SlideShare a Scribd company logo
Low Voltage Dropout Regulator
Goal:
Design a voltage regulator to
provide an output voltage of 3.3V
For the calculations we assume the
following constants:
- Pass transistor current = 1ma
- Vout = 3.3V
- Dropout voltage =
- VDD=5V
-
Calculations:
- Calculation of a range of Vbias1
1. To find Ibias1:
From the desired a photodiode range, the minimum
value of Ibias1:
VGS3
=Vphmin
Ibias1 = ½ K1(W/L)3
(VGS3
-VTHN
)2
= ½ * 50 * 10-6 A/V2
*
3µm/0.6µm * (0.8V – 0.617)2
= 4.186µA =4µA
The maximum value of Ibias1:
Ibias1 = ½ K1(W/L)3
(VGS3
-VTHN
)2
= ½ * 50 * 10-6 A/V2
*
3µm/0.6µm * (3.0V – 0.617)2
= 0.7mA
Calculations:
- Calculation of a range of Vbias1
2. To find Vbias1:
Next we find the value of Vbias1 given by
Vbias1
= VDD
– VGS0
= VDD
- √[(2Ibias1)/(K2
(W/L)0
] –
VTHp
Vbias1
= VDD
– VGS0
= VDD
- √[
(2Ibias1)/(K2
(W/L)0
] – VTHp
p
The maximum value of Vbias1:
Vbias1(max) = 5V - √[(2*4µA)/(19.1µA/V2*
20µm/0.6µm)] – 0.915V =1.026 = 4V
The minimum value of Vbias1:
Vbias1(min) = VDD
– VGS0
= 5V- √[(2*0.7*10-3
)/25*
10-6
/V2 * 20µm/0.6µm) – 0.915V = 2.8V
Calculations:
- Calculation of sizes of the transistors M5, M4
1. To determine W5
From requirement to keep M5 in saturation
region:
VTH
≤VGS5
= Vbias1(min) + VTHp
– Vph
(max) =
2.8V +0.9V – 3.0V = 0.7V
W5 = (2InL5
)/(K1
(VGS5
-VTHN
)2
) = (2 * 1.2µA *
0.6µm)/(50µA/V2
* (0.7V – 0.617V)2
) = 4µm
Calculations:
- Calculation of sizes of the transistors M5, M4
2. To determine W4
VDS4
≥VGS4
– VTHN
VDS4
= Vph
(min) = 0.8V
Assumed VGS4
= 0.75V
W4 = (2InL4
)/(K1
(VGS4
-VTHN
)2
) = (2 * 1.2µA *
0.6µm)/(50µA/V2
* (0.75V – 0.617V)2
) = 1.60µm
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
1. To find VGS
for M1, M2, M7
VGS1
= VDS1
= VGS2
= VGS1
= √[(2Iout)/(K2
(W/L)2,7
] + VTHp
= √(2 *
1.2µA)/(25µA/V2
* (20/2.4)) + 0.915V = 0.107V + 0.915V = 1V
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
2. To find VDS
for current mirror:
Next we find VDS2
and VDS7
(which are the same in value)
VDS2,7
= VDD
– VDS6
= VDD
- √[(2Iout)/(K1
(W/L)6
] - VTHN
=
5V - √(2 * 1.2µA)/(50µA/V2
* (1.5/8.55)) - 0.617V = 3.85V
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
3. To determine W1:
Finally, we calculate the size of transistor M1. It's required that Iin =
Iout. Consequently, the current conveyor ought to have I1 = I2,7.
Assuming L1= L2,7:
W1/L1* (1 + ƛpDS2,7) = W2,7/L2,7(1 + ƛpDS2,7)
W1 = 2(1 + ƛpDS2,7)/(1 + ƛpDS1)
W1 = (20µm*(1+0.2*3.85V)/(1+0.2*1V) = 29.5µm
Summary of Transistor Sizes:
- Summary of calculated transistor sizes vs the
transistor simulation sizes
TransistTor Calculated Size Actual Size Used
Width(µm) Length(µm) Width(µm) Length(µm)
M1 100 0.6 19.55 0.6
M2 100 0.6 21.3 2.4
M3 20 0.6 19.55 0.6
M4 20 0.6 3 0.6
M5 300 0.6 3 1.5
Final Schematic
- Test Schematic
- Test Schematic
Test Schematic
- Pre-Layout Simulation
- Pre-Layout Simulation
PRE-LAYOUT DC INPUT TEST
- Pre-Layout Simulation- Pre-Layout Simulation
PRE-LAYOUT PHASE AND GAIN
LDO LAYOUT
- Post-Layout Simulation
POST LAYOUT DC FIXED INPUT
- Post-Layout Simulation
POST LAYOUT GAIN AND PHASE

