SlideShare a Scribd company logo
Ethan Vanderbyl
Dr. Chen
Physics237
Date: 3/20/21
Title:TransientBehaviorinRCcircuits
Date: 2/28/14
Lab Partners: ChristinaHouck,AnthonyMen9dez
Purpose:Identifythe nature andcharacteristicsof a chargingand dischargingCapacitor.
Procedure:
Initiallywe setupthe circuitwithalligatorclips,one resistor,andone capacitor.Eachwere
placedinparallel.Aftersettingupeachindividual circuitwe chargedthe capacitorwithourpower
source for 30 seconds.Thenwe abruptlymeasuredthe Voltage vs.Time of the Capacitorinthe Data
Studio.We usedthissame processforfour differentcircuits,andthenwe graphedthe data.Each trial
deducedintotwographsone linearandthe otherexponential.Thesegraphsdescribe the characteristics
of eachcapacitor setup ina differentcircuit.Finallywe plottedachargingcapacitorinpart C, and we
graphedthe data withthe workshop.
ChargingCapacitor DischargingCapacitor
R
VO C
R
C
Data:
y = 8.4047e-0.015x
0
1
2
3
4
5
6
7
8
9
10
0 20 40 60 80 100 120 140 160
Votage(V)
Time (s)
Graph 2: Circuit 1 Run #2 Volatge vs. Time
y = 8.5046e-0.013x
0
2
4
6
8
10
0 50 100 150 200
Voltatge(V)
Time (s)
Graph 1: Circuit 1 Run # 1 Voltage vs.
Time
Results:
Graph Manufactured
Capacitance (μFarads)
Graph Capacitance
(μ Farads)
% difference
1 22000 24,150 9.77%
2 22000 21,000 4.5%
Calculations:
1. I = 𝑉𝑒−𝑡/𝑅𝐶
y = 8.4705e-0.029x
0
1
2
3
4
5
6
7
8
9
0 10 20 30 40 50 60 70 80 90
Voltage(V)
TIme (s)
Graph 3: Circuit 2, Run #1 Voltage vs. time
y = 8.3245e-0.007x
0
1
2
3
4
5
6
7
8
9
0 50 100 150 200 250 300 350
AxisTitle
Axis Title
Graph 4: CIrcuit 3, Run #1 Voltage vs.
Time
2. Time constant = 𝑚−1
3. C= time constant/R
4. %error=(Caccepted – Ccalculated )/Caccepted x 100
Sample Calculations:
1. I = 1𝑉𝑒
(−
170
(3300∗22000)
)
= 1A
2. 78.402
3. 𝐶 =
78.402
3.26𝑘𝑜ℎ𝑚𝑠
= .02415
4. %𝑒𝑟𝑟𝑜𝑟 =
22000−24150
22000
∗ 100 = 9.77%
Questions(Analysis):
1.
2. 𝑖 =
𝑑𝑞
𝑑𝑡
𝑉𝑐 = 𝑉𝑒−𝑡/𝑅𝐶 𝑞 = 𝐶𝑉𝑒−𝑡/𝑅𝐶 = 𝐼𝑒−𝑡/𝑅𝐶
Graph 5: Voltage vs.Time
y = -0.0127x + 2.1406
-0.5
0
0.5
1
1.5
2
2.5
0 50 100 150 200
Voltage
Time (s)
Graph 1: Circuit 1 Run # 1 Voltage vs.
Time
y = -0.0146x + 2.1288
-0.5
0
0.5
1
1.5
2
2.5
0 20 40 60 80 100 120 140 160
Voltaage(V)
Time (s)
Graph 2: Ciruit 1 Run #2 Voltage vs.
Time
3.
4.
Value Voltage (V) Time (s)
VO 8.655 0
τ 3.185 76.28
VO to .5V 1.593 131.24
.5VO to .25VO 0.796 186.2
.25VO to .125VO 0.398 241.16
y = -0.0068x + 2.1192
0
0.5
1
1.5
2
2.5
0 50 100 150 200 250 300 350
Voltage(V)
Time (s)
Graph 4: Circuit 3, Run #1 Voltage vs.
Time (Parallel)
y = -0.0285x + 2.1366
-0.5
0
0.5
1
1.5
2
2.5
0 20 40 60 80 100
Voltage(V)
Time (s)
Graph 3: Circuit 2 Run #1 Voltage vs.
TIme (Series)
5.
Graph Slope (m) Time Constant(s)
1 -.0127 78.7402
2 -.0146 68.4932
3 -.0285 35.0877
4 -.0068 147.059
6.
Graph Time Constant(s) Capacitance (C)
1 78.7402 .02415
2 68.4932 .0210
3 35.0877 .0108
4 147.059 .0451
7.
Graph Manufactured
Capacitance (μFarads)
Graph Capacitance
(μ Farads)
% difference
1 22000 24,150 9.77%
2 22000 21,000 4.5%
8.
Graph CalculatedValues(μFarads) ExpectedValues(μFarads)
3 10800 11000
4 45100 11000
Conclusion:
The principle thatwasprovedinthislabis the fact that a charging dischargingcapacitoris
describedby 𝑞 = 𝑉𝐶𝑒−𝑡/𝑅𝐶.The graphsin thislabdescribe the capacitorswithrespecttovoltage vs.
time.Fromthe graphs we were able todefine how differentcircuitsetupseffectthe efficiencyof the
capacitor,whicheffectthe capacitorscharacteristicswithrespect tovelocityandtime.The slope relates
to the time constant,whichwe usedtofindthe Capacitance.We accomplishedthe purpose of thislab
because ourpercenterrorsof the Capacitance are verylow.Our percenterrorsbetweenourcalculated
value andthe exceptedvalue were9.8% and 4.5%.
Thisexperimentcouldhave beenimprovedif ourerrorswere eliminated.Some of these errors
includedthe time we chargedanddischargedthe capacitor.If were able tomake these readingsmore
precise ourpercenterrorswouldhave beenless.We alsoencounterederrorsbecauseof the constant
resistance inanimperfectcircuit.These errorscouldhave beenavoidedbyusingamechanical device to
take the time measurementsandthe circuitcouldhave beenmade betterbyusingbettermetalsas
conductors.Overall the errorsthatoccurred were minimal andtherefore we achievedgoodpercent
errors.

