x x y
x z z y x y y
x y z x z y z
⎡ ⎤∂ ∂ ∂
−⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
−⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥−
∂ ∂ ∂ ∂⎢ ⎥=
⎢ ⎥∂ ∂ ∂ ∂
− −⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥− −
∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥− −
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
LL1
ε = 0 ⇒
Strain  Compatibility  –  Saint  Venant  principle	
Deriving  the  Strong  form  –  3D  case
Institute of Structural Engineering Page 13
Method of Finite Elements I
2
2, =
B
T T
xx yy zz xy yz zxτ τ τ τ τ τ⎡ ⎤= ⎣ ⎦
L τ +f = 0
τ L L
0 0 0
on we have where 0 0 0
0 0 0
fs
f
l m n
s m l n
n m l
⎡ ⎤
⎢ ⎥− = ⎢ ⎥
⎢ ⎥⎣ ⎦
Ντ f = 0 N
l,  m  and  n  are  cosines  of  the  angles  between  the  normal  on  the  
surface  and  X,  Y  and  Z	
Equilibrium  Equations	
Deriving  the  Strong  form  –  3D  case	
Body  loads:	
Surface  loads:
Institute of Structural Engineering Page 14
Method of Finite Elements I
=τ Cε
C  is  elasticity  matrix  and  depends  on  material  properties  E  and  ν  
(modulus  of  elasticity  and  Poisson’s  ratio)	
1−
=ε C τ
Constitutive  Law	
Deriving  the  Strong  form  –  3D  case
Institute of Structural Engineering Page 15
Method of Finite Elements I
Differential  Formulation	
•  Boundary  problem  of  the  linear  theory  of  elasticity:  differential  
equations  and  boundary  conditions	
•  15  unknowns:  6  stress  components,  6  strain  components  and  3  
displacement  components	
•  3  equilibrium  equations,  6  relationships  between  displacements  and  
strains,  material  law  (6  equations)	
•  Together  with  boundary  conditions,  the  state  of  stress  and  
deformation  is  completely  defined	
Summary  -­‐‑  General  Form  3D  case:
Institute of Structural Engineering Page 16
Method of Finite Elements I
Principle  of  Virtual  Work	
•  The  principle  of  virtual  displacements:  the  virtual  work  of  a  system  of  
equilibrium  forces  vanishes  on  compatible  virtual  displacements;  the  
virtual  displacements  are  taken  in  the  form  of  variations  of  the  real  
displacements	
•  Equilibrium  is  a  consequence  of  vanishing  of  a  virtual  work	
f f
f
S T ST T B iT i
C
iV V S
dV dV dS= + + ∑∫ ∫ ∫ε τ U f U f U R
Stresses  in  equilibrium  with  applied  loads	
Virtual  strains  corresponding  to  virtual  displacements	
Internal  Virtual  Work	
 External  Virtual  Work
Institute of Structural Engineering Page 17
Method of Finite Elements I
Principle  of  Complementary  Virtual  Work	
• The  principle  of  virtual  forces:  virtual  work  of  
equilibrium  variations  of  the  stresses  and  the  forces  on  
the  strains  and  displacements  vanishes;  the  stress  field  
considered  is  a  statically  admissible  field  of  variation	
• Equilibrium  is  assumed  to  hold  a  priori  and  the  
compatibility  of  deformations  is  a  consequence  of  
vanishing  of  a  virtual  work	
• Both  principles  do  not  depend  on  a  constitutive  law
Institute of Structural Engineering Page 18
Method of Finite Elements I
Variational  Formulation	
• Based  on  the  principle  of  stationarity  of  a  functional,  
which  is  usually  potential  or  complementary  energy	
• Two  classes  of  boundary  conditions:  essential  
(geometric)  and  natural  (force)  boundary  conditions	
• Scalar  quantities  (energies,  potentials)  are  considered  
rather  than  vector  quantities
Institute of Structural Engineering Page 19
Method of Finite Elements I
Principle  of  Minimum    
Total  Potential  Energy	
• Conservation  of  energy:  Work  =  change  in  potential,  
kinetic  and  thermal  energy	
• For  elastic  problems  (linear  and  non-­‐‑linear)  a  special  case  
of  the  Principle  of  Virtual  Work  –  Principle  of  minimum  
total  potential  energy  can  be  applied	
•  is  the  stress  potential:	
 /ij ijUτ ε= ∂ ∂
U =
1
2v
∫ εT
Cεdv
W = f BT
U
v
∫ dv + f
S f
s
∫ Uds
U
Institute of Structural Engineering Page 20
Method of Finite Elements I
Principle  of  Minimum    
Total  Potential  Energy	
• Total  potential  energy  is    a  sum  of  strain  energy  and  
potential  of  loads	
• This  equation,  which  gives  P  as  a  function  of  deformation  
components,  together  with  compatibility  relations  within  
the  solid  and  geometric  boundary  conditions,  defines  the  
so  called  Lagrange  functional	
• Applying  the  variation  we  invoke  the  stationary  condition  
of  the  functional	

  
   	
 	
	
 dP = dU − dW = 0
P = U −W
P
Institute of Structural Engineering Page 21
Method of Finite Elements I
Variational  Formulation	
• By  utilizing  the  variational  formulation,  it  is  possible  to  
obtain  a  formulation  of  the  problem,  which  is  of  lower  
complexity  than  the  original  differential  form  (strong  
form).  	
• This  is  also  known  as  the  weak  form,  which  however  can  
also  be  a_ained  by  following  an  alternate  path  (see  
Galerkin  formulation).	
• For  approximate  solutions,  a  larger  class  of  trial  functions  
than  in  the  differential  formulation  can  be  employed;  for  
example,  the  trial  functions  need  not  satisfy  the  natural  
boundary  conditions  because  these  boundary  conditions  
are  implicitly  contained  in  the  functional  –  this  is  
extensively  used  in  MFE.
Institute of Structural Engineering Page 22
Method of Finite Elements I
Approximative  Methods	
Instead  of  trying  to  find  the  exact  solution  of  the  continuous  
system,  i.e.,  of  the  strong  form,  try  to  derive  an  estimate  of  what  
the  solution  should  be  at  specific  points  within  the  system.  	
	