More Related Content

What's hot

WPE
WPEWPE
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Simen Li
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)Claudia Sin
 
High Voltage Gas Insulated Substation (GIS) Routine Tests According to IEEE C...
High Voltage Gas Insulated Substation (GIS) Routine Tests According to IEEE C...High Voltage Gas Insulated Substation (GIS) Routine Tests According to IEEE C...
High Voltage Gas Insulated Substation (GIS) Routine Tests According to IEEE C...
Ali Sepehri
 
Ee6378 bandgap reference
Ee6378 bandgap referenceEe6378 bandgap reference
Ee6378 bandgap reference
ssuser2038c9
 
Operational Amplifier Design
Operational Amplifier DesignOperational Amplifier Design
Operational Amplifier Design
Bharat Biyani
 
NMOS PPT for 2nd year
NMOS PPT for 2nd yearNMOS PPT for 2nd year
NMOS PPT for 2nd year
faltuthings
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
Claudia Sin
 
Design of Buck Converter
Design of Buck ConverterDesign of Buck Converter
Design of Buck Converter
Akhil Syamalan
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
aditiagrawal97
 
Field Effect Biasing - Part 1
Field Effect Biasing - Part 1Field Effect Biasing - Part 1
Field Effect Biasing - Part 1
Jess Rangcasajo
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfet
MahoneyKadir
 
半導體第三章
半導體第三章半導體第三章
半導體第三章
cwtsenggg
 
optimazation of standard cell layout
optimazation of standard cell layoutoptimazation of standard cell layout
optimazation of standard cell layoutE ER Yash nagaria
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
Simen Li
 
Mos short channel effects
Mos short channel effectsMos short channel effects
Mos short channel effects
Sri Konduru
 
Basic knowledge of ldo voltage regulators
Basic knowledge of ldo voltage regulatorsBasic knowledge of ldo voltage regulators
Basic knowledge of ldo voltage regulators
Đức Hữu
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)Claudia Sin
 
STANDARD CELL LIBRARY DESIGN
STANDARD CELL LIBRARY DESIGNSTANDARD CELL LIBRARY DESIGN
STANDARD CELL LIBRARY DESIGN
Ilango Jeyasubramanian
 
DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFET
Praveen Kumar
 

What's hot (20)

WPE
WPEWPE
WPE
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)
 
High Voltage Gas Insulated Substation (GIS) Routine Tests According to IEEE C...
High Voltage Gas Insulated Substation (GIS) Routine Tests According to IEEE C...High Voltage Gas Insulated Substation (GIS) Routine Tests According to IEEE C...
High Voltage Gas Insulated Substation (GIS) Routine Tests According to IEEE C...
 
