SlideShare a Scribd company logo
1 of 20
ECE5590 AN
Low Dropout Regulator(LDO)
-Aadit Modi(ID#16037399)
-Altaf Hirani (ID#12197304)
LDO
• Linear Voltage DC regulators.
• Regulation maintained with small differences.
• Output current in range of 50-100mA.
• Pass transistor, error amplifier and voltage
reference.
• Low quiescent current.
•Design a low dropout voltage regulator
to provide an output voltage of 3.3V.
Goals:
For the calculations we assume the following
constants:
• - Pass transistor current = 1mA
• - Vout = 3.3V
• - Dropout voltage
• - VDD=5V
Block Diagram
• Pass transistor & error amplifier.
CALCULATIONS:
Efficiency calculation
Iq (quiescent current) = 112 uA
Io (output current) = 1.39 mA
Vo (output voltage) = 3.37 V
Vi (input voltage) = 5 V
Eff. = Io*Vo/(Io + Iq)*Vi x 100
Using the above equation yields and
efficiency of about 61.1%.
- Summary of calculated transistor sizes vs the transistor
simulation sizes
TransistTor Calculated Size Actual Size Used
Width(µm) Length(µm) Width(µm) Length(µm)
M1 100 0.6 100.05 0.6
M2 100 0.6 100.05 0.6
M3 50 0.6 49.95 0.6
M4 50 0.6 49.95 0.6
M5 20 0.6 19.95 0.6
M6 250 0.6 250 0.6
TRANSISTOR SIZE TABLE
Final Schematic
Typical LDO Circuit
Calculations:
- Calculation of a range of Vbias1
1. To find Ibias1:
From the desired a photodiode range, the minimum
value of Ibias1:
VGS3
=Vphmin
Ibias1 = ½ K1(W/L)3
(VGS3
-VTHN
)2
= ½ * 50 * 10-6 A/V2
*
3µm/0.6µm * (0.8V – 0.617)2
= 4.186µA =4µA
The maximum value of Ibias1:
Ibias1 = ½ K1(W/L)3
(VGS3
-VTHN
)2
= ½ * 50 * 10-6 A/V2
*
3µm/0.6µm * (3.0V – 0.617)2
=0.7mA
Calculations:
- Calculation of sizes of the transistors M5, M4
1. To determine W5
From requirement to keep M5 in saturation
region:
VTH
≤VGS5
= Vbias1(min) + VTHp
– Vph
(max) =
2.8V +0.9V – 3.0V = 0.7V
W5 = (2InL5
)/(K1
(VGS5
-VTHN
)2
) = (2 * 1.2µA *
0.6µm)/(50µA/V2
* (0.7V – 0.617V)2
) = 4µm
Calculations:
- Calculation of sizes of the transistors M5, M4
2. To determine W4
VDS4
≥VGS4
– VTHN
VDS4
= Vph
(min) = 0.8V
Assumed VGS4
= 0.75V
W4 = (2InL4
)/(K1
(VGS4
-VTHN
)2
) = (2 * 1.2µA *
0.6µm)/(50µA/V2
* (0.75V – 0.617V)2
) = 1.60µm
Calculations:
- Calculation of the gain for the current mirror transistors M1,
M2, M7
1. To find VGS
for M1, M2, M7
VGS1
= VDS1
= VGS2
= VGS1
= √[(2Iout)/(K2
(W/L)2,7
] + VTHp
= √(2 *
1.2µA)/(25µA/V2
* (20/2.4)) + 0.915V = 0.107V + 0.915V = 1V
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
2. To find VDS
for current mirror:
Next we find VDS2
and VDS7
(which are the same in value)
VDS2,7
= VDD
– VDS6
= VDD
- √[(2Iout)/(K1
(W/L)6
] - VTHN
=
5V - √(2 * 1.2µA)/(50µA/V2
* (1.5/8.55)) - 0.617V = 3.85V
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
3. To determine W1:
Finally, we calculate the size of transistor M1. It's required that Iin = Iout.
Consequently, the current conveyor ought to have I1 = I2,7.
Assuming L1= L2,7:
Layout
PRE-LAYOUT DC INPUT TEST
Post-layout Line Regulation (Changing
input voltage)
Post-layout Line Regulation
(Changing input voltage)
THANK YOU.