The  procedure  of  reducing  the  physical  process  to  its  discrete  
counterpart  is  the  discretisation  process.
Institute of Structural Engineering Page 23
Method of Finite Elements I
Variational Methods
approximation is based on the
minimization of a functional, as those
defined in the earlier slides.
•  Rayleigh-Ritz Method
Weighted Residual Methods
start with an estimate of the the solution and
demand that its weighted average error is
minimized
•  The Galerkin Method
•  The Least Square Method
•  The Collocation Method
•  The Subdomain Method
•  Pseudo-spectral Methods
Approximative  Methods
Institute of Structural Engineering Page 24
Method of Finite Elements I
The  differential  form  of  physical  processes	
Focus:  The  axially  loaded  bar  with  distributed  load  example.	
	
Analytical  Solution:  	
u(x) = uh
+ up
= C1
x + C2
−
ax3
6EA
u(0)=0
du
dx x=L
=
R
EA
⎯ →⎯⎯⎯
C2
= 0
C1
=
aL2
2EA
AE
d2
u
dx2
= −ax Strong Form
u(0) = 0 Essential BC
AE
du
dx x=L
= 0 Natural BC
⇒ u x( )=
aL2
2EA
x −
ax3
6EA
x	
  
To  fully  define  the  solution  (i.e.,  to  evaluate  the  values  of  parameters                            )  
we  have  to  use  the  given  boundary  conditions  (BC):	
C1
,C2
ax	
  
Institute of Structural Engineering Page 25
Method of Finite Elements I
The  differential  form  of  physical  processes	
Focus:  The  axially  loaded  bar  with  distributed  load  example.	
	
x	
  
ax	
  
0
0.5
1
1.5
2
2.5
0 0.5 1 1.5 2
Length (m)
0
0.5
1
1.5
2
2.5
3
0 0.5 1 1.5 2
Length (m)
u x( )=
aL2
2EA
x −
ax3
6EA
Institute of Structural Engineering Page 26
Method of Finite Elements I
and  its  corresponding  strong  form:	
Given  an  arbitrary  weighting  function  w                
that  satisfies  the  essential  conditions  and  
additionally:  	
If	
 then,	
x	
  
R	
  
Weighted  Residual  Methods	
AE
d2
u
dx2
= −ax Strong Form
Boundary Conditions (BC)
u(0) = 0 Essential BC
σ L( )= 0 ⇒
AE
du
dx x=L
= 0 Natural BC
Focus:  The  axially  loaded  bar  with  distributed  load  example.	
	
ax	
  
Institute of Structural Engineering Page 27
Method of Finite Elements I
Multiplying  the  strong  form  by  w  and  integrating  over  L:	
	
Integrating  equation  I  by  parts  the  following  relation  is  derived:	
x	
Weighted  Residual  Methods	
Focus:  The  axially  loaded  bar  with  distributed  load  example.	
	
ax	
  
Institute of Structural Engineering Page 28
Method of Finite Elements I
Elaborating  a  li_le  bit  more  on  the  relation:	
x	
R	
Weighted  Residual  Methods	
Focus:  The  axially  loaded  bar  with  distributed  load  example.	
	
ax	
  
Institute of Structural Engineering Page 29
Method of Finite Elements I
Elaborating  a  li_le  bit  more  on  the  relation:	
why?	
Therefore,  the  weak  form  of  the  problem  is  defined  as	
Find  	
 such  that:	
why?	
Observe  that  the  weak  form  involves  derivatives  of  a  lesser  order  than  the  	
original  strong  form.	
x	
Weighted  Residual  Methods	
Focus:  The  axially  loaded  bar  with  distributed  load  example.	
	
ax	
  
Institute of Structural Engineering Page 30
Method of Finite Elements I
Weighted Residual Methods start with
an estimate of the solution and
demand that its weighted average
error is minimized:
•  The Galerkin Method
•  The Least Square Method
•  The Collocation Method
•  The Subdomain Method
•  Pseudo-spectral MethodsBoris Grigoryevich Galerkin – (1871-1945)
mathematician/ engineer
Weighted  Residual  Methods
Institute of Structural Engineering Page 31
Method of Finite Elements I
Theory  –  Consider  the  general  case  of  a  
differential  equation:	
Example  –  The  axially  loaded  bar:	
Try  an  approximate  solution  to  the  
equation  of  the  following  form	
where  	
 are  test  functions  (input)  and  	
are  unknown  quantities  that  we  need  
to  evaluate.  The  solution  must  satisfy  
the  boundary  conditions.	
Since  	
 is  an  approximation,  substituting	
it  in  the  initial  equation  will  result  in  
an  error:	
Choose  the  following  approximation	
Demand  that  the  approximation  
satisfies  the  essential  conditions:	
The  approximation  error  in  this  case  is:	
The  Galerkin  Method
Institute of Structural Engineering Page 32
Method of Finite Elements I
Assumption  1:  The  weighted  average  error  of  the  approximation  should  
be  zero  	
The  Galerkin  Method
Institute of Structural Engineering Page 33
Method of Finite Elements I
Assumption  1:  The  weighted  average  error  of  the  approximation  should  
be  zero  	
Therefore  once  again  integration  by  parts  leads  to	
But  that’s  the  Weak  
Form!!!!!	
The  Galerkin  Method
Institute of Structural Engineering Page 34
Method of Finite Elements I
Assumption  1:  The  weighted  average  error  of  the  approximation  should  
be  zero  	
Therefore  once  again  integration  by  parts  leads  to	
But  that’s  the  Weak  
Form!!!!!	
Assumption  2:  The  weight  function  is  approximated  using  the  same  
scheme  as  for  the  solution	
Remember  that  the  
weight  function  must  
also  satisfy  the  BCs	
Substituting  the  approximations  for  both  	
and	
 in  the  weak  form,  	
The  Galerkin  Method
Institute of Structural Engineering Page 35
Method of Finite Elements I
The  following  relation  is  retrieved:  	
where:  	
The  Galerkin  Method
Institute of Structural Engineering Page 36
Method of Finite Elements I
Performing  the  integration,  the  following  relations  are  established:  	
The  Galerkin  Method
Institute of Structural Engineering Page 37
Method of Finite Elements I
Or  in  matrix  form:  	
that’s  a  linear  system  of  equations:  	
and  that’s  of  course  the  exact  solution.  Why?  	
The  Galerkin  Method
Institute of Structural Engineering Page 38
Method of Finite Elements I
Now  lets  try  the  following  approximation:  	
The  weight  function  assumes  the  same  form:  	
Which  again  needs  to  satisfy  the  natural  BCs,  therefore:  	
Substituting  now  into  the  weak  form:  	
Wasn’t  that  much  easier?  But….is  it  correct?	
The  Galerkin  Method	
w2
EAu2
− x ax( )( )dx
0
L
∫ = 0 ⇒ u2
= α
L2
3EA
Institute of Structural Engineering Page 39
Method of Finite Elements I
0
0.5
1
1.5
2
2.5
3
0 0.5 1 1.5 2
Length (m)
Strong Form Galerkin-Cubic order Galerkin-Linear
The  Galerkin  Method
Institute of Structural Engineering Page 40
Method of Finite Elements I
We  saw  in  the  previous  example  that  the  Galerkin  method  is  based  on  the  approximation
of  the    strong  form  solution  using  a  set  of  basis  functions.  These  are  by  definition  
absolutely  accurate  at  the  boundaries  of  the  problem.  So,  why  not  increase  the  
boundaries?	
  	