More Related Content

What's hot

Meter Shunt (Ammeter)
Meter Shunt (Ammeter)Meter Shunt (Ammeter)
Meter Shunt (Ammeter)guest049562
 
I konnect 9
I konnect 9I konnect 9
I konnect 9
Ramesh Meti
 
I konnect 5
I konnect 5I konnect 5
I konnect 5
Ramesh Meti
 
I konnect 3
I konnect 3I konnect 3
I konnect 3
Ramesh Meti
 
El.engg.theory notes 1 book
El.engg.theory notes 1 bookEl.engg.theory notes 1 book
El.engg.theory notes 1 book
Ramesh Meti
 
I konnect 7
I konnect 7I konnect 7
I konnect 7
Ramesh Meti
 
I konnect 2
I konnect 2I konnect 2
I konnect 2
Ramesh Meti
 
I konnect 6
I konnect 6I konnect 6
I konnect 6
Ramesh Meti
 
I konnect 4
I konnect 4I konnect 4
I konnect 4
Ramesh Meti
 
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewOriginal Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
AUTHELECTRONIC
 
Salisbury 4556 Voltage Detector Kits
Salisbury 4556 Voltage Detector KitsSalisbury 4556 Voltage Detector Kits
Salisbury 4556 Voltage Detector Kits
Thorne & Derrick International
 
Reverse Recovery Characteristic
Reverse Recovery CharacteristicReverse Recovery Characteristic
Reverse Recovery Characteristic
Tsuyoshi Horigome
 
Documento 39 (1)
Documento 39 (1)Documento 39 (1)
Documento 39 (1)
marcolopez597230
 
Electrical Qustions ans answers
Electrical Qustions ans answersElectrical Qustions ans answers
Electrical Qustions ans answers
Ramesh Meti
 