More Related Content

What's hot

IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)Claudia Sin
 
DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETPraveen Kumar
 
Field effect transistors
Field effect transistorsField effect transistors
Field effect transistorsMuthumanickam
 
Mos transistor
Mos transistorMos transistor
Mos transistorMurali Rai
 
Unit no. 5 cmos logic design
Unit no. 5 cmos logic designUnit no. 5 cmos logic design
Unit no. 5 cmos logic designswagatkarve
 
single stage amplifier Unit 5 AMVLSI
single stage amplifier Unit 5 AMVLSIsingle stage amplifier Unit 5 AMVLSI
single stage amplifier Unit 5 AMVLSIHarsha Raju
 
MOSFETs: Single Stage IC Amplifier
MOSFETs: Single Stage IC AmplifierMOSFETs: Single Stage IC Amplifier
MOSFETs: Single Stage IC AmplifierA B Shinde
 
Cmos design
Cmos designCmos design
Cmos designMahi
 
Bandgap Reference circuit Baased on FinFET Device
Bandgap Reference circuit Baased on FinFET DeviceBandgap Reference circuit Baased on FinFET Device
Bandgap Reference circuit Baased on FinFET DeviceYalagoud Patil
 
Power BJT and Power MOSFET
Power BJT and Power MOSFETPower BJT and Power MOSFET
Power BJT and Power MOSFETPeriyanayagiS
 

What's hot (20)

IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)
 
DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFET
 
JFET
JFETJFET
JFET
 
ADC and DAC Best Ever Pers
ADC and DAC Best Ever PersADC and DAC Best Ever Pers
ADC and DAC Best Ever Pers
 
Field effect transistors
Field effect transistorsField effect transistors
Field effect transistors
 
CMOS TG
CMOS TGCMOS TG
CMOS TG
 
Ece 334 lecture 15-mosfet-basics
Ece 334 lecture 15-mosfet-basicsEce 334 lecture 15-mosfet-basics
Ece 334 lecture 15-mosfet-basics
 
Mos transistor
Mos transistorMos transistor
Mos transistor
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Unit no. 5 cmos logic design
Unit no. 5 cmos logic designUnit no. 5 cmos logic design
Unit no. 5 cmos logic design
 
single stage amplifier Unit 5 AMVLSI
single stage amplifier Unit 5 AMVLSIsingle stage amplifier Unit 5 AMVLSI
single stage amplifier Unit 5 AMVLSI
 
Advanced MOSFET
Advanced MOSFETAdvanced MOSFET
Advanced MOSFET
 
MOSFETs: Single Stage IC Amplifier
MOSFETs: Single Stage IC AmplifierMOSFETs: Single Stage IC Amplifier
MOSFETs: Single Stage IC Amplifier
 
Cmos design
Cmos designCmos design
Cmos design
 
Mosfet
MosfetMosfet
Mosfet
 
Vlsi power estimation
Vlsi power estimationVlsi power estimation
Vlsi power estimation
 
CMOS Logic Circuits
CMOS Logic CircuitsCMOS Logic Circuits
CMOS Logic Circuits
 
Bandgap Reference circuit Baased on FinFET Device
Bandgap Reference circuit Baased on FinFET DeviceBandgap Reference circuit Baased on FinFET Device
Bandgap Reference circuit Baased on FinFET Device
 
bandgap ppt
bandgap pptbandgap ppt
bandgap ppt
 
Power BJT and Power MOSFET
Power BJT and Power MOSFETPower BJT and Power MOSFET
Power BJT and Power MOSFET
 