Instead  of  seeking  the  solution  of  a  single  bar  we  chose  to  divide  it  into  three  
interconnected  and  not  overlapping  elements	
1	
 2	
 3	
The  Galerkin  Method	
element:  1	
 element:  2
Institute of Structural Engineering Page 41
Method of Finite Elements I
1	
 2	
 3	
element:  1	
The  Galerkin  Method	
element:  2
Institute of Structural Engineering Page 42
Method of Finite Elements I
1	
 2	
 3	
The  Galerkin  Method
Institute of Structural Engineering Page 43
Method of Finite Elements I
The  weak  form  of  a  continuous  problem  was  derived  in  a  
systematic  way:	
This  part  involves  only  the  
solution  approximation	
This  part  only  involves  the  
essential  boundary  
conditions  a.k.a.  loading	
The  Galerkin  Method
Institute of Structural Engineering Page 44
Method of Finite Elements I
And  then  an  approximation  was  defined  for  the  displacement  field,  for  example	
Vector  of  	
degrees  of  
freedom	
Shape  Function  
Matrix	
The  weak  form  also  involves  the  first  derivative  of  the  approximation	
Strain  Displacement  
Matrix	
Strain  field	
Displacement  
field	
The  Galerkin  Method
Institute of Structural Engineering Page 45
Method of Finite Elements I
Therefore  if  we  return  to  the  weak  form  :	
The  following  FUNDAMENTAL  FEM  expression  is  derived	
and  set:	
or  even  be]er	
Why??	
The  Galerkin  Method
Institute of Structural Engineering Page 46
Method of Finite Elements I
EA  has  to  do  only  with  material  and  cross-­‐‑sectional  
properties	
We  call  	
 The  Finite  Element    stiffness  Matrix	
Ιf  E  is  a  function  of  {d}  	
Ιf  [B]  is  a  function  of  {d}  	
Material  Nonlinearity	
Geometrical  Nonlinearity	
The  Galerkin  Method

More Related Content

What's hot

Rayleigh Ritz Method
Rayleigh Ritz MethodRayleigh Ritz Method
Rayleigh Ritz Method
Sakthivel Murugan
 
least squares approach in finite element method
least squares approach in finite element methodleast squares approach in finite element method
least squares approach in finite element method
sabiha khathun
 
Chap-3 FEA for Nonlinear Elastic Problems.pptx
Chap-3 FEA for Nonlinear Elastic Problems.pptxChap-3 FEA for Nonlinear Elastic Problems.pptx
Chap-3 FEA for Nonlinear Elastic Problems.pptx
Samirsinh Parmar
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)
Sreekanth G
 
Introduction to FEA
Introduction to FEAIntroduction to FEA
Introduction to FEA
Sakthivel Murugan
 
Method of weighted residuals
Method of weighted residualsMethod of weighted residuals
Method of weighted residuals
Jasim Almuhandis
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
Mahdi Damghani
 
Fem frame
Fem frameFem frame
Fem frame
VIMLESH VERMA
 
Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5
propaul
 
Theory of Elasticity
Theory of ElasticityTheory of Elasticity
Theory of Elasticity
ArnabKarmakar18
 
FEM: Introduction and Weighted Residual Methods
FEM: Introduction and Weighted Residual MethodsFEM: Introduction and Weighted Residual Methods
FEM: Introduction and Weighted Residual Methods
Mohammad Tawfik
 
Lecture 4 3 d stress tensor and equilibrium equations
Lecture 4 3 d stress tensor and equilibrium equationsLecture 4 3 d stress tensor and equilibrium equations
Lecture 4 3 d stress tensor and equilibrium equationsDeepak Agarwal
 
Introduction fea
Introduction feaIntroduction fea
Introduction fea
ahmad saepuddin
 
STRENGTH OF MATERIALS for beginners
STRENGTH OF MATERIALS for  beginnersSTRENGTH OF MATERIALS for  beginners
STRENGTH OF MATERIALS for beginners
musadoto
 
Axisymmetric
Axisymmetric Axisymmetric
Axisymmetric
Raj Kumar
 
Finite element method
Finite element methodFinite element method
Finite element method
Santosh Chavan
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
rahul183
 
Basic Elasticity
Basic ElasticityBasic Elasticity
Basic Elasticity
Mahdi Damghani
 
Strong form and weak form explanation through examples of a bar(en no 19565...
Strong form and weak form   explanation through examples of a bar(en no 19565...Strong form and weak form   explanation through examples of a bar(en no 19565...
Strong form and weak form explanation through examples of a bar(en no 19565...
Dhamu Vankar
 

What's hot (20)

Rayleigh Ritz Method
Rayleigh Ritz MethodRayleigh Ritz Method
Rayleigh Ritz Method
 
least squares approach in finite element method
least squares approach in finite element methodleast squares approach in finite element method
least squares approach in finite element method
 
Chap-3 FEA for Nonlinear Elastic Problems.pptx
Chap-3 FEA for Nonlinear Elastic Problems.pptxChap-3 FEA for Nonlinear Elastic Problems.pptx
Chap-3 FEA for Nonlinear Elastic Problems.pptx
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)
 
Introduction to FEA
Introduction to FEAIntroduction to FEA
Introduction to FEA
 
Method of weighted residuals
Method of weighted residualsMethod of weighted residuals
Method of weighted residuals
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
 
Fem frame
Fem frameFem frame
Fem frame
 
Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5
 
Theory of Elasticity
Theory of ElasticityTheory of Elasticity
Theory of Elasticity
 