Ee6378 bandgap reference
Ee6378 bandgap referenceEe6378 bandgap reference
Ee6378 bandgap reference
 
Operational Amplifier Design
Operational Amplifier DesignOperational Amplifier Design
Operational Amplifier Design
 
NMOS PPT for 2nd year
NMOS PPT for 2nd yearNMOS PPT for 2nd year
NMOS PPT for 2nd year
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 
Design of Buck Converter
Design of Buck ConverterDesign of Buck Converter
Design of Buck Converter
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
 
Field Effect Biasing - Part 1
Field Effect Biasing - Part 1Field Effect Biasing - Part 1
Field Effect Biasing - Part 1
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfet
 
半導體第三章
半導體第三章半導體第三章
半導體第三章
 
optimazation of standard cell layout
optimazation of standard cell layoutoptimazation of standard cell layout
optimazation of standard cell layout
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
Mos short channel effects
Mos short channel effectsMos short channel effects
Mos short channel effects
 
Basic knowledge of ldo voltage regulators
Basic knowledge of ldo voltage regulatorsBasic knowledge of ldo voltage regulators
Basic knowledge of ldo voltage regulators
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)
 
STANDARD CELL LIBRARY DESIGN
STANDARD CELL LIBRARY DESIGNSTANDARD CELL LIBRARY DESIGN
STANDARD CELL LIBRARY DESIGN
 
DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFET
 

Viewers also liked

Power Management IC Overview
Power Management IC OverviewPower Management IC Overview
Power Management IC Overview
servoflo
 
9조 wireless power
9조 wireless power9조 wireless power
9조 wireless power
jaycha
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
 
Journal On LDO From IJEETC
Journal On LDO From IJEETCJournal On LDO From IJEETC
Journal On LDO From IJEETCSadanand Patil
 
전자파 안전성 평가 기술수요 분석 및 연구반 구성 운영 최종연구보고서
전자파 안전성 평가 기술수요 분석 및 연구반 구성 운영 최종연구보고서전자파 안전성 평가 기술수요 분석 및 연구반 구성 운영 최종연구보고서
전자파 안전성 평가 기술수요 분석 및 연구반 구성 운영 최종연구보고서
활 김
 
Hmd
HmdHmd
Hmd
KimDou
 
LOW VOLTAGE LOW DROPOUT REGULATOR USING CURRENT SPLITTING TECHNIQUE
LOW VOLTAGE LOW DROPOUT REGULATOR USING CURRENT SPLITTING TECHNIQUELOW VOLTAGE LOW DROPOUT REGULATOR USING CURRENT SPLITTING TECHNIQUE
LOW VOLTAGE LOW DROPOUT REGULATOR USING CURRENT SPLITTING TECHNIQUE
Editor IJMTER
 
Design of a low voltage low-dropout regulator
Design of a low voltage low-dropout regulatorDesign of a low voltage low-dropout regulator
Design of a low voltage low-dropout regulator
I3E Technologies
 
Intelligent battery charger
Intelligent battery chargerIntelligent battery charger
Intelligent battery charger
slmnsvn
 
LT1965 - Low Noise LDO Linear Regulator
LT1965 - Low Noise LDO Linear RegulatorLT1965 - Low Noise LDO Linear Regulator
LT1965 - Low Noise LDO Linear Regulator
Premier Farnell
 
Final Viva Presenation 1309136702 ppt (7-05-2016)
Final Viva Presenation 1309136702 ppt (7-05-2016)Final Viva Presenation 1309136702 ppt (7-05-2016)
Final Viva Presenation 1309136702 ppt (7-05-2016)
Devyani Balyan
 
신기술1차발표(p1)
신기술1차발표(p1) 신기술1차발표(p1)
신기술1차발표(p1)
Yeonmoon Jeong
 
Ldo and cwo recruit your relief brief (3)
Ldo and cwo recruit your relief brief (3)Ldo and cwo recruit your relief brief (3)
Ldo and cwo recruit your relief brief (3)
Tony Astro - Veteran Counselor & Entrepreneur
 
A Study on High Precision Op-Amps
A Study on High Precision Op-AmpsA Study on High Precision Op-Amps
A Study on High Precision Op-Amps
Premier Farnell
 
L13 interrupts-in-atmega328 p
L13 interrupts-in-atmega328 pL13 interrupts-in-atmega328 p
L13 interrupts-in-atmega328 p
rsamurti
 
Concept Kit:PWM Boost Converter Average Model
Concept Kit:PWM Boost Converter Average ModelConcept Kit:PWM Boost Converter Average Model
Concept Kit:PWM Boost Converter Average Model
Tsuyoshi Horigome
 