Viewers also liked

Final Viva Presenation 1309136702 ppt (7-05-2016)
Final Viva Presenation 1309136702 ppt (7-05-2016)Final Viva Presenation 1309136702 ppt (7-05-2016)
Final Viva Presenation 1309136702 ppt (7-05-2016)Devyani Balyan
 
20 Aug 15 DiB Steve Baxter and Andrew O'connor at Crowe Horwath (post event ...
20 Aug 15 DiB Steve Baxter and Andrew O'connor at Crowe Horwath  (post event ...20 Aug 15 DiB Steve Baxter and Andrew O'connor at Crowe Horwath  (post event ...
20 Aug 15 DiB Steve Baxter and Andrew O'connor at Crowe Horwath (post event ...Blake Barrett CSC
 
презентация Microsoft power point
презентация Microsoft power pointпрезентация Microsoft power point
презентация Microsoft power pointgai111
 
Unit 9 project 2015 02
Unit 9 project 2015 02Unit 9 project 2015 02
Unit 9 project 2015 02angelwatler
 
Unit 9 project 2016
Unit 9 project 2016Unit 9 project 2016
Unit 9 project 2016angelwatler
 
презентация Microsoft power point (3)
презентация Microsoft power point (3)презентация Microsoft power point (3)
презентация Microsoft power point (3)gai111
 
Final project 2016
Final project 2016Final project 2016
Final project 2016angelwatler
 
WSN (BACnet,Lonworks,KNX)
WSN (BACnet,Lonworks,KNX)WSN (BACnet,Lonworks,KNX)
WSN (BACnet,Lonworks,KNX)aroosa khan
 
The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concep...
The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concep...The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concep...
The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concep...Islam Abdullah
 
LTC4222 - Dual Hot Swap Controller with I2C
LTC4222 - Dual Hot Swap Controller with I2C LTC4222 - Dual Hot Swap Controller with I2C
LTC4222 - Dual Hot Swap Controller with I2C Premier Farnell
 
Childhood mds unlocking the old mystery
Childhood mds unlocking the old mysteryChildhood mds unlocking the old mystery
Childhood mds unlocking the old mysteryMohamed Elsawy
 
Practicing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGAPracticing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGATRANSEQUIPOS S.A.
 
ინტეგრირებული გაკვეთილი ქართულსა და ინგლისურ ენებში
ინტეგრირებული გაკვეთილი ქართულსა და ინგლისურ ენებშიინტეგრირებული გაკვეთილი ქართულსა და ინგლისურ ენებში
ინტეგრირებული გაკვეთილი ქართულსა და ინგლისურ ენებშიAsmat Diasamidze
 
Detailed lesson plan in Animal Production
Detailed lesson plan in Animal Production Detailed lesson plan in Animal Production
Detailed lesson plan in Animal Production sinarapan2015
 
Pflanzliche arzneimittel
Pflanzliche arzneimittelPflanzliche arzneimittel
Pflanzliche arzneimittelsimonjohn2
 

Viewers also liked (17)

Final Viva Presenation 1309136702 ppt (7-05-2016)
Final Viva Presenation 1309136702 ppt (7-05-2016)Final Viva Presenation 1309136702 ppt (7-05-2016)
Final Viva Presenation 1309136702 ppt (7-05-2016)
 
20 Aug 15 DiB Steve Baxter and Andrew O'connor at Crowe Horwath (post event ...
20 Aug 15 DiB Steve Baxter and Andrew O'connor at Crowe Horwath  (post event ...20 Aug 15 DiB Steve Baxter and Andrew O'connor at Crowe Horwath  (post event ...
20 Aug 15 DiB Steve Baxter and Andrew O'connor at Crowe Horwath (post event ...
 