FEM: Introduction and Weighted Residual Methods
FEM: Introduction and Weighted Residual MethodsFEM: Introduction and Weighted Residual Methods
FEM: Introduction and Weighted Residual Methods
 
L20
L20L20
L20
 
Lecture 4 3 d stress tensor and equilibrium equations
Lecture 4 3 d stress tensor and equilibrium equationsLecture 4 3 d stress tensor and equilibrium equations
Lecture 4 3 d stress tensor and equilibrium equations
 
Introduction fea
Introduction feaIntroduction fea
Introduction fea
 
STRENGTH OF MATERIALS for beginners
STRENGTH OF MATERIALS for  beginnersSTRENGTH OF MATERIALS for  beginners
STRENGTH OF MATERIALS for beginners
 
Axisymmetric
Axisymmetric Axisymmetric
Axisymmetric
 
Finite element method
Finite element methodFinite element method
Finite element method
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Basic Elasticity
Basic ElasticityBasic Elasticity
Basic Elasticity
 
Strong form and weak form explanation through examples of a bar(en no 19565...
Strong form and weak form   explanation through examples of a bar(en no 19565...Strong form and weak form   explanation through examples of a bar(en no 19565...
Strong form and weak form explanation through examples of a bar(en no 19565...
 

Viewers also liked

Unf*ck the economy Leporello | Julius Raab Stiftung
Unf*ck the economy Leporello | Julius Raab StiftungUnf*ck the economy Leporello | Julius Raab Stiftung
Unf*ck the economy Leporello | Julius Raab Stiftung
Julius Raab Stiftung
 
Presentacion de pasos sobre de hacer ejercicios de cables
Presentacion de pasos sobre de hacer ejercicios de cablesPresentacion de pasos sobre de hacer ejercicios de cables
Presentacion de pasos sobre de hacer ejercicios de cables
Crisbel93
 
1 होमो सेपियन्
1 होमो सेपियन्1 होमो सेपियन्
1 होमो सेपियन्
Sanjiv Gautam
 
Presentation uef, joensuu
Presentation   uef, joensuuPresentation   uef, joensuu
Presentation uef, joensuu
Kalpana Murari
 
10 наурыз 2017
10 наурыз 201710 наурыз 2017
10 наурыз 2017
Қазығұрт Тынысы
 
Ahmed Saleh (1)
Ahmed Saleh  (1)Ahmed Saleh  (1)
Ahmed Saleh (1)
Ahmed Saleh Metwali
 
Segredos Sombrios
Segredos SombriosSegredos Sombrios
Segredos Sombrios
400200
 
用 Ruby 開發 IoT 應用 - 以 RubyConf.tw 打卡系統為例
用 Ruby 開發 IoT 應用 - 以 RubyConf.tw 打卡系統為例用 Ruby 開發 IoT 應用 - 以 RubyConf.tw 打卡系統為例
用 Ruby 開發 IoT 應用 - 以 RubyConf.tw 打卡系統為例
亮齊 曾
 
Arc2625 logsheet
Arc2625 logsheet Arc2625 logsheet
Arc2625 logsheet
Lynnstyles
 
Неделя профилактики наркозависимости «Независимое детство»
Неделя профилактики наркозависимости «Независимое детство»Неделя профилактики наркозависимости «Независимое детство»
Неделя профилактики наркозависимости «Независимое детство»
Irina Kutuzova
 
Ozon
OzonOzon

Viewers also liked (12)

Unf*ck the economy Leporello | Julius Raab Stiftung
Unf*ck the economy Leporello | Julius Raab StiftungUnf*ck the economy Leporello | Julius Raab Stiftung
Unf*ck the economy Leporello | Julius Raab Stiftung
 
Presentacion de pasos sobre de hacer ejercicios de cables
Presentacion de pasos sobre de hacer ejercicios de cablesPresentacion de pasos sobre de hacer ejercicios de cables
Presentacion de pasos sobre de hacer ejercicios de cables
 
1 होमो सेपियन्
1 होमो सेपियन्1 होमो सेपियन्
1 होमो सेपियन्
 
Eula.1040
Eula.1040Eula.1040
Eula.1040
 
Presentation uef, joensuu
Presentation   uef, joensuuPresentation   uef, joensuu
Presentation uef, joensuu
 
10 наурыз 2017
10 наурыз 201710 наурыз 2017
10 наурыз 2017
 
Ahmed Saleh (1)
Ahmed Saleh  (1)Ahmed Saleh  (1)
Ahmed Saleh (1)
 
Segredos Sombrios
Segredos SombriosSegredos Sombrios
Segredos Sombrios
 
用 Ruby 開發 IoT 應用 - 以 RubyConf.tw 打卡系統為例
用 Ruby 開發 IoT 應用 - 以 RubyConf.tw 打卡系統為例用 Ruby 開發 IoT 應用 - 以 RubyConf.tw 打卡系統為例
用 Ruby 開發 IoT 應用 - 以 RubyConf.tw 打卡系統為例
 
Arc2625 logsheet
Arc2625 logsheet Arc2625 logsheet
Arc2625 logsheet
 
Неделя профилактики наркозависимости «Независимое детство»
Неделя профилактики наркозависимости «Независимое детство»Неделя профилактики наркозависимости «Независимое детство»
Неделя профилактики наркозависимости «Независимое детство»
 
Ozon
OzonOzon
Ozon
 

Similar to Lecture3

Lecture_3.pdf
Lecture_3.pdfLecture_3.pdf
Lecture_3.pdf
BudiAgung19
 
ED7201 FEMMD_notes
ED7201 FEMMD_notesED7201 FEMMD_notes
B.tech admission in india
B.tech admission in indiaB.tech admission in india
B.tech admission in india
Edhole.com
 
LECT_01.pptx
LECT_01.pptxLECT_01.pptx
LECT_01.pptx
MistAe1
 
notes module 1.pdf
notes module 1.pdfnotes module 1.pdf
notes module 1.pdf
RAJIVGANDHIN2
 
Structures and Materials- Section 8 Statically Indeterminate Structures
Structures and Materials- Section 8 Statically Indeterminate StructuresStructures and Materials- Section 8 Statically Indeterminate Structures
Structures and Materials- Section 8 Statically Indeterminate Structures
The Engineering Centre for Excellence in Teaching and Learning
 