Power electronics note
Power electronics notePower electronics note
Power electronics noteravalgautu
 
Lecture-1 : Introduction to Power Electronics
Lecture-1 : Introduction to Power ElectronicsLecture-1 : Introduction to Power Electronics
Lecture-1 : Introduction to Power Electronics
rsamurti
 
IoT Standards: The Next Generation
IoT Standards: The Next GenerationIoT Standards: The Next Generation
IoT Standards: The Next Generation
ReadWrite
 
Trends in-power-electronics
Trends in-power-electronicsTrends in-power-electronics
Trends in-power-electronics
rsamurti
 

Viewers also liked (20)

Power Management IC Overview
Power Management IC OverviewPower Management IC Overview
Power Management IC Overview
 
9조 wireless power
9조 wireless power9조 wireless power
9조 wireless power
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 
Journal On LDO From IJEETC
Journal On LDO From IJEETCJournal On LDO From IJEETC
Journal On LDO From IJEETC
 
전자파 안전성 평가 기술수요 분석 및 연구반 구성 운영 최종연구보고서
전자파 안전성 평가 기술수요 분석 및 연구반 구성 운영 최종연구보고서전자파 안전성 평가 기술수요 분석 및 연구반 구성 운영 최종연구보고서
전자파 안전성 평가 기술수요 분석 및 연구반 구성 운영 최종연구보고서
 
Hmd
HmdHmd
Hmd
 
LOW VOLTAGE LOW DROPOUT REGULATOR USING CURRENT SPLITTING TECHNIQUE
LOW VOLTAGE LOW DROPOUT REGULATOR USING CURRENT SPLITTING TECHNIQUELOW VOLTAGE LOW DROPOUT REGULATOR USING CURRENT SPLITTING TECHNIQUE
LOW VOLTAGE LOW DROPOUT REGULATOR USING CURRENT SPLITTING TECHNIQUE
 
Design of a low voltage low-dropout regulator
Design of a low voltage low-dropout regulatorDesign of a low voltage low-dropout regulator
Design of a low voltage low-dropout regulator
 
Intelligent battery charger
Intelligent battery chargerIntelligent battery charger
Intelligent battery charger
 
LT1965 - Low Noise LDO Linear Regulator
LT1965 - Low Noise LDO Linear RegulatorLT1965 - Low Noise LDO Linear Regulator
LT1965 - Low Noise LDO Linear Regulator
 
Final Viva Presenation 1309136702 ppt (7-05-2016)
Final Viva Presenation 1309136702 ppt (7-05-2016)Final Viva Presenation 1309136702 ppt (7-05-2016)
Final Viva Presenation 1309136702 ppt (7-05-2016)
 
신기술1차발표(p1)
신기술1차발표(p1) 신기술1차발표(p1)
신기술1차발표(p1)
 
Ldo and cwo recruit your relief brief (3)
Ldo and cwo recruit your relief brief (3)Ldo and cwo recruit your relief brief (3)
Ldo and cwo recruit your relief brief (3)
 
A Study on High Precision Op-Amps
A Study on High Precision Op-AmpsA Study on High Precision Op-Amps
A Study on High Precision Op-Amps
 
L13 interrupts-in-atmega328 p
L13 interrupts-in-atmega328 pL13 interrupts-in-atmega328 p
L13 interrupts-in-atmega328 p
 
Concept Kit:PWM Boost Converter Average Model
Concept Kit:PWM Boost Converter Average ModelConcept Kit:PWM Boost Converter Average Model
Concept Kit:PWM Boost Converter Average Model
 
Power electronics note
Power electronics notePower electronics note
Power electronics note
 
Lecture-1 : Introduction to Power Electronics
Lecture-1 : Introduction to Power ElectronicsLecture-1 : Introduction to Power Electronics
Lecture-1 : Introduction to Power Electronics
 
