SlideShare a Scribd company logo
http://lawrencekok.blogspot.com
Prepared by
Lawrence Kok
Tutorial on Gibbs Free Energy and Spontaneity .
E = sum kinetic energy/motion of molecule, and potential
energy represented by chemical bond bet atom
∆E = q + w
∆E = Change internal
energy
q = heat
transfer
w = work done
by/on system
Thermodynamics
Study of work, heat and energy on a system
∆E universe = ∆E sys + ∆E surrounding = 0
1st
Law Thermodynamics
Entropy - Measure of disorder
↓
∆S uni = ∆S sys + ∆S surr > 0 (irreversible rxn)
↓
All spontaneous rxn produce increase in entropy of universe
2nd
Law Thermodynamics
∆S uni = ∆S sys + ∆S surr
Isolated system - Entropy change of universe always increase
Click here thermodynamics entropy
Entropy
Measure molecular disorder/randomness
↓
More disorder - More dispersion of matter/energy
↓
More random - Rxn toward right- Entropy Increases ↑
Direction to right- Spontaneous to right →
2nd
Law
Thermodynamics
Embrace the chaos
Over time - Entropy increase ↑
Direction to left ← Never happen !
Click here thermodynamics
Energy cannot be created or destroyed
> 0
∆S = Entropy
change
Entropy
Dispersal/Distribution
Matter Energy
Matter more disperse ↑
Entropy increases ↑
solid liquid gas
spontaneous - entropy ↑
Over time - Entropy increase ↑
Phase change - sol liq gas→ →
↓
Entropy increase ↑
Every energy transfer - increase entropy universe
Entropy universe can only go up - never go down
Entropy increase - many ways energy spread out
Dispersion energy as heat - increase entropy
Stoichiometry- more gas/liq in product
↓
Entropy increase ↑
T
Q
S =∆
Heat added ↑
Phase change Stoichiometry
Embrace the chaos
N2O4(g) 2NO→ 2(g)
1 2
2H2O(l) 2H→ 2 (g) + O2 (g)
1 2
3
3
More gas in product - Entropy ↑
Heat added ↑
Entropy
Measure molecular disorder/randomness
↓
More disorder - More dispersion of matter/energy
↓
More randon - Rxn towards right- Entropy Increases ↑
Liq more disorder than solid
Gas more disorder than liq
kinetic energy distributed
over wide range
Q = heat
transfer
T = Temp/K
Distribution matter in space Distribution energy bet particles
Direction to left ← Never happen !Direction to right- Spontaneous to right →
Statistical
Entropy
Entropy
Measure molecular disorder/randomness
↓
More disorder - More dispersion of matter/energy
↓
More random - Entropy Increases ↑
1st
Law Thermodynamics - Doesn't help explain direction of rxn
∆S uni > 0 (+ve) More disorder - spontaneous→
∆S uni < 0 (-ve) More order - non spontaneous→
Change sol liq gas - Higher entropy→ →
Greater number particles in product - Higher entropy
More complex molecule - More atoms bonded - Higher entropy
Higher temp - Vibrate faster - More random - Higher entropy
Why gas mixes and not unmix? Why heat flow from hot to cold?
Entropy
Notes on Entropy
1st
Law Thermodynamics 2nd
Law Thermodynamics
Energy cannot be created or destroyed
Transfer from one form to another
∆E universe = ∆E sys + ∆E surrounding = 0
Isolated system
↓
∆S uni always increase
∆E = q + w
Method to calculate entropy
Number microstates
Thermodynamic
Entropy
Heat + Temp involved
Gas mixesSolution diffuse Heat flow hot →cold
X X
X
∆E = internal
energy
q = heat
transfer
w = work done ∆S = Entropy
universe
∆S = Entropy
system
∆S = Entropy
surrounding
∆S uni = ∆S sys + ∆S surr
Law Thermodynamics
1 2
∆S = Entropy
uni
WkS ln=∆
∆S = Entropy
change
k = boltzmann
constant
W = Microstate
Click here statistical entropy Click here thermodynamics entropy
Why solution diffuse and not undiffuse?
Unit - J mol -1
K-1
surrsysuni SSS ∆+∆=∆
∆S = Entropy
sys and surr
High chaos factor
1st
Law Thermodynamics - Doesn't help explain direction of rxn
∆S uni > 0 (+ve) More disorder - spontaneous→
∆S uni < 0 (-ve) More order - non spontaneous→
Change sol liq gas - Higher entropy→ →
Greater number particles in product - Higher entropy
More complex molecule - More atoms bonded - Higher entropy
Higher temp - Vibrate faster - More random - Higher entropy
Measure molecular disorder/randomness
↓
More disorder - More dispersion of matter/energy
↓
More random - Entropy Increases ↑
Isolated system
↓
∆S uni always increase
Entropy
Why gas mixes and not unmix? Why heat flow from hot to cold?
Notes on Entropy
1st
Law Thermodynamics 2nd
Law Thermodynamics
Energy cannot be created or destroyed
Transfer from one form to another
∆E universe = ∆E sys + ∆E surrounding = 0
∆E = q + w
Gas mixesSolution diffuse Heat flow hot →cold
X X
X
∆E = internal
energy
q = heat
transfer
w = work done ∆S = Entropy
universe
∆S = Entropy
system
∆S = Entropy
surrounding
∆S uni = ∆S sys + ∆S surr
Law Thermodynamics
3rd
Law Thermodynamics
Unit - J mol -1
K-1
Standard Molar Entropy, S0
Entropy perfectly crystal at 0K = 0
Std molar entropy, S0
(absolute value)
↓
S0
when substance heated from 0K to 298K
Std state - 1 atm / 1M sol
Temp = 298K
Std Molar Entropy/S0
S0
at 298 /JK-1
mol-1
Fe (s) + 27
H2O (s) + 48
Na (s) + 52
H2O (l) + 69
CH3OH (l) + 127
H2 (g) + 130
H2O (g) + 188
CO2 (g) + 218
Solid - Order
↓
Entropy Lowest
Liq - Less order
↓
Entropy Higher
Gas - Disorder
↓
Entropy Highest
Entropy highest
Why solution diffuse and not undiffuse?
High chaos factor
Entropy
Why gas mix and not unmix?Why solution diffuse and not undiffuse? Why heat flow from hot to cold?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Unit - J mol -1
K-1
Standard Molar Entropy, S0
Entropy perfectly crystal at 0K = 0 (Absolute value)
↓
S0
when substance heated from 0K to 298K
Std state - 1 atm / 1M sol
Temp = 298K
Std Molar Entropy/S0
S0
at 298 /JK-1
mol-1
Fe (s) + 27
H2O (s) + 48
Na (s) + 52
H2O (l) + 69
CH3OH (l) + 127
H2 (g) + 130
H2O (g) + 188
CO2 (g) + 218
Solid - Order
↓
Entropy Lowest
Liq - Less order
↓
Entropy Higher
Gas - Disorder
↓
Entropy Highest
Entropy
highest
Entropy
Standard Molar Entropy, S0
Depend on
Temp increase - Entropy increase↑ ↑
Physical/phase state
Dissolving solid Molecular mass
Click here thermodynamics entropy Ba(OH)2
Temp
Temp/K 273 295 298
S0
for H2 + 31 + 32 + 33.2
Sol Liq Gas - Entropy increase→ → ↑
State solid liquid gas
S0
for H2O + 48 + 69 + 188
entropy increase ↑ entropy increase ↑
Depend on
Substance NaCI NH4NO3
S0
for solid + 72 + 151
S0
for aq + 115 + 260
More motion - entropy increase ↑ Higher mass - entropy increase ↑
Substance HF HCI HBr
Molar mass 20 36 81
S0 + 173 + 186 + 198
S0
= 0 at 0K
All sub > 0K, have +ve S0
Entropy perfectly crystal at 0K = 0 (Absolute value)
↓
S0
when substance heated from 0K to 298K
Entropy
Why gas mix and not unmix?Why solution diffuse and not undiffuse? Why heat flow from hot to cold?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Unit - J mol -1
K-1
Standard Molar Entropy, S0
Std state - 1 atm / 1M sol
Temp = 298K
Std Molar Entropy/S0
S0
at 298 /JK-1
mol-1
H2O (s) + 48
Na (s) + 52
H2O (l) + 69
CH3OH (l) + 127
H2O (g) + 188
CO2 (g) + 218
Solid - Order
↓
Entropy Lowest
Liq - Less order
↓
Entropy Higher
Gas - Disorder
↓
Entropy Highest
Entropy
highest
Entropy
Standard Molar Entropy, S0
Depend on
Temp increase - Entropy increase↑ ↑
Physical/phase state
Dissolving solid Molecular mass
Temp
Temp/K 273 295 298
S0
for H2 + 31 + 32 + 33.2
Sol Liq Gas - Entropy increase→ → ↑
State solid liquid gas
S0
for H2O + 48 + 69 + 188
entropy increase ↑ entropy increase ↑
Depend on
More motion - entropy increase ↑
Click here entropy
notes
Click here entropy,
enthalpy free energy data
Click here entropy
CRC data booklet
Higher mass - entropy increase ↑
S0
= 0 at 0K
All sub > 0K, have +ve S0
Substance NaCI NH4NO3
S0
for solid + 72 + 151
S0
for aq + 115 + 260
Substance HF HCI HBr
Molar mass 20 36 81
S0 + 173 + 186 + 198
∆Hf
θ
(reactant) ∆Hf
θ
(product)
Using Std ∆Hf
θ
formation to find ∆H rxn
∆H when 1 mol form from its element under std condition
Na(s) + ½ CI2(g) → NaCI(s) ∆Hf
θ
= - 411 kJ mol -1
Std Enthalpy Changes ∆Hθ
Std condition
Pressure
100kPa
Temp
298K
Conc 1M All substance
at std states
Std ∆Hf
θ
formation
Mg(s) + ½ O2(g) → MgO(s) ∆Hf
θ
=- 602 kJ mol -1
Reactants Products
O2(g) → O2 (g) ∆Hf
θ
= 0 kJ mol -1
∆Hrxn
θ
= ∑∆Hf
θ
(products) - ∑∆Hf
θ
(reactants)
∆Hf
θ
(products)∆Hf
θ
(reactants)
∆Hrxn
θ
Elements
Std state solid gas
2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Hf
θ
=- 275 kJ mol -1
1 mole formed
H2(g) + ½O2(g) → H2O(I) ∆Hf
θ
=- 286 kJ mol -1
Std state solid gas 1 mol liquid
For element Std ∆Hf
θ
formation = 0
Mg(s)→ Mg(s) ∆Hf
θ
= 0 kJ mol -1
No product form
Using Std ∆Hf
θ
formation to find ∆H rxn
PDF version
Click here chem database
(std formation enthalpy)
Online version
Click here chem database
(std formation enthalpy)
C2H4 + H2 C2H6
Find ΔHθ
rxn using std ∆H formation
Reactants Products
2C + 3H2