Original PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New ToshibaOriginal PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New Toshiba
AUTHELECTRONIC
 
Practica 5 irc
Practica 5 ircPractica 5 irc
Practica 5 irc
ERIKLOPEZ97
 
Power system fault analysis ppt
Power system fault analysis pptPower system fault analysis ppt
Power system fault analysis ppt
karikalan123
 
Electrical Machines
Electrical MachinesElectrical Machines
Electrical Machines
Bosa Theophilus Ntshole
 

What's hot (19)

Meter Shunt (Ammeter)
Meter Shunt (Ammeter)Meter Shunt (Ammeter)
Meter Shunt (Ammeter)
 
I konnect 9
I konnect 9I konnect 9
I konnect 9
 
I konnect 5
I konnect 5I konnect 5
I konnect 5
 
I konnect 3
I konnect 3I konnect 3
I konnect 3
 
El.engg.theory notes 1 book
El.engg.theory notes 1 bookEl.engg.theory notes 1 book
El.engg.theory notes 1 book
 
I konnect 7
I konnect 7I konnect 7
I konnect 7
 
I konnect 2
I konnect 2I konnect 2
I konnect 2
 
I konnect 6
I konnect 6I konnect 6
I konnect 6
 
I konnect 4
I konnect 4I konnect 4
I konnect 4
 
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewOriginal Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
 
Salisbury 4556 Voltage Detector Kits
Salisbury 4556 Voltage Detector KitsSalisbury 4556 Voltage Detector Kits
Salisbury 4556 Voltage Detector Kits
 
Network Solving
Network SolvingNetwork Solving
Network Solving
 
Reverse Recovery Characteristic
Reverse Recovery CharacteristicReverse Recovery Characteristic
Reverse Recovery Characteristic
 
Documento 39 (1)
Documento 39 (1)Documento 39 (1)
Documento 39 (1)
 
Electrical Qustions ans answers
Electrical Qustions ans answersElectrical Qustions ans answers
Electrical Qustions ans answers
 
Original PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New ToshibaOriginal PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New Toshiba
 
Practica 5 irc
Practica 5 ircPractica 5 irc
Practica 5 irc
 
Power system fault analysis ppt
Power system fault analysis pptPower system fault analysis ppt
Power system fault analysis ppt
 
Electrical Machines
Electrical MachinesElectrical Machines
Electrical Machines
 

Viewers also liked

Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1  kirchhoff’s voltage and current law by kehali bekele haileselassieLab 1  kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
kehali Haileselassie
 
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS) POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
Mathankumar S
 
Experiment to verify ohm’s law
Experiment to verify ohm’s lawExperiment to verify ohm’s law
Experiment to verify ohm’s lawrollaamalia
 

Viewers also liked (6)

Okori
OkoriOkori
Okori
 
Series circuits
Series circuitsSeries circuits
Series circuits
 
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1  kirchhoff’s voltage and current law by kehali bekele haileselassieLab 1  kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
 
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS) POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
 
Lab report 2
Lab report 2Lab report 2
Lab report 2
 
Experiment to verify ohm’s law
Experiment to verify ohm’s lawExperiment to verify ohm’s law
Experiment to verify ohm’s law
 

Similar to Lab report 2

Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docxSheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
maoanderton
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
authelectroniccom
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
AUTHELECTRONIC
 
Space vector pwm_inverter
Space vector pwm_inverterSpace vector pwm_inverter
Space vector pwm_inverterZunAib Ali
 
ECE 468 Lab Project 1
ECE 468 Lab Project 1ECE 468 Lab Project 1
ECE 468 Lab Project 1
Lakshmi Yasaswi Kamireddy
 
First order circuits linear circuit analysis
First order circuits linear circuit analysisFirst order circuits linear circuit analysis
First order circuits linear circuit analysis
ZulqarnainEngineerin
 
Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies
Sachin Mehta
 
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxreference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
debishakespeare
 
Ne 555
Ne 555Ne 555
Ne 555
Mr Giap
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
Forward2025
 
EE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.pptEE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.ppt
MICHELLETIMBOL
 
Harmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
Harmonic Analysis of Output Voltage of Single phase AC Voltage ControllersHarmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
Harmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
Editor IJMTER
 
L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)Pradeep Godara
 
Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017
Zeeshan Ahmed
 
Motor speeed Erdi Karaçal Mechanical Engineer
Motor speeed  Erdi Karaçal Mechanical EngineerMotor speeed  Erdi Karaçal Mechanical Engineer
Motor speeed Erdi Karaçal Mechanical Engineer
Erdi Karaçal
 
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
authelectroniccom
 
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
authelectroniccom
 

Similar to Lab report 2 (20)

Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docxSheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
 
Labo circuito en rc
Labo circuito en rcLabo circuito en rc
Labo circuito en rc
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
 
Space vector pwm_inverter
Space vector pwm_inverterSpace vector pwm_inverter
Space vector pwm_inverter
 
ECE 468 Lab Project 1
ECE 468 Lab Project 1ECE 468 Lab Project 1
ECE 468 Lab Project 1
 
First order circuits linear circuit analysis
First order circuits linear circuit analysisFirst order circuits linear circuit analysis
First order circuits linear circuit analysis
 
Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies
 
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxreference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
 
Ne 555
Ne 555Ne 555
Ne 555
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
EE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.pptEE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.ppt
 
Ece320 notes-part1
Ece320 notes-part1Ece320 notes-part1
Ece320 notes-part1
 
Ece320 notes-part1 2
Ece320 notes-part1 2Ece320 notes-part1 2
Ece320 notes-part1 2
 
Harmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
Harmonic Analysis of Output Voltage of Single phase AC Voltage ControllersHarmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
Harmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
 
L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)
 
Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017
 
Motor speeed Erdi Karaçal Mechanical Engineer
Motor speeed  Erdi Karaçal Mechanical EngineerMotor speeed  Erdi Karaçal Mechanical Engineer
Motor speeed Erdi Karaçal Mechanical Engineer
 