Beams And Columns
Beams And ColumnsBeams And Columns
Beams And Columns
Dhyey Shukla
 
B.tech admission in india
B.tech admission in indiaB.tech admission in india
B.tech admission in india
Edhole.com
 
Energy method
Energy methodEnergy method
Energy method
Ghassan Alhamdany
 
Euler lagrange equations of motion mit-holonomic constraints_lecture7
Euler lagrange equations of motion  mit-holonomic  constraints_lecture7Euler lagrange equations of motion  mit-holonomic  constraints_lecture7
Euler lagrange equations of motion mit-holonomic constraints_lecture7
JOHN OBIDI
 
Ansys Workbench-Chapter01
Ansys Workbench-Chapter01Ansys Workbench-Chapter01
Ansys Workbench-Chapter01
Bui Vinh
 
Introduction FEA.pptx
Introduction FEA.pptxIntroduction FEA.pptx
Introduction FEA.pptx
VasirajaN2
 
Fracture and damage
Fracture and damage Fracture and damage
Fracture and damage
noor albtoosh
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_method
Mahdi Damghani
 
Measuring Plastic Properties from Sharp Nanoindentation: A Finite-Element Stu...
Measuring Plastic Properties from Sharp Nanoindentation: A Finite-Element Stu...Measuring Plastic Properties from Sharp Nanoindentation: A Finite-Element Stu...
Measuring Plastic Properties from Sharp Nanoindentation: A Finite-Element Stu...
CrimsonPublishersRDMS
 
CE 595 Section 1.ppt
CE 595 Section 1.pptCE 595 Section 1.ppt
CE 595 Section 1.ppt
HammadAhmedShah
 
CE 595 Section 1.ppt
CE 595 Section 1.pptCE 595 Section 1.ppt
CE 595 Section 1.ppt
sunilghosh11
 
CE 595 Section 1 (1).ppt
CE 595 Section 1 (1).pptCE 595 Section 1 (1).ppt
CE 595 Section 1 (1).ppt
sunilghosh11
 
Lecture 3.pdf
Lecture 3.pdfLecture 3.pdf
Lecture 3.pdf
Yesuf3
 

Similar to Lecture3 (20)

Lecture_3.pdf
Lecture_3.pdfLecture_3.pdf
Lecture_3.pdf
 
ED7201 FEMMD_notes
ED7201 FEMMD_notesED7201 FEMMD_notes
ED7201 FEMMD_notes
 
B.tech admission in india
B.tech admission in indiaB.tech admission in india
B.tech admission in india
 
LECT_01.pptx
LECT_01.pptxLECT_01.pptx
LECT_01.pptx
 
notes module 1.pdf
notes module 1.pdfnotes module 1.pdf
notes module 1.pdf
 
Structures and Materials- Section 8 Statically Indeterminate Structures
Structures and Materials- Section 8 Statically Indeterminate StructuresStructures and Materials- Section 8 Statically Indeterminate Structures
Structures and Materials- Section 8 Statically Indeterminate Structures
 
Beams And Columns
Beams And ColumnsBeams And Columns
Beams And Columns
 
B.tech admission in india
B.tech admission in indiaB.tech admission in india
B.tech admission in india
 
Energy method
Energy methodEnergy method
Energy method
 
Euler lagrange equations of motion mit-holonomic constraints_lecture7
Euler lagrange equations of motion  mit-holonomic  constraints_lecture7Euler lagrange equations of motion  mit-holonomic  constraints_lecture7
Euler lagrange equations of motion mit-holonomic constraints_lecture7
 
Ansys Workbench-Chapter01
Ansys Workbench-Chapter01Ansys Workbench-Chapter01
Ansys Workbench-Chapter01
 
Introduction FEA.pptx
Introduction FEA.pptxIntroduction FEA.pptx
Introduction FEA.pptx
 
Fracture and damage
Fracture and damage Fracture and damage
Fracture and damage
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_method
 
J integral report
J integral reportJ integral report
J integral report
 
Measuring Plastic Properties from Sharp Nanoindentation: A Finite-Element Stu...
Measuring Plastic Properties from Sharp Nanoindentation: A Finite-Element Stu...Measuring Plastic Properties from Sharp Nanoindentation: A Finite-Element Stu...
Measuring Plastic Properties from Sharp Nanoindentation: A Finite-Element Stu...
 
CE 595 Section 1.ppt
CE 595 Section 1.pptCE 595 Section 1.ppt
CE 595 Section 1.ppt
 
CE 595 Section 1.ppt
CE 595 Section 1.pptCE 595 Section 1.ppt
CE 595 Section 1.ppt
 
CE 595 Section 1 (1).ppt
CE 595 Section 1 (1).pptCE 595 Section 1 (1).ppt
CE 595 Section 1 (1).ppt
 
Lecture 3.pdf
Lecture 3.pdfLecture 3.pdf
Lecture 3.pdf
 

Recently uploaded

WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 

Recently uploaded (20)

WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 

Lecture3

  • 1. Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 3 Variational Formulation & the Galerkin Method
  • 2. Institute of Structural Engineering Page 2 Method of Finite Elements I Today’s  Lecture  Contents: • Introduction • Differential  formulation • Principle  of  Virtual  Work • Variational  formulations • Approximative  methods • The  Galerkin  Approach
  • 3. Institute of Structural Engineering Page 3 Method of Finite Elements I The  differential  form  of  physical  processes Physical  processes  are  governed  by  laws  (equations)  most  probably   expressed  in  a  differential  form: •  The  Laplace  equation  in  two   dimensions: (e.g.  the  heat  conduction  problem) •  The  isotropic  slab  equation: •  The  axially  loaded  bar  equation:
  • 4. Institute of Structural Engineering Page 4 Method of Finite Elements I The  differential  form  of  physical  processes Focus:  The  axially  loaded  bar  example. Consider  a  bar  loaded  with  constant  end  load  R. Given:  Length  L,  Section  Area  A,  Young'ʹs  modulus  E Find:  stresses  and  deformations. Assumptions: The  cross-­‐‑section  of  the  bar  does  not  change  after  loading. The  material  is  linear  elastic,  isotropic,  and  homogeneous. The  load  is  centric. End-­‐‑effects  are  not  of  interest  to  us. Strength  of  Materials  Approach Equilibrium equation ( )( ) R f x R x A σ= ⇒ = x   R   R   L-­‐x   f(x)   Constitutive equation (Hooke’s Law) ( )( ) x R x E AE σ ε = = Kinematics equation ε x( )= δ(x) x δ x( )= Rx AE
  • 5. Institute of Structural Engineering Page 5 Method of Finite Elements I The  differential  form  of  physical  processes Focus:  The  axially  loaded  bar  example. Consider  and  infinitesimal  element  of  the  bar: Given:  Length  L,  Section  Area  A,  Young'ʹs  modulus  E Find:  stresses  and  deformations. Assumptions: The  cross-­‐‑section  of  the  bar  does  not  change  after  loading. The  material  is  linear  elastic,  isotropic,  and  homogeneous. The  load  is  centric. End-­‐‑effects  are  not  of  interest  to  us. The  Differential  Approach Equilibrium equation Constitutive equation (Hooke’s Law) Eσ ε= Kinematics equation du dx ε = Aσ = A(σ + Δσ ) ⇒ A lim Δx→0 ! Δσ Δx = 0 ⇒ A dσ dx = 0 AE d2 u dx2 = 0 Strong Form Boundary Conditions (BC) u(0) = 0 Essential BC σ L( )= 0 ⇒ AE du dx x=L = R Natural BC
  • 6. Institute of Structural Engineering Page 6 Method of Finite Elements I The  differential  form  of  physical  processes Definition The  strong  form  of  a  physical  process  is  the  well  posed   set  of  the  underlying  differential  equation  with  the   accompanying    boundary  conditions Focus:  The  axially  loaded  bar  example. The  Differential  Approach AE d2 u dx2 = 0 Strong Form u(0) = 0 Essential BC AE du dx x=L = R Natural BCx   R  
  • 7. Institute of Structural Engineering Page 7 Method of Finite Elements I The  differential  form  of  physical  processes Analytical  Solution:   u(x) = uh = C1 x + C2 & ε(x) = du(x) dx = C1 = const! v This  is  a  homogeneous  2nd  order  ODE  with  known  solution: Focus:  The  axially  loaded  bar  example. The  Differential  Approach AE d2 u dx2 = 0 Strong Form u(0) = 0 Essential BC AE du dx x=L = R Natural BCx   R  
  • 8. Institute of Structural Engineering Page 8 Method of Finite Elements I The  differential  form  of  physical  processes Focus:  The  axially  loaded  bar  example. The  Differential  Approach Analytical  Solution:   u(x) = uh = C1 x + C2 u(0)=0 du dx x=L = R EA ⎯ →⎯⎯⎯ C2 = 0 C1 = R EA AE d2 u dx2 = 0 Strong Form u(0) = 0 Essential BC AE du dx x=L = R Natural BC ⇒ u x( )= Rx AE v  Same  as  in  the  mechanical  approach! x   R   To  fully  define  the  solution  (i.e.,  to  evaluate  the  values  of  parameters                            )   we  have  to  use  the  given  boundary  conditions  (BC): C1 ,C2
  • 9. Institute of Structural Engineering Page 9 Method of Finite Elements I The  Strong  form  –  2D  case A  generic  expression  of  the  two-­‐‑dimensional  strong  form  is: and  a  generic  expression  of  the  accompanying  set  of  boundary  conditions: :  Essential  or  Dirichlet  BCs :  Natural  or  von  Neumann  BCs Disadvantages The  analytical  solution  in  such  equations  is   i.  In  many  cases  difficult  to  be  evaluated ii.  In  most  cases  CANNOT  be  evaluated  at  all.  Why? •  Complex  geometries •  Complex  loading  and  boundary  conditions
  • 10. Institute of Structural Engineering Page 10 Method of Finite Elements I su : supported area with prescribed displacements U su sf : surface with prescribed forces f sf f B : body forces (per unit volume) U : displacement vector ε : strain tensor (vector) σ : stress tensor (vector) Deriving  the  Strong  form  –  3D  case
  • 11. Institute of Structural Engineering Page 11 Method of Finite Elements I Kinematic  Relations U = U V W ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ , L = ∂ ∂x 0 0 0 ∂ ∂y 0 0 0 ∂ ∂z ∂ ∂y ∂ ∂x 0 0 ∂ ∂z ∂ ∂y ∂ ∂z 0 ∂ ∂x ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ , εT = εxx εyy εzz 2εxy 2εyz 2εxz ⎡ ⎣⎢ ⎤ ⎦⎥ ε = LU Deriving  the  Strong  form  –  3D  case
  • 12. Institute of Structural Engineering Page 12 Method of Finite Elements I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 y x x y z y y z z x x z y z x z x x y x z z y x y y x y z x z y z ⎡ ⎤∂ ∂ ∂ −⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥∂ ∂ ∂ −⎢ ⎥ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ⎢ ⎥− ∂ ∂ ∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂ ∂ ∂ − −⎢ ⎥ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ⎢ ⎥− − ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ∂ ∂ ∂ ∂⎢ ⎥− − ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ LL1 ε = 0 ⇒ Strain  Compatibility  –  Saint  Venant  principle Deriving  the  Strong  form  –  3D  case
  • 13. Institute of Structural Engineering Page 13 Method of Finite Elements I 2 2, = B T T xx yy zz xy yz zxτ τ τ τ τ τ⎡ ⎤= ⎣ ⎦ L τ +f = 0 τ L L 0 0 0 on we have where 0 0 0 0 0 0 fs f l m n s m l n n m l ⎡ ⎤ ⎢ ⎥− = ⎢ ⎥ ⎢ ⎥⎣ ⎦ Ντ f = 0 N l,  m  and  n  are  cosines  of  the  angles  between  the  normal  on  the   surface  and  X,  Y  and  Z Equilibrium  Equations Deriving  the  Strong  form  –  3D  case Body  loads: Surface  loads:
  • 14. Institute of Structural Engineering Page 14 Method of Finite Elements I =τ Cε C  is  elasticity  matrix  and  depends  on  material  properties  E  and  ν   (modulus  of  elasticity  and  Poisson’s  ratio) 1− =ε C τ Constitutive  Law Deriving  the  Strong  form  –  3D  case