Elements
C2H4 + H2 C→ 2H6
∆Hrxn
θ
∆Hrxn
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Hrxn
θ
= Hf
θ
C2H6 - ∆Hf
θ
C2H4+ H2
= - 84.6 – ( + 52.3 + 0 ) = - 136.9 kJ mol -1
Enthalpy Formation, ∆Hf
Std ∆Gf
θ
formation
∆Grxn
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Grxn
θ
= Gf
θ
C2H6 - ∆Gf
θ
C2H4+ H2
= - 33 – ( + 68 + 0 ) = - 101 kJ mol -1
∆Gf
θ
(reactant) ∆Gf
θ
(product)
Using Std ∆Gf θ formation to find ∆G rxn o
∆Gf when 1 mol form from its element under std condition
Na(s) + ½ CI2(g) → NaCI(s) ∆Gf
θ
= - 384 kJ mol -1
Std Free Energy Change ∆Gθ
Std condition
Pressure
100kPa
Temp
298K
Conc 1M All substance
at std states
Gibbs Free Energy change formation, ∆Gf
Mg(s) + ½ O2(g) → MgO(s) ∆Gf
θ
=- 560 kJ mol -1
Reactants Products
O2(g) → O2 (g) ∆Gf
θ
= 0 kJ mol -1
∆Grxn
θ
= ∑∆Gf
θ
(prod) - ∑∆Gf
θ
(react)
∆Gf
θ
(product)∆Gf
θ
(reactant)
∆Grxn
θ
Elements
Std state solid gas
2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Gf
θ
=- 175 kJ mol -1
1 mole formed
H2(g) + ½O2(g) → H2O(I) ∆Gf
θ
=- 237 kJ mol -1
Std state solid gas 1 mol liquid
For element Std ∆Gf
θ
formation = 0
Mg(s)→ Mg(s) ∆Gf
θ
= 0 kJ mol -1
No product form
Using Std ∆Gf
θ
formation to find ∆G rxn
PDF version
Click here chem database
(std ∆G formation)
Online version
Click here chem database
(std ∆G formation)
C2H4 + H2 C2H6
Find ΔGθ
rxn using std ∆G0
formation
Reactants Products
2C + 3H2
Elements
C2H4 + H2 C→ 2H6
∆Grxn
θ
∆S sys + ve , ∆S surr - ve
↓
∆S uni > 0 (+ve)
(Rxn Spontaneous)
∆S sys - ve , ∆S surr + ve
↓
∆S uni < 0 (-ve)
(Rxn Non spontaneous)
spontaneous
+ve
-ve
=
S /JK-1
∆Ssys = + ve
∆Ssurr = + ve
∆Suni = + ve
+
∆Ssys = - ve
+
∆Ssurr = + ve
∆Suni = + ve
= spontaneous
S /JK-1
S /JK-1
∆Ssys = + ve
+
∆Ssurr = - ve
=
∆Suni = + ve
spontaneous
C6H12O6(s) + 6O2 (g) 6CO→ 2(g) + 6H2O(l)
Using ∆Hsys , ∆Suni , ∆Ssys , ∆S surr to predict spontaneity
2NO(g) + O2(g) 2NO→ 2(g) CaCO3 (s) CaO→ (s) + CO2(g)
∆H = -ve (Heat released)
Difficult !!
∆S sys + ve , ∆S surr - ve
↓
∆S uni < 0 (-ve)
(Rxn Non spontaneous)
∆Ssys = + ve
∆Ssurr = - ve
+
=
∆Suni = - ve
Non
spontaneous
∆H = -ve (Heat released) ∆H = +ve (Heat absorb)
CaCO3 (s) CaO→ (s) + CO2(g)
∆H = +ve (Heat absorb)
∆Ssys = + ve
+
∆Ssurr = - ve
∆Suni = - ve
Non
spontaneous
=
H2(g) 2 H→ (g)
∆H = +ve (Heat absorb)
H2O (l) H→ 2O(s)
∆H = -ve (Heat released)
∆Ssys = - ve
+
∆Suni = - ve
∆Ssurr = + ve
=
∆S sys + ve , ∆S surr - ve
↓
∆S uni < 0 (-ve)
(Rxn Non spontaneous)
∆S sys + ve , ∆S surr + ve
↓
∆S uni > 0 (+ve)
(Rxn Spontaneous)
∆S sys - ve , ∆S surr + ve
↓
∆S uni > 0 (+ve)
(Rxn Spontaneous)
∆Hsys ∆Ssys ∆Suni Description
- + > 0 (+) Spontaneous, All Temp
+ - < 0 (-) Non spontaneous, All Temp
+ + > 0 (+) Spontaneous, High ↑ Temp
- - > 0 (+) Spontaneous, Low ↓ Temp
Predicting Spontaneity rxn
∆G - Temp/Pressure remain constant
Assume ∆S/∆H constant with temp
Using ∆Hsys , ∆Suni , ∆Ssys , ∆S surr to predict spontaneity Using ∆Gsys to predict spontaneity
syssyssys STHG ∆−∆=∆
Difficult !!
surrsysuni SSS ∆+∆=∆
T
H
Ssurr
∆−
=∆)()( reactfprofsys HHH ∆∑−∆∑=∆
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l)
∆Hf
0
- 74 0 - 393 - 286 x 2
S0
+ 186 +205 x 2 + 213 + 171 x 2
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
1
)tan()(
41
596555
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
kJHsys 891)74(965 −=−−−=∆
1
2990
298
)891000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
2949299041 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆S uni > 0
spontaneous
Easier
Unit ∆G - kJUnit ∆S - JK-1
Unit ∆H - kJ
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
Only ∆S sys involved
∆S surr, ∆S uni not needed
∆Hsys ∆Ssys ∆Gsys Description
- +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, All Temp
+ -
∆G = ∆H - T∆S
∆G = + ve
Non spontaneous, All Temp
+ +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, High ↑ Temp
- -
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, Low ↓ Temp
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g)
S0
+ 186 +205 x 2 +213 + 188 x 2
Reactant (+596) Product (+589)
kJG
G
STHG syssyssys
888
)007.0(298890
−=∆
−−−=∆
∆−∆=∆
∆Hsys = - 890 kJ
kJS
JKS
S
SSS
sys
sys
sys
reactprodsys
007.0
7
596589
1
)()(
−=∆
−=∆
−=∆
−=∆
−
∆G < 0
spontaneous
Entropy change ∆S
greater at low temp
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -868 - (-51) = - 817 kJ
Predicting Spontaneity rxn
∆G - Temp/Pressure remain constant
Assume ∆S/∆H constant with temp
Using ∆Gsys to predict spontaneity
syssyssys STHG ∆−∆=∆
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
Reactant (-51) Product (-868)
∆G < 0
spontaneous
Easier
Unit ∆G - kJ mol-1 CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
Only ∆Ssys involved
∆S surr, ∆S uni not needed
∆Hsys ∆Ssys ∆Gsys Description
- +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at all Temp
+ -
∆G = ∆H - T ∆S
∆G = + ve
Non spontaneous, all Temp
+ +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at high ↑ Temp
- -
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at low ↓ Temp
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g)
S0
+ 186 +205 x 2 +213 + 188 x 2
Reactant (+ 596) Product (+ 589)
kJG
G
STHG syssyssys
888
)007.0(298890
−=∆
−−−=∆
∆−∆=∆
∆Hsys = - 890 kJ
kJS
JKS
S
SSS
sys
sys
sys
reactprodsys
007.0
7
596589
1
)()(
−=∆
−=∆
−=∆
−=∆
−
∆G < 0
spontaneous
Using ∆Gsys to predict spontaneity
Easier
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l)
∆G0
- 51 0 - 394 - 237 x 2
Method 1 Method 2
)()( reactfprofsys GGG °°
∆−∆=∆
CH4(g) + 2 O2 (g) CO2(g) + 2H2O(g)
C + 2O2 + 2H2
Reactants Products
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)Elements
• Neither ∆H or ∆S can predict feasibility of spontaneous rxn
• Gibbs Free Energy (∆G) – measure spontaneity and useful energy available
• Gibbs Free Energy (∆G) - max amt useful work at constant Temp/Pressure
• Involve ∆H sys and ∆S sys
• ∆G involve only sys while ∆S uni involve sys and surr
• Easier to find ∆H and ∆S for system
Gibbs Free Energy change formation, ∆Gf
0
At std condition/states
Temp - 298K
Press - 1 atm
∆G - Temp/Pressure remain constant
Assume ∆S/∆H constant with temp
Using ∆Gsys to predict spontaneity
syssyssys STHG ∆−∆=∆
Easier
Unit ∆G - kJCH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
Only ∆S sys involved
∆S surr, ∆S uni not needed
∆Hsys ∆Ssys ∆Gsys Description
- +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, All Temp
+ -
∆G = ∆H - T∆S
∆G = + ve
Non spontaneous, All Temp
+ +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, High ↑ Temp
- -
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, Low ↓ Temp
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g)
S0
+ 186 +205 x 2 +213 + 188 x 2
Reactant (+ 596) Product (+ 589)
kJG
G
G
STHG syssyssys
888
2890
)007.0(298890
−=∆
+−=∆
−−−=∆
∆−∆=∆
∆Hsys = - 890 kJ
kJS
JKS
S
SSS
sys
sys
sys
reactprodsys
007.0
7
596589
1
)()(
−=∆
−=∆
−=∆
−=∆
−
∆G < 0
spontaneous
Gibbs Free Energy Change, ∆G
∆G sys T∆S sys
Total energy change, ∆H
Measure spontaneity and useful energy available
Max amt useful work at constant Temp/Pressure
Free Energy
syssyssys STHG ∆−∆=∆
Free energy available
to do work not available
for work
syssyssys STHG ∆−∆=∆
Free Energy
Total energy change, ∆H
∆G sys T∆S sys
-890kJ
Free energy available
to do work
not available
for work
-888kJ +2 kJ
Gibbs Free Energy Change, ∆G
∆G - Temp/Pressure remain constant
Assume ∆S/∆H constant with temp
Using ∆Gsys to predict spontaneity
syssyssys STHG ∆−∆=∆
Easier
Unit ∆G - kJ mol-1
Only ∆Ssys involved
∆S surr, ∆S uni not needed
Using ∆Gsys to predict spontaneity
Easier
Method 1 Method 2
)()( reactfprofsys GGG °°
∆−∆=∆
At std condition/states
Temp - 298K
Press - 1 atm
Gibbs Free Energy change formation, ∆Gf
0
At High Temp ↑
Temp dependent
syssyssys STHG ∆−∆=∆
At low Temp ↓
veG
STG
HST sys
−=∆
∆−≈∆
∆>∆−
syssyssys STHG ∆−∆=∆
veG
HG
STH
−=∆
∆≈∆
∆−>∆
spontaneous spontaneous
surrsysuni SSS ∆+∆=∆
T
H
S
sys
surr
∆−
=∆
syssysuni STHST ∆−∆=∆−
Deriving Gibbs Free Energy Change, ∆G
T
H
SS
sys
sysuni
∆
−∆=∆
∆S sys / ∆H sys
multi by -T
syssyssys STHG ∆−∆=∆
∆Hsys ∆Ssys ∆Gsys Description
- +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at all Temp
+ -
∆G = ∆H - T ∆S
∆G = + ve
Non spontaneous, all Temp
unisys STG ∆−=∆ syssyssys STHG ∆−∆=∆
Only ∆H sys/∆Ssys involved
∆S surr, ∆S uni not needed
°°°
∆−∆=∆ syssyssys STHG
Non standard conditionStandard condition
or
Gibbs Free Energy Change, ∆G
syssyssys STHG ∆−∆=∆unisys STG ∆−=∆
veGsys −=∆
∆Suni = +ve
Spontaneous Spontaneous
veGsys −=∆
∆H = - ve
∆S sys = +ve
∆Hsys ∆Ssys ∆Gsys Description
+ +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at high ↑ Temp
- -
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at low ↓ Temp