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
 
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
 

Lab report 2

  • 1. Ethan Vanderbyl Dr. Chen Physics237 Date: 3/20/21 Title:TransientBehaviorinRCcircuits Date: 2/28/14 Lab Partners: ChristinaHouck,AnthonyMen9dez Purpose:Identifythe nature andcharacteristicsof a chargingand dischargingCapacitor. Procedure: Initiallywe setupthe circuitwithalligatorclips,one resistor,andone capacitor.Eachwere placedinparallel.Aftersettingupeachindividual circuitwe chargedthe capacitorwithourpower source for 30 seconds.Thenwe abruptlymeasuredthe Voltage vs.Time of the Capacitorinthe Data Studio.We usedthissame processforfour differentcircuits,andthenwe graphedthe data.Each trial deducedintotwographsone linearandthe otherexponential.Thesegraphsdescribe the characteristics of eachcapacitor setup ina differentcircuit.Finallywe plottedachargingcapacitorinpart C, and we graphedthe data withthe workshop. ChargingCapacitor DischargingCapacitor R VO C R C
  • 2. Data: y = 8.4047e-0.015x 0 1 2 3 4 5 6 7 8 9 10 0 20 40 60 80 100 120 140 160 Votage(V) Time (s) Graph 2: Circuit 1 Run #2 Volatge vs. Time y = 8.5046e-0.013x 0 2 4 6 8 10 0 50 100 150 200 Voltatge(V) Time (s) Graph 1: Circuit 1 Run # 1 Voltage vs. Time
  • 3. Results: Graph Manufactured Capacitance (μFarads) Graph Capacitance (μ Farads) % difference 1 22000 24,150 9.77% 2 22000 21,000 4.5% Calculations: 1. I = 𝑉𝑒−𝑡/𝑅𝐶 y = 8.4705e-0.029x 0 1 2 3 4 5 6 7 8 9 0 10 20 30 40 50 60 70 80 90 Voltage(V) TIme (s) Graph 3: Circuit 2, Run #1 Voltage vs. time y = 8.3245e-0.007x 0 1 2 3 4 5 6 7 8 9 0 50 100 150 200 250 300 350 AxisTitle Axis Title Graph 4: CIrcuit 3, Run #1 Voltage vs. Time
  • 4. 2. Time constant = 𝑚−1 3. C= time constant/R 4. %error=(Caccepted – Ccalculated )/Caccepted x 100 Sample Calculations: 1. I = 1𝑉𝑒 (− 170 (3300∗22000) ) = 1A 2. 78.402 3. 𝐶 = 78.402 3.26𝑘𝑜ℎ𝑚𝑠 = .02415 4. %𝑒𝑟𝑟𝑜𝑟 = 22000−24150 22000 ∗ 100 = 9.77% Questions(Analysis): 1. 2. 𝑖 = 𝑑𝑞 𝑑𝑡 𝑉𝑐 = 𝑉𝑒−𝑡/𝑅𝐶 𝑞 = 𝐶𝑉𝑒−𝑡/𝑅𝐶 = 𝐼𝑒−𝑡/𝑅𝐶 Graph 5: Voltage vs.Time
  • 5. y = -0.0127x + 2.1406 -0.5 0 0.5 1 1.5 2 2.5 0 50 100 150 200 Voltage Time (s) Graph 1: Circuit 1 Run # 1 Voltage vs. Time y = -0.0146x + 2.1288 -0.5 0 0.5 1 1.5 2 2.5 0 20 40 60 80 100 120 140 160 Voltaage(V) Time (s) Graph 2: Ciruit 1 Run #2 Voltage vs. Time 3.
  • 6. 4. Value Voltage (V) Time (s) VO 8.655 0 τ 3.185 76.28 VO to .5V 1.593 131.24 .5VO to .25VO 0.796 186.2 .25VO to .125VO 0.398 241.16 y = -0.0068x + 2.1192 0 0.5 1 1.5 2 2.5 0 50 100 150 200 250 300 350 Voltage(V) Time (s) Graph 4: Circuit 3, Run #1 Voltage vs. Time (Parallel) y = -0.0285x + 2.1366 -0.5 0 0.5 1 1.5 2 2.5 0 20 40 60 80 100 Voltage(V) Time (s) Graph 3: Circuit 2 Run #1 Voltage vs. TIme (Series)
  • 7. 5. Graph Slope (m) Time Constant(s) 1 -.0127 78.7402 2 -.0146 68.4932 3 -.0285 35.0877 4 -.0068 147.059 6. Graph Time Constant(s) Capacitance (C) 1 78.7402 .02415 2 68.4932 .0210 3 35.0877 .0108 4 147.059 .0451 7. Graph Manufactured Capacitance (μFarads) Graph Capacitance (μ Farads) % difference 1 22000 24,150 9.77% 2 22000 21,000 4.5% 8. Graph CalculatedValues(μFarads) ExpectedValues(μFarads) 3 10800 11000 4 45100 11000 Conclusion: The principle thatwasprovedinthislabis the fact that a charging dischargingcapacitoris describedby 𝑞 = 𝑉𝐶𝑒−𝑡/𝑅𝐶.The graphsin thislabdescribe the capacitorswithrespecttovoltage vs. time.Fromthe graphs we were able todefine how differentcircuitsetupseffectthe efficiencyof the capacitor,whicheffectthe capacitorscharacteristicswithrespect tovelocityandtime.The slope relates to the time constant,whichwe usedtofindthe Capacitance.We accomplishedthe purpose of thislab because ourpercenterrorsof the Capacitance are verylow.Our percenterrorsbetweenourcalculated value andthe exceptedvalue were9.8% and 4.5%. Thisexperimentcouldhave beenimprovedif ourerrorswere eliminated.Some of these errors includedthe time we chargedanddischargedthe capacitor.If were able tomake these readingsmore precise ourpercenterrorswouldhave beenless.We alsoencounterederrorsbecauseof the constant resistance inanimperfectcircuit.These errorscouldhave beenavoidedbyusingamechanical device to
  • 8. take the time measurementsandthe circuitcouldhave beenmade betterbyusingbettermetalsas conductors.Overall the errorsthatoccurred were minimal andtherefore we achievedgoodpercent errors.