  • 15. Institute of Structural Engineering Page 15 Method of Finite Elements I Differential  Formulation •  Boundary  problem  of  the  linear  theory  of  elasticity:  differential   equations  and  boundary  conditions •  15  unknowns:  6  stress  components,  6  strain  components  and  3   displacement  components •  3  equilibrium  equations,  6  relationships  between  displacements  and   strains,  material  law  (6  equations) •  Together  with  boundary  conditions,  the  state  of  stress  and   deformation  is  completely  defined Summary  -­‐‑  General  Form  3D  case:
  • 16. Institute of Structural Engineering Page 16 Method of Finite Elements I Principle  of  Virtual  Work •  The  principle  of  virtual  displacements:  the  virtual  work  of  a  system  of   equilibrium  forces  vanishes  on  compatible  virtual  displacements;  the   virtual  displacements  are  taken  in  the  form  of  variations  of  the  real   displacements •  Equilibrium  is  a  consequence  of  vanishing  of  a  virtual  work f f f S T ST T B iT i C iV V S dV dV dS= + + ∑∫ ∫ ∫ε τ U f U f U R Stresses  in  equilibrium  with  applied  loads Virtual  strains  corresponding  to  virtual  displacements Internal  Virtual  Work External  Virtual  Work
  • 17. Institute of Structural Engineering Page 17 Method of Finite Elements I Principle  of  Complementary  Virtual  Work • The  principle  of  virtual  forces:  virtual  work  of   equilibrium  variations  of  the  stresses  and  the  forces  on   the  strains  and  displacements  vanishes;  the  stress  field   considered  is  a  statically  admissible  field  of  variation • Equilibrium  is  assumed  to  hold  a  priori  and  the   compatibility  of  deformations  is  a  consequence  of   vanishing  of  a  virtual  work • Both  principles  do  not  depend  on  a  constitutive  law
  • 18. Institute of Structural Engineering Page 18 Method of Finite Elements I Variational  Formulation • Based  on  the  principle  of  stationarity  of  a  functional,   which  is  usually  potential  or  complementary  energy • Two  classes  of  boundary  conditions:  essential   (geometric)  and  natural  (force)  boundary  conditions • Scalar  quantities  (energies,  potentials)  are  considered   rather  than  vector  quantities
  • 19. Institute of Structural Engineering Page 19 Method of Finite Elements I Principle  of  Minimum     Total  Potential  Energy • Conservation  of  energy:  Work  =  change  in  potential,   kinetic  and  thermal  energy • For  elastic  problems  (linear  and  non-­‐‑linear)  a  special  case   of  the  Principle  of  Virtual  Work  –  Principle  of  minimum   total  potential  energy  can  be  applied •  is  the  stress  potential: /ij ijUτ ε= ∂ ∂ U = 1 2v ∫ εT Cεdv W = f BT U v ∫ dv + f S f s ∫ Uds U
  • 20. Institute of Structural Engineering Page 20 Method of Finite Elements I Principle  of  Minimum     Total  Potential  Energy • Total  potential  energy  is    a  sum  of  strain  energy  and   potential  of  loads • This  equation,  which  gives  P  as  a  function  of  deformation   components,  together  with  compatibility  relations  within   the  solid  and  geometric  boundary  conditions,  defines  the   so  called  Lagrange  functional • Applying  the  variation  we  invoke  the  stationary  condition   of  the  functional     dP = dU − dW = 0 P = U −W P
  • 21. Institute of Structural Engineering Page 21 Method of Finite Elements I Variational  Formulation • By  utilizing  the  variational  formulation,  it  is  possible  to   obtain  a  formulation  of  the  problem,  which  is  of  lower   complexity  than  the  original  differential  form  (strong   form).   • This  is  also  known  as  the  weak  form,  which  however  can   also  be  a_ained  by  following  an  alternate  path  (see   Galerkin  formulation). • For  approximate  solutions,  a  larger  class  of  trial  functions   than  in  the  differential  formulation  can  be  employed;  for   example,  the  trial  functions  need  not  satisfy  the  natural   boundary  conditions  because  these  boundary  conditions   are  implicitly  contained  in  the  functional  –  this  is   extensively  used  in  MFE.
  • 22. Institute of Structural Engineering Page 22 Method of Finite Elements I Approximative  Methods Instead  of  trying  to  find  the  exact  solution  of  the  continuous   system,  i.e.,  of  the  strong  form,  try  to  derive  an  estimate  of  what   the  solution  should  be  at  specific  points  within  the  system.   The  procedure  of  reducing  the  physical  process  to  its  discrete   counterpart  is  the  discretisation  process.
  • 23. Institute of Structural Engineering Page 23 Method of Finite Elements I Variational Methods approximation is based on the minimization of a functional, as those defined in the earlier slides. •  Rayleigh-Ritz Method Weighted Residual Methods start with an estimate of the the solution and demand that its weighted average error is minimized •  The Galerkin Method •  The Least Square Method •  The Collocation Method •  The Subdomain Method •  Pseudo-spectral Methods Approximative  Methods
  • 24. Institute of Structural Engineering Page 24 Method of Finite Elements I The  differential  form  of  physical  processes Focus:  The  axially  loaded  bar  with  distributed  load  example. Analytical  Solution:   u(x) = uh + up = C1 x + C2 − ax3 6EA u(0)=0 du dx x=L = R EA ⎯ →⎯⎯⎯ C2 = 0 C1 = aL2 2EA AE d2 u dx2 = −ax Strong Form u(0) = 0 Essential BC AE du dx x=L = 0 Natural BC ⇒ u x( )= aL2 2EA x − ax3 6EA x   To  fully  define  the  solution  (i.e.,  to  evaluate  the  values  of  parameters                            )   we  have  to  use  the  given  boundary  conditions  (BC): C1 ,C2 ax  
  • 25. Institute of Structural Engineering Page 25 Method of Finite Elements I The  differential  form  of  physical  processes Focus:  The  axially  loaded  bar  with  distributed  load  example. x   ax   0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 Length (m) 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 Length (m) u x( )= aL2 2EA x − ax3 6EA
  • 26. Institute of Structural Engineering Page 26 Method of Finite Elements I and  its  corresponding  strong  form: Given  an  arbitrary  weighting  function  w                 that  satisfies  the  essential  conditions  and   additionally:   If then, x   R   Weighted  Residual  Methods AE d2 u dx2 = −ax Strong Form Boundary Conditions (BC) u(0) = 0 Essential BC σ L( )= 0 ⇒ AE du dx x=L = 0 Natural BC Focus:  The  axially  loaded  bar  with  distributed  load  example. ax  