kJG
G
STHG
130
)16.0(298178
+=∆
+−+=∆
∆−∆=∆
Predict entropy change - quatitatively
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react) ∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJHsys 178)1206(1028 +=−−−=∆
∆G uni > 0 - Decomposition at 298K - Non Spontaneous
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
CaCO3 (s) CaO→ (s) + CO2(g)
CaCO3 (s) CaO→ (s) + CO2(g)
∆Hf
0
- 1206 - 635 - 393
S0
+ 93 + 40 + 213
kJS
S
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
)tan()(
+=∆
+=∆
−=∆
−=∆
Decomposition at 298K Decomposition at 1500K
CaCO3 (s) CaO→ (s) + CO2(g)
CaCO3 (s) CaO→ (s) + CO2(g)
∆Hf
0
- 1206 - 635 - 393
S0
+ 93 + 40 + 213
kJHsys 178)1206(1028 +=−−−=∆
Rxn Temp dependent
Spontaneous at High temp↑
1500K
298K
Decomposition limestone
CaCO3 spontaneous?
Gibbs Free Energy Change, ∆G
kJS
S
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
)tan()(
+=∆
+=∆
−=∆
−=∆
kJG
G
STHG
62
)16.0(1500178
−=∆
+−+=∆
∆−∆=∆
∆G uni < 0 - Decomposition at 1500K - Spontaneous
∆H = +ve
∆S = +ve
Temp dependent
∆Hsys ∆Ssys ∆Gsys Description
+ +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at high ↑ Temp
- -
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at low ↓ Temp
At Low Temp At High Temp
Predict entropy change - quatitatively
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react) ∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆G uni > 0 - Decomposition at 298K - Non Spontaneous
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
Rxn Temp dependent
Spontaneous at Low temp↓
298K (25C)
Gibbs Free Energy Change, ∆G
∆G uni < 0 - Decomposition at 1500K - Spontaneous
∆H = - ve
∆S = - ve
Temp dependent
∆Hsys ∆Ssys ∆Gsys Description
+ +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at high ↑ Temp
- -
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at low ↓ Temp
H2O (l) H→ 2O(s)
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
Freezing at 298K (25C)
Is Freezing
spontaneous?
kJHsys 6)286(292 −=−−−=∆
kJS
S
S
SSS
sys
sys
sys
treacproductsys
02.0
22
7048
)tan()(
−=∆
−=∆
−=∆
−=∆
kJG
G
STHG
55.0
)022.0(2986
+=∆
−−−=∆
∆−∆=∆
Freezing at 263K (-10C)
H2O (l) H→ 2O(s)
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
kJHsys 6)286(292 −=−−−=∆
kJS
S
S
SSS
sys
sys
sys
treacproductsys
02.0
22
7048
)tan()(
−=∆
−=∆
−=∆
−=∆
263K (-10C) kJG
G
STHG
21.0
)022.0(2636
−=∆
−−−=∆
∆−∆=∆
At High Temp At Low Temp
C3H8(g) + 5 O2 (g) 3CO2(g) + 4H2O(l)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l) ∆H = -2220 kJ at 298K
C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l)
S0
+270 +205 x 5 +213 x 3 +70 x 4
1295 919
Reactant Product
kJG
G
STHG
2108
)376.0(2982220
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
376.0
376
1295919
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = -2220 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Is Combustion at
298K spontaneous?
Using Free Energy to predict spontaneity
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -2130 - (-23) = - 2153 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Combustion at 298K - Spontaneous
C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l)
∆G0
- 23 0 - 394 x 3 - 237 x 4
Elements
3C + 5O2 + 4H2
Reactant (-23) Product (-2130)
∆G < 0 - Combustion at 298K - Spontaneous
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(g) ∆H = - 890 kJ at 298K
CH4(g) + 2 O2 (g) CO2(g) + 2H2O(g)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
2
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 596 + 589
Reactant Product
kJG
G
STHG
888
)007.0(298890
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
007.0
7
596589
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 890 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Is Combustion at
298K spontaneous?
Using Free Energy to predict spontaneity
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -868 - (-51) = - 817 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Combustion at 298K - Spontaneous
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l)
∆G0
- 51 0 - 394 - 237 x 2
Elements
C + 2O2 + 2H2
Reactant (-51) Product (-868)
∆G < 0 - Combustion at 298K - Spontaneous
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g)
S0
+ 186 +205 x 2 +213 + 188 x 2
H2O (g) H→ 2O(l) ∆H = - 44.1 kJ at 298K
H2O(g) H2O(l)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 188 + 70
Reactant Product
kJG
G
STHG
1.9
)118.0(2981.44
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
118.0
118
18870
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 44.1 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -237 - (-228) = - 9 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Combustion at 298K - Spontaneous
H2O(g) H→ 2O(l)
∆G0
-228 - 237
Elements
H2 + O2
Reactant (-228) Product (-237)
∆G < 0 - Combustion at 298K - Spontaneous
Condensation steam at
298K (25C) spontaneous?
H2O (g) H→ 2O(l)
S0
+ 188 + 70
3
Using Free Energy to predict spontaneity
H2(g) 2 H→ (g) ∆H = + 436 kJ at 298K
H2(g) 2H(g)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 130 + 230
Reactant Product
kJG
G
STHG
406
)1.0(298436
+=∆
+−+=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
1.0
100
130230
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
∆H = + 436 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= + 406 - (0) = +406 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G > 0 - Atomization at 298K - Non Spontaneous
H2(g) 2H→ (g)
∆G0
0 + 203 x 2
Elements
H2
Reactant (0) Product ( + 406)
4Is Atomization of H2 at
298K spontaneous?
H2 (g) 2 H→ (g)
S0
+ 130 + 115 x 2
∆G > 0 - Atomization at 298K - Non Spontaneous
Using Free Energy to predict spontaneity
H2O (l) H→ 2O(s) ∆H = - 6 kJ at 298K
H2O(l) H2O(s)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
2
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 70 + 48
Reactant Product
kJG
G
STHG
55.0
)022.0(2986
+=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
022.0
22
7048
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 6 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -236.6 - (-237) = + 0.4kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G > 0 -Freezing at 298K - Non Spontaneous
H2O(l) H→ 2O(s)
∆G0
-237 - 236.6
Elements
H2 + O2
Reactant (-237) Product (-236.6)
5
H2O (l) H→ 2O(s)
S0
+ 70 + 48
∆G > 0 -Freezing at 298K - Non Spontaneous
Is Freezing water to ice at
298K (25C) spontaneous?
Using Free Energy to predict spontaneity
H2O (l) H→ 2O(s) ∆H = - 6 kJ at 263K
H2O(l) H2O(s)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
2
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 70 + 48
Reactant Product
kJG
G
STHG
21.0
)022.0(2636
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
022.0
22
7048
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 6 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -237.2 - (-237) = - 0.2 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 -Freezing at 263K - Spontaneous
H2O(l) H→ 2O(s)
∆G0
-237 - 237.2
Elements
H2 + O2
Reactant (-237) Product (-237.2)
6
H2O (l) H→ 2O(s)
S0
+ 70 + 48
∆G < 0 -Freezing at 263K - Spontaneous
Is Freezing water to ice at
263K (-10C) spontaneous?
Assume std condition
at 263K
Using Free Energy to predict spontaneity
CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 298K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 93 + 253
Reactant Product
kJG
G
STHG
130
)16.0(298178
+=∆
+−+=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
∆H = + 178 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= - 999 - (- 1129) = + 130 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G > 0 - Decomposition at 298K - Non Spontaneous
CaCO3(s) CaO + CO→ 2(g)
∆G0
-1129 - 604 - 395
Elements
Ca + C + O2
Reactant ( -1129) Product (- 999)
7
Decomposition CaCO3 at
298K (25C) spontaneous?
CaCO3 (s) CaO→ (s) + CO2(g)
S0
+ 93 + 40 + 213
∆G > 0 - Decomposition at 298K - Non Spontaneous
CaCO3 (s) CaO (s) + CO2(g)
Using Free Energy to predict spontaneity
CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 1500K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 93 + 253
Reactant Product
kJG
G
STHG
62
)16.0(1500178
−=∆
+−+=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
∆H = + 178 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= - 999 - (- 939) = - 60 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Decomposition at 1500K - Spontaneous
CaCO3(s) CaO + CO→ 2(g)
∆G0
-939 - 604 - 395
Elements
Ca + C + O2
Reactant (- 939) Product (- 999)
8
CaCO3 (s) CaO→ (s) + CO2(g)
S0
+ 93 + 40 + 213
CaCO3 (s) CaO (s) + CO2(g)
Decomposition CaCO3 at
1500K (1227C) spontaneous?
∆G < 0 - Decomposition at 1500K - Spontaneous
Assume std condition
at 1500K