Go
GoGo
Go
 
презентация Microsoft power point
презентация Microsoft power pointпрезентация Microsoft power point
презентация Microsoft power point
 
Unit 9 project 2015 02
Unit 9 project 2015 02Unit 9 project 2015 02
Unit 9 project 2015 02
 
Unit 9 project 2016
Unit 9 project 2016Unit 9 project 2016
Unit 9 project 2016
 
Task
TaskTask
Task
 
презентация Microsoft power point (3)
презентация Microsoft power point (3)презентация Microsoft power point (3)
презентация Microsoft power point (3)
 
Final project 2016
Final project 2016Final project 2016
Final project 2016
 
WSN (BACnet,Lonworks,KNX)
WSN (BACnet,Lonworks,KNX)WSN (BACnet,Lonworks,KNX)
WSN (BACnet,Lonworks,KNX)
 
The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concep...
The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concep...The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concep...
The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concep...
 
LTC4222 - Dual Hot Swap Controller with I2C
LTC4222 - Dual Hot Swap Controller with I2C LTC4222 - Dual Hot Swap Controller with I2C
LTC4222 - Dual Hot Swap Controller with I2C
 
Childhood mds unlocking the old mystery
Childhood mds unlocking the old mysteryChildhood mds unlocking the old mystery
Childhood mds unlocking the old mystery
 
Practicing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGAPracticing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGA
 
ინტეგრირებული გაკვეთილი ქართულსა და ინგლისურ ენებში
ინტეგრირებული გაკვეთილი ქართულსა და ინგლისურ ენებშიინტეგრირებული გაკვეთილი ქართულსა და ინგლისურ ენებში
ინტეგრირებული გაკვეთილი ქართულსა და ინგლისურ ენებში
 
Detailed lesson plan in Animal Production
Detailed lesson plan in Animal Production Detailed lesson plan in Animal Production
Detailed lesson plan in Animal Production
 
Pflanzliche arzneimittel
Pflanzliche arzneimittelPflanzliche arzneimittel
Pflanzliche arzneimittel
 

Similar to Low dropout regulator(ldo)

LDO project
LDO projectLDO project
LDO projectaltaf423
 
Ldo project
Ldo projectLdo project
Ldo projectaltaf423
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料Tsuyoshi Horigome
 
Multisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptxMultisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptxwencove9
 
Komponen ecu lm393 d
Komponen ecu lm393 dKomponen ecu lm393 d
Komponen ecu lm393 dRochimunaja
 
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...IAES-IJPEDS
 
Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413ask0122
 
Line Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relayLine Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relaydavid roy
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEnandivashishth
 
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Prajwal M B Raj
 

Similar to Low dropout regulator(ldo) (20)

LDO project
LDO projectLDO project
LDO project
 
Ldo project
Ldo projectLdo project
Ldo project
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
 
EEL782_Project
EEL782_ProjectEEL782_Project
EEL782_Project
 
Multisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptxMultisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptx
 
Komponen ecu lm393 d
Komponen ecu lm393 dKomponen ecu lm393 d
Komponen ecu lm393 d
 
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
 
Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413
 
Sn5414 7414
Sn5414 7414Sn5414 7414
Sn5414 7414
 
Fx3 s
Fx3 sFx3 s
Fx3 s
 
Fx3 s
Fx3 sFx3 s
Fx3 s
 
Datasheet
DatasheetDatasheet
Datasheet
 
Lm324
Lm324Lm324
Lm324
 
Line Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relayLine Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relay
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
 
07
0707
07
 
PMIC_V3
PMIC_V3PMIC_V3
PMIC_V3
 
Datasheet lm358
Datasheet lm358Datasheet lm358
Datasheet lm358
 
3.3 regulator dc dc max1830 max1831
3.3 regulator dc dc max1830 max18313.3 regulator dc dc max1830 max1831
3.3 regulator dc dc max1830 max1831
 

Low dropout regulator(ldo)