IoT Standards: The Next Generation
IoT Standards: The Next GenerationIoT Standards: The Next Generation
IoT Standards: The Next Generation
 
Trends in-power-electronics
Trends in-power-electronicsTrends in-power-electronics
Trends in-power-electronics
 

Similar to LDO project

multistage amplifier Rajendra keer
 multistage amplifier Rajendra keer multistage amplifier Rajendra keer
multistage amplifier Rajendra keer
Rai Saheb Bhanwar Singh College Nasrullaganj
 
multistage amplifier Abhishek meena
 multistage amplifier Abhishek meena multistage amplifier Abhishek meena
multistage amplifier Abhishek meena
Rai Saheb Bhanwar Singh College Nasrullaganj
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMP
Vishal Pathak
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
Tsuyoshi Horigome
 
multistage amplifiers analysis and design
multistage amplifiers analysis and designmultistage amplifiers analysis and design
multistage amplifiers analysis and design
girishgandhi4
 
07
0707
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrdChapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
LuisAngelLugoCuevas
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)aicdesign
 
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIERDESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
Ilango Jeyasubramanian
 
CASCADE AMPLIFIER
CASCADE AMPLIFIERCASCADE AMPLIFIER
CASCADE AMPLIFIER
GLACE VARGHESE T
 
3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics
Nitish Kumar
 
Ece523 folded cascode design
Ece523 folded cascode designEce523 folded cascode design
Ece523 folded cascode design
Karthik Rathinavel
 
Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
PRAVEENA N G
 
Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdf
GabrielRodriguez171709
 
project.pptx
project.pptxproject.pptx
project.pptx
anaveenkumar4
 
Igbt gate driver power supply flyback converter
Igbt gate driver power supply flyback converterIgbt gate driver power supply flyback converter
Igbt gate driver power supply flyback converter
Kunwar Aditya
 
Sn5414 7414
Sn5414 7414Sn5414 7414
Sn5414 7414
Souvik Das
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)aicdesign
 

Similar to LDO project (20)

multistage amplifier Rajendra keer
 multistage amplifier Rajendra keer multistage amplifier Rajendra keer
multistage amplifier Rajendra keer
 
multistage amplifier Abhishek meena
 multistage amplifier Abhishek meena multistage amplifier Abhishek meena
multistage amplifier Abhishek meena
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMP
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
 
multistage amplifiers analysis and design
multistage amplifiers analysis and designmultistage amplifiers analysis and design
multistage amplifiers analysis and design
 
07
0707
07
 
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrdChapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)
 
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIERDESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
 
CASCADE AMPLIFIER
CASCADE AMPLIFIERCASCADE AMPLIFIER
CASCADE AMPLIFIER
 
EEL782_Project
EEL782_ProjectEEL782_Project
EEL782_Project
 
3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics
 
Ece523 folded cascode design
Ece523 folded cascode designEce523 folded cascode design
Ece523 folded cascode design
 
Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
 
Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdf
 
project.pptx
project.pptxproject.pptx
project.pptx
 
Igbt gate driver power supply flyback converter
Igbt gate driver power supply flyback converterIgbt gate driver power supply flyback converter
Igbt gate driver power supply flyback converter
 
Sn5414 7414
Sn5414 7414Sn5414 7414
Sn5414 7414
 
Pe lab converted
Pe lab convertedPe lab converted
Pe lab converted
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)
 