Using Free Energy to predict spontaneity
2NO(g) + O2(g) 2NO→ 2(g) ∆H = - 114 kJ at 298K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 522 + 480
Reactant Product
kJG
G
STHG
101
)042.0(298114
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
042.0
42
522480
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 114 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= + 104 - (174) = - 70 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Decomposition at 298K - Spontaneous
2 NO + O2 2NO→ 2(g)
∆G0
+ 87 x 2 0 + 52 x 2
Elements
N2 + O2
Reactant (+ 174) Product (+ 104)
9
2 NO(g) + O2 (g) 2NO2(g)
∆G < 0 - Decomposition at 298K - Spontaneous
Is Oxidation of NO at
298K (25C) spontaneous?
2 NO(g) + O2 (g) 2NO→ 2(g)
S0
+ 210 x 2 + 102 + 240 x 2
Using Free Energy to predict spontaneity
N2(g) + 3H2(g) 2NH→ 3(g) ∆H = - 92 kJ at 298K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 585 + 384
Reactant Product
kJG
G
STHG
32
)2.0(29892
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
2.0
201
585384
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 92 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= - 34 - (0) = - 34 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - NH3 production at 298K - Spontaneous
N2 + 3H2 2NH→ 3(g)
∆G0
0 0 - 17 x 2
Elements
N2 + H2
Reactant (0) Product (- 34)
10
N2(g) + 3H2 (g) 2NH3(g)
Is Haber, NH3 production
298K (25C) spontaneous?
NH3
N2(g) + 3H2 (g) 2NH→ 3(g)
S0
+ 192 + 131 x 3 + 192 x 2
∆G < 0 - NH3 production at 298K - Spontaneous
Using Free Energy to predict spontaneity
Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s) ∆H = - 851 kJ at 298K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 143 + 105
Reactant Product
kJG
G
STHG
840
)038.0(298851
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
038.0
38
143105
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 851 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -1576 - (-741) = - 835 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - AI production at 298K - Spontaneous
Fe2O3 + 2AI 2Fe + AI→ 2O3
∆G0
- 741 0 0 - 1576
Elements
Fe + AI+ O2
Reactant (-741) Product (- 1576)
11Is Thermite, AI production
298K (25C) spontaneous?
Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s)
S0
+ 87 + 28 x 2 + 27 x 2 + 51
∆G < 0 - AI production at 298K - Spontaneous
Fe2O3(s) + 2AI(s) 2Fe(s) + AI2O3(s)
Using Free Energy to predict spontaneity
4KCIO3(s) 3KCIO→ 4(s) + KCI(s) ∆H = - 144 kJ at 298K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 572 + 535
Reactant Product
kJG
G
STHG
133
)037.0(298144
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
037.0
37
572535
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 144 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -1317 - (-1160) = - 157 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Decomposition at 298K - Spontaneous
4KCIO3 3 KCIO→ 4 + KCI
∆G0
- 290 x 4 - 303 x 3 - 408
Elements
K + CI2 + O2
Reactant (-1160) Product (- 1317)
13
∆G < 0 - Decomposition at 298K - Spontaneous
Is decomposition KCIO3
298K (25C) spontaneous?
4KCIO3(s) 3KCIO→ 4(s) + KCI(s)
S0
+ 143 x 4 + 151 x 3 + 82
4KCIO3(s) 3KCIO4(s) + KCI(s)
Using Free Energy to predict spontaneity
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 821 + 1698
Reactant Product
kJG
G
STHG
3071
)877.0(2982810
−=∆
+−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
877.0
877
8211698
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
∆H = - 2810 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -3792 - (-910) = - 2882 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 Combustion sugar at 298K - Spontaneous
Elements
C + H2 + O2
Reactant (-910) Product (- 3792)
14
Is combustion sugar
298K (25C) spontaneous? C6H12O6(s) + 6O2 (g) 6CO→ 2(g) + 6H2O(l) ∆H = - 2810 kJ at 298K
C6H12O6 (s) + 6O2(g) 6CO→ 2(g) + 6H2O(l)
S0
+ 209 +102 x 6 + 213 x 6 + 70 x 6
∆G < 0 Combustion sugar at 298K - Spontaneous
C6H12O6 + 6O2 6CO2 + 6H2O(l)
C6H12O6 (s) + 6O2(g) 6CO→ 2(g) + 6H2O(l)
∆G0
- 910 0 - 395 x 6 - 237 x 6
Using Free Energy to predict spontaneity
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict entropy change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l)
∆Hf
0
- 74 0 - 393 - 286 x 2
S0
+ 186 +205 x 2 +213 + 171 x 2
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
041.0
41
596555
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJHsys 890)74(964 −=−−−=∆
Is Combustion at
298K spontaneous?
Unit for ∆S - JK-1
Unit for ∆H - kJ C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l)
C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l)
∆Hf
0
- 104 0 - 393 x 3 - 286 x 4
S0
+270 +205 x 5 + 213 x 3 + 171 x 4
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
028.0
28
12951323
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
kJHsys 2219)104(2323 −=−−−=∆
1 2
kJG
G
STHG
877
)041.0(298890
−=∆
−−−=∆
∆−∆=∆
∆G < 0 Combustion sugar at 298K - Spontaneous
kJG
G
STHG
881
)028.0(2982219
−=∆
+−−=∆
∆−∆=∆
∆G < 0 Combustion sugar at 298K - Spontaneous
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict entropy change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
118.0
118
18870
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJHsys 44)242(286 −=−−−=∆
Is Condensation/Freezing at
298K spontaneous?
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
022.0
22
7048
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJHsys 6)286(292 −=−−−=∆
3 4H2O (g) H→ 2O(l) H2O (l) H→ 2O(s)
H2O (g) H→ 2O(l)
∆Hf
0
- 242 - 286
S0
+ 188 + 70
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
kJG
G
STHG
1.9
)118.0(2981.44
−=∆
−−−=∆
∆−∆=∆
∆G < 0 Condensation at 298K - Spontaneous
kJG
G
STHG
55.0
)022.0(2986
+=∆
−−−=∆
∆−∆=∆
∆G > 0 Freezing at 298K – Non Spontaneous
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict entropy change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJHsys 92)0(92 −=−−=∆
Are these rxn at
298K spontaneous?
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
kJHsys 168)1564(1732 −=−−−=∆
5 6N2(g) + 3H2(g) 2NH→ 3(g)
N2(g) + 3H2 (g) 2NH→ 3(g)
∆Hf
0
0 0 - 46 x 2
S0
+ 192 + 131 x 3 + 192 x 2
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
201.0
201
585384
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
4KCIO3(s) 3KCIO→ 4(s) + KCI(s)
4KCIO3(s) 3KCIO→ 4(s) + KCI(s)
∆Hf
0
- 391 x 4 - 432 x 3 - 436
S0
+ 143 x 4 + 151 x 3 + 82
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
037.0
37
572535
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJG
G
STHG
32
)2.0(29892
−=∆
−−−=∆
∆−∆=∆
∆G < 0 NH3 production at 298K - Spontaneous
kJG
G
STHG
157
)037.0(298168
−=∆
−−−=∆
∆−∆=∆
∆G < 0 KCIO3 production at 298K - Spontaneous
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict entropy change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react) ∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJHsys 178)1206(1028 +=−−−=∆
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
7 8CaCO3 (s) CaO→ (s) + CO2(g)
CaCO3 (s) CaO→ (s) + CO2(g)
∆Hf
0
- 1206 - 635 - 393
S0
+ 93 + 40 + 213
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
Decomposition at 298K Decomposition at 1500K
CaCO3 (s) CaO→ (s) + CO2(g)
CaCO3 (s) CaO→ (s) + CO2(g)
∆Hf
0
- 1206 - 635 - 393
S0
+ 93 + 40 + 213
kJHsys 178)1206(1028 +=−−−=∆
Rxn Temp dependent
Spontaneous at High temp↑
1500K
298K (25C)
Decomposition limestone
CaCO3 spontaneous?
kJG
G
STHG
130
)16.0(298178
+=∆
+−+=∆
∆−∆=∆
∆G > 0 Decomposition at 298K – Non Spontaneous
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
kJG
G
STHG
62
)16.0(1500178
−=∆
+−+=∆
∆−∆=∆
∆G < 0 Decomposition at 1500 K - Spontaneous
At Low Temp At High Temp
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict entropy change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react) ∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
022.0
22
7048
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJHsys 6)286(292 −=−−−=∆
Is Freezing
spontaneous?
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
022.0
22
7048
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJHsys 6)286(292 −=−−−=∆
9 10H2O (l) H→ 2O(s) H2O (l) H→ 2O(s)
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
Freezing at 298K (25C) Freezing at 263K (-10C)
Rxn Temp dependent
Spontaneous at Low temp↓
263K (-10C)298K (25C)
kJG
G
STHG
55.0
)022.0(2986
+=∆
−−−=∆
∆−∆=∆
∆G > 0 Freezing at 298K – Non Spontaneous
kJG
G
STHG
21.0
)022.0(2636
−=∆
−−−=∆
∆−∆=∆
∆G < 0 Freezing at 263K – Spontaneous
At High Temp At Low Temp
Acknowledgements
Thanks to source of pictures and video used in this presentation
Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/
Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