  • 1. ECE5590 AN Low Dropout Regulator(LDO) -Aadit Modi(ID#16037399) -Altaf Hirani (ID#12197304)
  • 2. LDO • Linear Voltage DC regulators. • Regulation maintained with small differences. • Output current in range of 50-100mA. • Pass transistor, error amplifier and voltage reference. • Low quiescent current.
  • 3. •Design a low dropout voltage regulator to provide an output voltage of 3.3V. Goals:
  • 4. For the calculations we assume the following constants: • - Pass transistor current = 1mA • - Vout = 3.3V • - Dropout voltage • - VDD=5V
  • 5. Block Diagram • Pass transistor & error amplifier.
  • 6. CALCULATIONS: Efficiency calculation Iq (quiescent current) = 112 uA Io (output current) = 1.39 mA Vo (output voltage) = 3.37 V Vi (input voltage) = 5 V Eff. = Io*Vo/(Io + Iq)*Vi x 100 Using the above equation yields and efficiency of about 61.1%.
  • 7. - Summary of calculated transistor sizes vs the transistor simulation sizes TransistTor Calculated Size Actual Size Used Width(µm) Length(µm) Width(µm) Length(µm) M1 100 0.6 100.05 0.6 M2 100 0.6 100.05 0.6 M3 50 0.6 49.95 0.6 M4 50 0.6 49.95 0.6 M5 20 0.6 19.95 0.6 M6 250 0.6 250 0.6 TRANSISTOR SIZE TABLE
  • 10. Calculations: - Calculation of a range of Vbias1 1. To find Ibias1: From the desired a photodiode range, the minimum value of Ibias1: VGS3 =Vphmin Ibias1 = ½ K1(W/L)3 (VGS3 -VTHN )2 = ½ * 50 * 10-6 A/V2 * 3µm/0.6µm * (0.8V – 0.617)2 = 4.186µA =4µA The maximum value of Ibias1: Ibias1 = ½ K1(W/L)3 (VGS3 -VTHN )2 = ½ * 50 * 10-6 A/V2 * 3µm/0.6µm * (3.0V – 0.617)2 =0.7mA
  • 11. Calculations: - Calculation of sizes of the transistors M5, M4 1. To determine W5 From requirement to keep M5 in saturation region: VTH ≤VGS5 = Vbias1(min) + VTHp – Vph (max) = 2.8V +0.9V – 3.0V = 0.7V W5 = (2InL5 )/(K1 (VGS5 -VTHN )2 ) = (2 * 1.2µA * 0.6µm)/(50µA/V2 * (0.7V – 0.617V)2 ) = 4µm
  • 12. Calculations: - Calculation of sizes of the transistors M5, M4 2. To determine W4 VDS4 ≥VGS4 – VTHN VDS4 = Vph (min) = 0.8V Assumed VGS4 = 0.75V W4 = (2InL4 )/(K1 (VGS4 -VTHN )2 ) = (2 * 1.2µA * 0.6µm)/(50µA/V2 * (0.75V – 0.617V)2 ) = 1.60µm
  • 13. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 1. To find VGS for M1, M2, M7 VGS1 = VDS1 = VGS2 = VGS1 = √[(2Iout)/(K2 (W/L)2,7 ] + VTHp = √(2 * 1.2µA)/(25µA/V2 * (20/2.4)) + 0.915V = 0.107V + 0.915V = 1V
  • 14. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 2. To find VDS for current mirror: Next we find VDS2 and VDS7 (which are the same in value) VDS2,7 = VDD – VDS6 = VDD - √[(2Iout)/(K1 (W/L)6 ] - VTHN = 5V - √(2 * 1.2µA)/(50µA/V2 * (1.5/8.55)) - 0.617V = 3.85V
  • 15. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 3. To determine W1: Finally, we calculate the size of transistor M1. It's required that Iin = Iout. Consequently, the current conveyor ought to have I1 = I2,7. Assuming L1= L2,7:
  • 18. Post-layout Line Regulation (Changing input voltage)