LDO project

  • 2. Goal: Design a voltage regulator to provide an output voltage of 3.3V
  • 3. For the calculations we assume the following constants: - Pass transistor current = 1ma - Vout = 3.3V - Dropout voltage = - VDD=5V -
  • 4. Calculations: - Calculation of a range of Vbias1 1. To find Ibias1: From the desired a photodiode range, the minimum value of Ibias1: VGS3 =Vphmin Ibias1 = ½ K1(W/L)3 (VGS3 -VTHN )2 = ½ * 50 * 10-6 A/V2 * 3µm/0.6µm * (0.8V – 0.617)2 = 4.186µA =4µA The maximum value of Ibias1: Ibias1 = ½ K1(W/L)3 (VGS3 -VTHN )2 = ½ * 50 * 10-6 A/V2 * 3µm/0.6µm * (3.0V – 0.617)2 = 0.7mA
  • 5. Calculations: - Calculation of a range of Vbias1 2. To find Vbias1: Next we find the value of Vbias1 given by Vbias1 = VDD – VGS0 = VDD - √[(2Ibias1)/(K2 (W/L)0 ] – VTHp Vbias1 = VDD – VGS0 = VDD - √[ (2Ibias1)/(K2 (W/L)0 ] – VTHp p The maximum value of Vbias1: Vbias1(max) = 5V - √[(2*4µA)/(19.1µA/V2* 20µm/0.6µm)] – 0.915V =1.026 = 4V The minimum value of Vbias1: Vbias1(min) = VDD – VGS0 = 5V- √[(2*0.7*10-3 )/25* 10-6 /V2 * 20µm/0.6µm) – 0.915V = 2.8V
  • 6. Calculations: - Calculation of sizes of the transistors M5, M4 1. To determine W5 From requirement to keep M5 in saturation region: VTH ≤VGS5 = Vbias1(min) + VTHp – Vph (max) = 2.8V +0.9V – 3.0V = 0.7V W5 = (2InL5 )/(K1 (VGS5 -VTHN )2 ) = (2 * 1.2µA * 0.6µm)/(50µA/V2 * (0.7V – 0.617V)2 ) = 4µm
  • 7. Calculations: - Calculation of sizes of the transistors M5, M4 2. To determine W4 VDS4 ≥VGS4 – VTHN VDS4 = Vph (min) = 0.8V Assumed VGS4 = 0.75V W4 = (2InL4 )/(K1 (VGS4 -VTHN )2 ) = (2 * 1.2µA * 0.6µm)/(50µA/V2 * (0.75V – 0.617V)2 ) = 1.60µm
  • 8. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 1. To find VGS for M1, M2, M7 VGS1 = VDS1 = VGS2 = VGS1 = √[(2Iout)/(K2 (W/L)2,7 ] + VTHp = √(2 * 1.2µA)/(25µA/V2 * (20/2.4)) + 0.915V = 0.107V + 0.915V = 1V
  • 9. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 2. To find VDS for current mirror: Next we find VDS2 and VDS7 (which are the same in value) VDS2,7 = VDD – VDS6 = VDD - √[(2Iout)/(K1 (W/L)6 ] - VTHN = 5V - √(2 * 1.2µA)/(50µA/V2 * (1.5/8.55)) - 0.617V = 3.85V
  • 10. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 3. To determine W1: Finally, we calculate the size of transistor M1. It's required that Iin = Iout. Consequently, the current conveyor ought to have I1 = I2,7. Assuming L1= L2,7: W1/L1* (1 + ƛpDS2,7) = W2,7/L2,7(1 + ƛpDS2,7) W1 = 2(1 + ƛpDS2,7)/(1 + ƛpDS1) W1 = (20µm*(1+0.2*3.85V)/(1+0.2*1V) = 29.5µm
  • 11. Summary of Transistor Sizes: - Summary of calculated transistor sizes vs the transistor simulation sizes TransistTor Calculated Size Actual Size Used Width(µm) Length(µm) Width(µm) Length(µm) M1 100 0.6 19.55 0.6 M2 100 0.6 21.3 2.4 M3 20 0.6 19.55 0.6 M4 20 0.6 3 0.6 M5 300 0.6 3 1.5
  • 13. - Test Schematic - Test Schematic Test Schematic
  • 14. - Pre-Layout Simulation - Pre-Layout Simulation PRE-LAYOUT DC INPUT TEST
  • 15. - Pre-Layout Simulation- Pre-Layout Simulation PRE-LAYOUT PHASE AND GAIN
  • 17. - Post-Layout Simulation POST LAYOUT DC FIXED INPUT
  • 18. - Post-Layout Simulation POST LAYOUT GAIN AND PHASE