More Related Content

What's hot

IB Chemistry on Energetics, Enthalpy Change and
IB Chemistry on Energetics, Enthalpy Change and IB Chemistry on Energetics, Enthalpy Change and
IB Chemistry on Energetics, Enthalpy Change and
Lawrence kok
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
Lawrence kok
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
Lawrence kok
 
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
Lawrence kok
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
Lawrence kok
 
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviourIB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
Lawrence kok
 
Chapter 6 notes
Chapter 6 notesChapter 6 notes
Chapter 6 notes
Wong Hsiung
 
C H5
C H5C H5
C H5
spathman
 
Chapter 5 notes
Chapter 5 notesChapter 5 notes
Chapter 5 notes
Wong Hsiung
 
Ch6 Thermochemistry (old version)
Ch6 Thermochemistry (old version)Ch6 Thermochemistry (old version)
Ch6 Thermochemistry (old version)
Sa'ib J. Khouri
 
Chapter 1 notes
Chapter 1 notes Chapter 1 notes
Chapter 1 notes
Wong Hsiung
 
A2 Chemistry Unit 5
A2 Chemistry Unit 5A2 Chemistry Unit 5
A2 Chemistry Unit 5
Kelvin Lam
 
Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
Sa'ib J. Khouri
 
Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
Sa'ib J. Khouri
 
Thermochem
ThermochemThermochem
Thermochem
chem.dummy
 
New chm 151_unit_9_power_points
New chm 151_unit_9_power_pointsNew chm 151_unit_9_power_points
New chm 151_unit_9_power_points
caneman1
 
Chemistry chapter 20
Chemistry chapter 20Chemistry chapter 20
Chemistry chapter 20
unknownspeciesx
 
Chemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 ThermochemistryChemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 Thermochemistry
Sam Richard
 
Ch.06 Chemical Equilibrium
Ch.06 Chemical EquilibriumCh.06 Chemical Equilibrium
Ch.06 Chemical Equilibrium
Sa'ib J. Khouri
 

What's hot (19)

IB Chemistry on Energetics, Enthalpy Change and
IB Chemistry on Energetics, Enthalpy Change and IB Chemistry on Energetics, Enthalpy Change and
IB Chemistry on Energetics, Enthalpy Change and
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
 
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
 
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviourIB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
 
Chapter 6 notes
Chapter 6 notesChapter 6 notes
Chapter 6 notes
 
C H5
C H5C H5
C H5
 
Chapter 5 notes
Chapter 5 notesChapter 5 notes
Chapter 5 notes
 
Ch6 Thermochemistry (old version)
Ch6 Thermochemistry (old version)Ch6 Thermochemistry (old version)
Ch6 Thermochemistry (old version)
 
Chapter 1 notes
Chapter 1 notes Chapter 1 notes
Chapter 1 notes
 
A2 Chemistry Unit 5
A2 Chemistry Unit 5A2 Chemistry Unit 5
A2 Chemistry Unit 5
 
Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
 
Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
 
Thermochem
ThermochemThermochem
Thermochem
 
New chm 151_unit_9_power_points
New chm 151_unit_9_power_pointsNew chm 151_unit_9_power_points
New chm 151_unit_9_power_points
 
Chemistry chapter 20
Chemistry chapter 20Chemistry chapter 20
Chemistry chapter 20
 
Chemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 ThermochemistryChemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 Thermochemistry
 
Ch.06 Chemical Equilibrium
Ch.06 Chemical EquilibriumCh.06 Chemical Equilibrium
Ch.06 Chemical Equilibrium
 

Viewers also liked

IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomizationIB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
Lawrence kok
 
IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's Law
Lawrence kok
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
Lawrence kok
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
Lawrence kok
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical Series
Lawrence kok
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst Equation
Lawrence kok
 
IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
Lawrence kok
 
IB Chemistry on Born Haber Cycle and Lattice Enthalpy
IB Chemistry on Born Haber Cycle and Lattice EnthalpyIB Chemistry on Born Haber Cycle and Lattice Enthalpy
IB Chemistry on Born Haber Cycle and Lattice Enthalpy
Lawrence kok
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
Lawrence kok
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
Lawrence kok
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst Equation
Lawrence kok
 
IB Chemistry on Acid Base Dissociation Constant and Ionic Product Water
IB Chemistry on Acid Base Dissociation Constant and Ionic Product WaterIB Chemistry on Acid Base Dissociation Constant and Ionic Product Water
IB Chemistry on Acid Base Dissociation Constant and Ionic Product Water
Lawrence kok
 
IB Chemistry on Arrhenius, Bronsted Lowry Conjugate acid base pair and Lewis ...
IB Chemistry on Arrhenius, Bronsted Lowry Conjugate acid base pair and Lewis ...IB Chemistry on Arrhenius, Bronsted Lowry Conjugate acid base pair and Lewis ...
IB Chemistry on Arrhenius, Bronsted Lowry Conjugate acid base pair and Lewis ...
Lawrence kok
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
Lawrence kok
 
IB Chemistry on Resonance, Delocalization and Formal Charges
IB Chemistry on Resonance, Delocalization and Formal ChargesIB Chemistry on Resonance, Delocalization and Formal Charges
IB Chemistry on Resonance, Delocalization and Formal Charges
Lawrence kok
 
IB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared SpectroscopyIB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared Spectroscopy
Lawrence kok
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
Lawrence kok
 
IB Chemistry on Polarity, Hydrogen Bonding and Van Der Waals forces
IB Chemistry on Polarity, Hydrogen Bonding and Van Der Waals forcesIB Chemistry on Polarity, Hydrogen Bonding and Van Der Waals forces
IB Chemistry on Polarity, Hydrogen Bonding and Van Der Waals forces
Lawrence kok
 
IB Chemistry on Mole Concept
IB Chemistry on Mole ConceptIB Chemistry on Mole Concept
IB Chemistry on Mole Concept
Lawrence kok
 
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
Lawrence kok
 

Viewers also liked (20)

IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomizationIB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
 
IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's Law
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical Series
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst Equation
 
IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
 
IB Chemistry on Born Haber Cycle and Lattice Enthalpy
IB Chemistry on Born Haber Cycle and Lattice EnthalpyIB Chemistry on Born Haber Cycle and Lattice Enthalpy
IB Chemistry on Born Haber Cycle and Lattice Enthalpy
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst Equation
 
IB Chemistry on Acid Base Dissociation Constant and Ionic Product Water
IB Chemistry on Acid Base Dissociation Constant and Ionic Product WaterIB Chemistry on Acid Base Dissociation Constant and Ionic Product Water
IB Chemistry on Acid Base Dissociation Constant and Ionic Product Water
 
IB Chemistry on Arrhenius, Bronsted Lowry Conjugate acid base pair and Lewis ...
IB Chemistry on Arrhenius, Bronsted Lowry Conjugate acid base pair and Lewis ...IB Chemistry on Arrhenius, Bronsted Lowry Conjugate acid base pair and Lewis ...
IB Chemistry on Arrhenius, Bronsted Lowry Conjugate acid base pair and Lewis ...
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
IB Chemistry on Resonance, Delocalization and Formal Charges
IB Chemistry on Resonance, Delocalization and Formal ChargesIB Chemistry on Resonance, Delocalization and Formal Charges
IB Chemistry on Resonance, Delocalization and Formal Charges
 
IB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared SpectroscopyIB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared Spectroscopy
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
IB Chemistry on Polarity, Hydrogen Bonding and Van Der Waals forces
IB Chemistry on Polarity, Hydrogen Bonding and Van Der Waals forcesIB Chemistry on Polarity, Hydrogen Bonding and Van Der Waals forces
IB Chemistry on Polarity, Hydrogen Bonding and Van Der Waals forces
 
IB Chemistry on Mole Concept
IB Chemistry on Mole ConceptIB Chemistry on Mole Concept
IB Chemistry on Mole Concept
 
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
 

Similar to IB Chemistry on Gibbs Free Energy and Entropy

Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
GOBINATHS18
 
Thermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptxThermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptx
MosaTeffo
 
Second Law of Thermodynamics
Second Law of ThermodynamicsSecond Law of Thermodynamics
Second Law of Thermodynamics
Yujung Dong
 
Tang 04 entropy and nuclear reactions
Tang 04   entropy and nuclear reactionsTang 04   entropy and nuclear reactions
Tang 04 entropy and nuclear reactions
mrtangextrahelp
 
Chemical thermodynamics
Chemical thermodynamicsChemical thermodynamics
Chemical thermodynamics
Rawat DA Greatt
 
Lecture 19 entropy
Lecture 19   entropyLecture 19   entropy
Lecture 19 entropy
Albania Energy Association
 
Thermodynamics ii
Thermodynamics iiThermodynamics ii
Spontaneity entropy___free_energy
Spontaneity  entropy___free_energySpontaneity  entropy___free_energy
Spontaneity entropy___free_energy
starlanter
 
Thermodynamics.ppt
Thermodynamics.pptThermodynamics.ppt
Thermodynamics.ppt
gokulthambu6
 
Chemical Thermodynamics.ppt
Chemical Thermodynamics.pptChemical Thermodynamics.ppt
Chemical Thermodynamics.ppt
AsifAli165576
 
Lect w11 152 - entropy and free energy_alg
Lect w11 152 - entropy and free energy_algLect w11 152 - entropy and free energy_alg
Lect w11 152 - entropy and free energy_alg
chelss
 
Thermodynamics, part 4
Thermodynamics, part 4Thermodynamics, part 4
4th Lecture on Chemical Thermodynamics | Chemistry Part I | 12th Std
4th Lecture on Chemical Thermodynamics | Chemistry Part I | 12th Std4th Lecture on Chemical Thermodynamics | Chemistry Part I | 12th Std
4th Lecture on Chemical Thermodynamics | Chemistry Part I | 12th Std
Ansari Usama
 
ch6.pptx
ch6.pptxch6.pptx
ch6.pptx
aliabdolkhani4
 
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and ThermodynamicsIB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
Lawrence kok
 
Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)
Sa'ib J. Khouri
 
Presentation draft
Presentation draftPresentation draft
Presentation draft
R G Sanjay Prakash
 
Chemical Thermodynamics
Chemical ThermodynamicsChemical Thermodynamics
Chemical Thermodynamics
LALIT SHARMA
 
Thermochemistry
ThermochemistryThermochemistry
Thermochemistry
nysa tutorial
 
Unit 4 A2 Chemistry Edexcel
Unit 4 A2 Chemistry EdexcelUnit 4 A2 Chemistry Edexcel
Unit 4 A2 Chemistry Edexcel
Josh Wanklyn
 

Similar to IB Chemistry on Gibbs Free Energy and Entropy (20)

Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptxThermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptx
 
Second Law of Thermodynamics
Second Law of ThermodynamicsSecond Law of Thermodynamics
Second Law of Thermodynamics
 
Tang 04 entropy and nuclear reactions
Tang 04   entropy and nuclear reactionsTang 04   entropy and nuclear reactions
Tang 04 entropy and nuclear reactions
 
Chemical thermodynamics
Chemical thermodynamicsChemical thermodynamics
Chemical thermodynamics
 
Lecture 19 entropy
Lecture 19   entropyLecture 19   entropy
Lecture 19 entropy
 
Thermodynamics ii
Thermodynamics iiThermodynamics ii
Thermodynamics ii
 
Spontaneity entropy___free_energy
Spontaneity  entropy___free_energySpontaneity  entropy___free_energy
Spontaneity entropy___free_energy
 
Thermodynamics.ppt
Thermodynamics.pptThermodynamics.ppt
Thermodynamics.ppt
 
Chemical Thermodynamics.ppt
Chemical Thermodynamics.pptChemical Thermodynamics.ppt
Chemical Thermodynamics.ppt
 
Lect w11 152 - entropy and free energy_alg
Lect w11 152 - entropy and free energy_algLect w11 152 - entropy and free energy_alg
Lect w11 152 - entropy and free energy_alg
 
Thermodynamics, part 4
Thermodynamics, part 4Thermodynamics, part 4
Thermodynamics, part 4
 
4th Lecture on Chemical Thermodynamics | Chemistry Part I | 12th Std
4th Lecture on Chemical Thermodynamics | Chemistry Part I | 12th Std4th Lecture on Chemical Thermodynamics | Chemistry Part I | 12th Std
4th Lecture on Chemical Thermodynamics | Chemistry Part I | 12th Std
 
ch6.pptx
ch6.pptxch6.pptx
ch6.pptx
 
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and ThermodynamicsIB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
 
Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)
 
Presentation draft
Presentation draftPresentation draft
Presentation draft
 
Chemical Thermodynamics
Chemical ThermodynamicsChemical Thermodynamics
Chemical Thermodynamics
 