  • 27. Institute of Structural Engineering Page 27 Method of Finite Elements I Multiplying  the  strong  form  by  w  and  integrating  over  L: Integrating  equation  I  by  parts  the  following  relation  is  derived: x Weighted  Residual  Methods Focus:  The  axially  loaded  bar  with  distributed  load  example. ax  
  • 28. Institute of Structural Engineering Page 28 Method of Finite Elements I Elaborating  a  li_le  bit  more  on  the  relation: x R Weighted  Residual  Methods Focus:  The  axially  loaded  bar  with  distributed  load  example. ax  
  • 29. Institute of Structural Engineering Page 29 Method of Finite Elements I Elaborating  a  li_le  bit  more  on  the  relation: why? Therefore,  the  weak  form  of  the  problem  is  defined  as Find   such  that: why? Observe  that  the  weak  form  involves  derivatives  of  a  lesser  order  than  the   original  strong  form. x Weighted  Residual  Methods Focus:  The  axially  loaded  bar  with  distributed  load  example. ax  
  • 30. Institute of Structural Engineering Page 30 Method of Finite Elements I Weighted Residual Methods start with an estimate of the solution and demand that its weighted average error is minimized: •  The Galerkin Method •  The Least Square Method •  The Collocation Method •  The Subdomain Method •  Pseudo-spectral MethodsBoris Grigoryevich Galerkin – (1871-1945) mathematician/ engineer Weighted  Residual  Methods
  • 31. Institute of Structural Engineering Page 31 Method of Finite Elements I Theory  –  Consider  the  general  case  of  a   differential  equation: Example  –  The  axially  loaded  bar: Try  an  approximate  solution  to  the   equation  of  the  following  form where   are  test  functions  (input)  and   are  unknown  quantities  that  we  need   to  evaluate.  The  solution  must  satisfy   the  boundary  conditions. Since   is  an  approximation,  substituting it  in  the  initial  equation  will  result  in   an  error: Choose  the  following  approximation Demand  that  the  approximation   satisfies  the  essential  conditions: The  approximation  error  in  this  case  is: The  Galerkin  Method
  • 32. Institute of Structural Engineering Page 32 Method of Finite Elements I Assumption  1:  The  weighted  average  error  of  the  approximation  should   be  zero   The  Galerkin  Method
  • 33. Institute of Structural Engineering Page 33 Method of Finite Elements I Assumption  1:  The  weighted  average  error  of  the  approximation  should   be  zero   Therefore  once  again  integration  by  parts  leads  to But  that’s  the  Weak   Form!!!!! The  Galerkin  Method
  • 34. Institute of Structural Engineering Page 34 Method of Finite Elements I Assumption  1:  The  weighted  average  error  of  the  approximation  should   be  zero   Therefore  once  again  integration  by  parts  leads  to But  that’s  the  Weak   Form!!!!! Assumption  2:  The  weight  function  is  approximated  using  the  same   scheme  as  for  the  solution Remember  that  the   weight  function  must   also  satisfy  the  BCs Substituting  the  approximations  for  both   and in  the  weak  form,   The  Galerkin  Method
  • 35. Institute of Structural Engineering Page 35 Method of Finite Elements I The  following  relation  is  retrieved:   where:   The  Galerkin  Method
  • 36. Institute of Structural Engineering Page 36 Method of Finite Elements I Performing  the  integration,  the  following  relations  are  established:   The  Galerkin  Method
  • 37. Institute of Structural Engineering Page 37 Method of Finite Elements I Or  in  matrix  form:   that’s  a  linear  system  of  equations:   and  that’s  of  course  the  exact  solution.  Why?   The  Galerkin  Method
  • 38. Institute of Structural Engineering Page 38 Method of Finite Elements I Now  lets  try  the  following  approximation:   The  weight  function  assumes  the  same  form:   Which  again  needs  to  satisfy  the  natural  BCs,  therefore:   Substituting  now  into  the  weak  form:   Wasn’t  that  much  easier?  But….is  it  correct? The  Galerkin  Method w2 EAu2 − x ax( )( )dx 0 L ∫ = 0 ⇒ u2 = α L2 3EA
  • 39. Institute of Structural Engineering Page 39 Method of Finite Elements I 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 Length (m) Strong Form Galerkin-Cubic order Galerkin-Linear The  Galerkin  Method
  • 40. Institute of Structural Engineering Page 40 Method of Finite Elements I We  saw  in  the  previous  example  that  the  Galerkin  method  is  based  on  the  approximation of  the    strong  form  solution  using  a  set  of  basis  functions.  These  are  by  definition   absolutely  accurate  at  the  boundaries  of  the  problem.  So,  why  not  increase  the   boundaries?   Instead  of  seeking  the  solution  of  a  single  bar  we  chose  to  divide  it  into  three   interconnected  and  not  overlapping  elements 1 2 3 The  Galerkin  Method element:  1 element:  2
  • 41. Institute of Structural Engineering Page 41 Method of Finite Elements I 1 2 3 element:  1 The  Galerkin  Method element:  2
  • 42. Institute of Structural Engineering Page 42 Method of Finite Elements I 1 2 3 The  Galerkin  Method
  • 43. Institute of Structural Engineering Page 43 Method of Finite Elements I The  weak  form  of  a  continuous  problem  was  derived  in  a   systematic  way: This  part  involves  only  the   solution  approximation This  part  only  involves  the   essential  boundary   conditions  a.k.a.  loading The  Galerkin  Method
  • 44. Institute of Structural Engineering Page 44 Method of Finite Elements I And  then  an  approximation  was  defined  for  the  displacement  field,  for  example Vector  of   degrees  of   freedom Shape  Function   Matrix The  weak  form  also  involves  the  first  derivative  of  the  approximation Strain  Displacement   Matrix Strain  field Displacement   field The  Galerkin  Method
  • 45. Institute of Structural Engineering Page 45 Method of Finite Elements I Therefore  if  we  return  to  the  weak  form  : The  following  FUNDAMENTAL  FEM  expression  is  derived and  set: or  even  be]er Why?? The  Galerkin  Method
  • 46. Institute of Structural Engineering Page 46 Method of Finite Elements I EA  has  to  do  only  with  material  and  cross-­‐‑sectional   properties We  call   The  Finite  Element    stiffness  Matrix Ιf  E  is  a  function  of  {d}   Ιf  [B]  is  a  function  of  {d}   Material  Nonlinearity Geometrical  Nonlinearity The  Galerkin  Method