Thermochemistry
ThermochemistryThermochemistry
Thermochemistry
 
Unit 4 A2 Chemistry Edexcel
Unit 4 A2 Chemistry EdexcelUnit 4 A2 Chemistry Edexcel
Unit 4 A2 Chemistry Edexcel
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
Krassimira Luka
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
iammrhaywood
 
Gender and Mental Health - Counselling and Family Therapy Applications and In...
Gender and Mental Health - Counselling and Family Therapy Applications and In...Gender and Mental Health - Counselling and Family Therapy Applications and In...
Gender and Mental Health - Counselling and Family Therapy Applications and In...
PsychoTech Services
 
IGCSE Biology Chapter 14- Reproduction in Plants.pdf
IGCSE Biology Chapter 14- Reproduction in Plants.pdfIGCSE Biology Chapter 14- Reproduction in Plants.pdf
IGCSE Biology Chapter 14- Reproduction in Plants.pdf
Amin Marwan
 
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
Leena Ghag-Sakpal
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
HajraNaeem15
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
haiqairshad
 
math operations ued in python and all used
math operations ued in python and all usedmath operations ued in python and all used
math operations ued in python and all used
ssuser13ffe4
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
TechSoup
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
TechSoup
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
Nguyen Thanh Tu Collection
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
siemaillard
 

Recently uploaded (20)

LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
 
Gender and Mental Health - Counselling and Family Therapy Applications and In...
Gender and Mental Health - Counselling and Family Therapy Applications and In...Gender and Mental Health - Counselling and Family Therapy Applications and In...
Gender and Mental Health - Counselling and Family Therapy Applications and In...
 
IGCSE Biology Chapter 14- Reproduction in Plants.pdf
IGCSE Biology Chapter 14- Reproduction in Plants.pdfIGCSE Biology Chapter 14- Reproduction in Plants.pdf
IGCSE Biology Chapter 14- Reproduction in Plants.pdf
 
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
 
math operations ued in python and all used
math operations ued in python and all usedmath operations ued in python and all used
math operations ued in python and all used
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
 

IB Chemistry on Gibbs Free Energy and Entropy

  • 2. E = sum kinetic energy/motion of molecule, and potential energy represented by chemical bond bet atom ∆E = q + w ∆E = Change internal energy q = heat transfer w = work done by/on system Thermodynamics Study of work, heat and energy on a system ∆E universe = ∆E sys + ∆E surrounding = 0 1st Law Thermodynamics Entropy - Measure of disorder ↓ ∆S uni = ∆S sys + ∆S surr > 0 (irreversible rxn) ↓ All spontaneous rxn produce increase in entropy of universe 2nd Law Thermodynamics ∆S uni = ∆S sys + ∆S surr Isolated system - Entropy change of universe always increase Click here thermodynamics entropy Entropy Measure molecular disorder/randomness ↓ More disorder - More dispersion of matter/energy ↓ More random - Rxn toward right- Entropy Increases ↑ Direction to right- Spontaneous to right → 2nd Law Thermodynamics Embrace the chaos Over time - Entropy increase ↑ Direction to left ← Never happen ! Click here thermodynamics Energy cannot be created or destroyed > 0
  • 3. ∆S = Entropy change Entropy Dispersal/Distribution Matter Energy Matter more disperse ↑ Entropy increases ↑ solid liquid gas spontaneous - entropy ↑ Over time - Entropy increase ↑ Phase change - sol liq gas→ → ↓ Entropy increase ↑ Every energy transfer - increase entropy universe Entropy universe can only go up - never go down Entropy increase - many ways energy spread out Dispersion energy as heat - increase entropy Stoichiometry- more gas/liq in product ↓ Entropy increase ↑ T Q S =∆ Heat added ↑ Phase change Stoichiometry Embrace the chaos N2O4(g) 2NO→ 2(g) 1 2 2H2O(l) 2H→ 2 (g) + O2 (g) 1 2 3 3 More gas in product - Entropy ↑ Heat added ↑ Entropy Measure molecular disorder/randomness ↓ More disorder - More dispersion of matter/energy ↓ More randon - Rxn towards right- Entropy Increases ↑ Liq more disorder than solid Gas more disorder than liq kinetic energy distributed over wide range Q = heat transfer T = Temp/K Distribution matter in space Distribution energy bet particles Direction to left ← Never happen !Direction to right- Spontaneous to right →
  • 4. Statistical Entropy Entropy Measure molecular disorder/randomness ↓ More disorder - More dispersion of matter/energy ↓ More random - Entropy Increases ↑ 1st Law Thermodynamics - Doesn't help explain direction of rxn ∆S uni > 0 (+ve) More disorder - spontaneous→ ∆S uni < 0 (-ve) More order - non spontaneous→ Change sol liq gas - Higher entropy→ → Greater number particles in product - Higher entropy More complex molecule - More atoms bonded - Higher entropy Higher temp - Vibrate faster - More random - Higher entropy Why gas mixes and not unmix? Why heat flow from hot to cold? Entropy Notes on Entropy 1st Law Thermodynamics 2nd Law Thermodynamics Energy cannot be created or destroyed Transfer from one form to another ∆E universe = ∆E sys + ∆E surrounding = 0 Isolated system ↓ ∆S uni always increase ∆E = q + w Method to calculate entropy Number microstates Thermodynamic Entropy Heat + Temp involved Gas mixesSolution diffuse Heat flow hot →cold X X X ∆E = internal energy q = heat transfer w = work done ∆S = Entropy universe ∆S = Entropy system ∆S = Entropy surrounding ∆S uni = ∆S sys + ∆S surr Law Thermodynamics 1 2 ∆S = Entropy uni WkS ln=∆ ∆S = Entropy change k = boltzmann constant W = Microstate Click here statistical entropy Click here thermodynamics entropy Why solution diffuse and not undiffuse? Unit - J mol -1 K-1 surrsysuni SSS ∆+∆=∆ ∆S = Entropy sys and surr High chaos factor
  • 5. 1st Law Thermodynamics - Doesn't help explain direction of rxn ∆S uni > 0 (+ve) More disorder - spontaneous→ ∆S uni < 0 (-ve) More order - non spontaneous→ Change sol liq gas - Higher entropy→ → Greater number particles in product - Higher entropy More complex molecule - More atoms bonded - Higher entropy Higher temp - Vibrate faster - More random - Higher entropy Measure molecular disorder/randomness ↓ More disorder - More dispersion of matter/energy ↓ More random - Entropy Increases ↑ Isolated system ↓ ∆S uni always increase Entropy Why gas mixes and not unmix? Why heat flow from hot to cold? Notes on Entropy 1st Law Thermodynamics 2nd Law Thermodynamics Energy cannot be created or destroyed Transfer from one form to another ∆E universe = ∆E sys + ∆E surrounding = 0 ∆E = q + w Gas mixesSolution diffuse Heat flow hot →cold X X X ∆E = internal energy q = heat transfer w = work done ∆S = Entropy universe ∆S = Entropy system ∆S = Entropy surrounding ∆S uni = ∆S sys + ∆S surr Law Thermodynamics 3rd Law Thermodynamics Unit - J mol -1 K-1 Standard Molar Entropy, S0 Entropy perfectly crystal at 0K = 0 Std molar entropy, S0 (absolute value) ↓ S0 when substance heated from 0K to 298K Std state - 1 atm / 1M sol Temp = 298K Std Molar Entropy/S0 S0 at 298 /JK-1 mol-1 Fe (s) + 27 H2O (s) + 48 Na (s) + 52 H2O (l) + 69 CH3OH (l) + 127 H2 (g) + 130 H2O (g) + 188 CO2 (g) + 218 Solid - Order ↓ Entropy Lowest Liq - Less order ↓ Entropy Higher Gas - Disorder ↓ Entropy Highest Entropy highest Why solution diffuse and not undiffuse? High chaos factor
  • 6. Entropy Why gas mix and not unmix?Why solution diffuse and not undiffuse? Why heat flow from hot to cold? Gas mixesSolution diffuse Heat flow hot →cold X X X Unit - J mol -1 K-1 Standard Molar Entropy, S0 Entropy perfectly crystal at 0K = 0 (Absolute value) ↓ S0 when substance heated from 0K to 298K Std state - 1 atm / 1M sol Temp = 298K Std Molar Entropy/S0 S0 at 298 /JK-1 mol-1 Fe (s) + 27 H2O (s) + 48 Na (s) + 52 H2O (l) + 69 CH3OH (l) + 127 H2 (g) + 130 H2O (g) + 188 CO2 (g) + 218 Solid - Order ↓ Entropy Lowest Liq - Less order ↓ Entropy Higher Gas - Disorder ↓ Entropy Highest Entropy highest Entropy Standard Molar Entropy, S0 Depend on Temp increase - Entropy increase↑ ↑ Physical/phase state Dissolving solid Molecular mass Click here thermodynamics entropy Ba(OH)2 Temp Temp/K 273 295 298 S0 for H2 + 31 + 32 + 33.2 Sol Liq Gas - Entropy increase→ → ↑ State solid liquid gas S0 for H2O + 48 + 69 + 188 entropy increase ↑ entropy increase ↑ Depend on Substance NaCI NH4NO3 S0 for solid + 72 + 151 S0 for aq + 115 + 260 More motion - entropy increase ↑ Higher mass - entropy increase ↑ Substance HF HCI HBr Molar mass 20 36 81 S0 + 173 + 186 + 198 S0 = 0 at 0K All sub > 0K, have +ve S0
  • 7. Entropy perfectly crystal at 0K = 0 (Absolute value) ↓ S0 when substance heated from 0K to 298K Entropy Why gas mix and not unmix?Why solution diffuse and not undiffuse? Why heat flow from hot to cold? Gas mixesSolution diffuse Heat flow hot →cold X X X Unit - J mol -1 K-1 Standard Molar Entropy, S0 Std state - 1 atm / 1M sol Temp = 298K Std Molar Entropy/S0 S0 at 298 /JK-1 mol-1 H2O (s) + 48 Na (s) + 52 H2O (l) + 69 CH3OH (l) + 127 H2O (g) + 188 CO2 (g) + 218 Solid - Order ↓ Entropy Lowest Liq - Less order ↓ Entropy Higher Gas - Disorder ↓ Entropy Highest Entropy highest Entropy Standard Molar Entropy, S0 Depend on Temp increase - Entropy increase↑ ↑ Physical/phase state Dissolving solid Molecular mass Temp Temp/K 273 295 298 S0 for H2 + 31 + 32 + 33.2 Sol Liq Gas - Entropy increase→ → ↑ State solid liquid gas S0 for H2O + 48 + 69 + 188 entropy increase ↑ entropy increase ↑ Depend on More motion - entropy increase ↑ Click here entropy notes Click here entropy, enthalpy free energy data Click here entropy CRC data booklet Higher mass - entropy increase ↑ S0 = 0 at 0K All sub > 0K, have +ve S0 Substance NaCI NH4NO3 S0 for solid + 72 + 151 S0 for aq + 115 + 260 Substance HF HCI HBr Molar mass 20 36 81 S0 + 173 + 186 + 198
  • 8. ∆Hf θ (reactant) ∆Hf θ (product) Using Std ∆Hf θ formation to find ∆H rxn ∆H when 1 mol form from its element under std condition Na(s) + ½ CI2(g) → NaCI(s) ∆Hf θ = - 411 kJ mol -1 Std Enthalpy Changes ∆Hθ Std condition Pressure 100kPa Temp 298K Conc 1M All substance at std states Std ∆Hf θ formation Mg(s) + ½ O2(g) → MgO(s) ∆Hf θ =- 602 kJ mol -1 Reactants Products O2(g) → O2 (g) ∆Hf θ = 0 kJ mol -1 ∆Hrxn θ = ∑∆Hf θ (products) - ∑∆Hf θ (reactants) ∆Hf θ (products)∆Hf θ (reactants) ∆Hrxn θ Elements Std state solid gas 2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Hf θ =- 275 kJ mol -1 1 mole formed H2(g) + ½O2(g) → H2O(I) ∆Hf θ =- 286 kJ mol -1 Std state solid gas 1 mol liquid For element Std ∆Hf θ formation = 0 Mg(s)→ Mg(s) ∆Hf θ = 0 kJ mol -1 No product form Using Std ∆Hf θ formation to find ∆H rxn PDF version Click here chem database (std formation enthalpy) Online version Click here chem database (std formation enthalpy) C2H4 + H2 C2H6 Find ΔHθ rxn using std ∆H formation Reactants Products 2C + 3H2 Elements C2H4 + H2 C→ 2H6 ∆Hrxn θ ∆Hrxn θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Hrxn θ = Hf θ C2H6 - ∆Hf θ C2H4+ H2 = - 84.6 – ( + 52.3 + 0 ) = - 136.9 kJ mol -1 Enthalpy Formation, ∆Hf
  • 9. Std ∆Gf θ formation ∆Grxn θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Grxn θ = Gf θ C2H6 - ∆Gf θ C2H4+ H2 = - 33 – ( + 68 + 0 ) = - 101 kJ mol -1 ∆Gf θ (reactant) ∆Gf θ (product) Using Std ∆Gf θ formation to find ∆G rxn o ∆Gf when 1 mol form from its element under std condition Na(s) + ½ CI2(g) → NaCI(s) ∆Gf θ = - 384 kJ mol -1 Std Free Energy Change ∆Gθ Std condition Pressure 100kPa Temp 298K Conc 1M All substance at std states Gibbs Free Energy change formation, ∆Gf Mg(s) + ½ O2(g) → MgO(s) ∆Gf θ =- 560 kJ mol -1 Reactants Products O2(g) → O2 (g) ∆Gf θ = 0 kJ mol -1 ∆Grxn θ = ∑∆Gf θ (prod) - ∑∆Gf θ (react) ∆Gf θ (product)∆Gf θ (reactant) ∆Grxn θ Elements Std state solid gas 2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Gf θ =- 175 kJ mol -1 1 mole formed H2(g) + ½O2(g) → H2O(I) ∆Gf θ =- 237 kJ mol -1 Std state solid gas 1 mol liquid For element Std ∆Gf θ formation = 0 Mg(s)→ Mg(s) ∆Gf θ = 0 kJ mol -1 No product form Using Std ∆Gf θ formation to find ∆G rxn PDF version Click here chem database (std ∆G formation) Online version Click here chem database (std ∆G formation) C2H4 + H2 C2H6 Find ΔGθ rxn using std ∆G0 formation Reactants Products 2C + 3H2 Elements C2H4 + H2 C→ 2H6 ∆Grxn θ
  • 10. ∆S sys + ve , ∆S surr - ve ↓ ∆S uni > 0 (+ve) (Rxn Spontaneous) ∆S sys - ve , ∆S surr + ve ↓ ∆S uni < 0 (-ve) (Rxn Non spontaneous) spontaneous +ve -ve = S /JK-1 ∆Ssys = + ve ∆Ssurr = + ve ∆Suni = + ve + ∆Ssys = - ve + ∆Ssurr = + ve ∆Suni = + ve = spontaneous S /JK-1 S /JK-1 ∆Ssys = + ve + ∆Ssurr = - ve = ∆Suni = + ve spontaneous C6H12O6(s) + 6O2 (g) 6CO→ 2(g) + 6H2O(l) Using ∆Hsys , ∆Suni , ∆Ssys , ∆S surr to predict spontaneity 2NO(g) + O2(g) 2NO→ 2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆H = -ve (Heat released) Difficult !! ∆S sys + ve , ∆S surr - ve ↓ ∆S uni < 0 (-ve) (Rxn Non spontaneous) ∆Ssys = + ve ∆Ssurr = - ve + = ∆Suni = - ve Non spontaneous ∆H = -ve (Heat released) ∆H = +ve (Heat absorb) CaCO3 (s) CaO→ (s) + CO2(g) ∆H = +ve (Heat absorb) ∆Ssys = + ve + ∆Ssurr = - ve ∆Suni = - ve Non spontaneous = H2(g) 2 H→ (g) ∆H = +ve (Heat absorb) H2O (l) H→ 2O(s) ∆H = -ve (Heat released) ∆Ssys = - ve + ∆Suni = - ve ∆Ssurr = + ve = ∆S sys + ve , ∆S surr - ve ↓ ∆S uni < 0 (-ve) (Rxn Non spontaneous) ∆S sys + ve , ∆S surr + ve ↓ ∆S uni > 0 (+ve) (Rxn Spontaneous) ∆S sys - ve , ∆S surr + ve ↓ ∆S uni > 0 (+ve) (Rxn Spontaneous)
  • 11. ∆Hsys ∆Ssys ∆Suni Description - + > 0 (+) Spontaneous, All Temp + - < 0 (-) Non spontaneous, All Temp + + > 0 (+) Spontaneous, High ↑ Temp - - > 0 (+) Spontaneous, Low ↓ Temp Predicting Spontaneity rxn ∆G - Temp/Pressure remain constant Assume ∆S/∆H constant with temp Using ∆Hsys , ∆Suni , ∆Ssys , ∆S surr to predict spontaneity Using ∆Gsys to predict spontaneity syssyssys STHG ∆−∆=∆ Difficult !! surrsysuni SSS ∆+∆=∆ T H Ssurr ∆− =∆)()( reactfprofsys HHH ∆∑−∆∑=∆ CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l) ∆Hf 0 - 74 0 - 393 - 286 x 2 S0 + 186 +205 x 2 + 213 + 171 x 2 Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) 1 )tan()( 41 596555 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys kJHsys 891)74(965 −=−−−=∆ 1 2990 298 )891000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 2949299041 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆S uni > 0 spontaneous Easier Unit ∆G - kJUnit ∆S - JK-1 Unit ∆H - kJ CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) Only ∆S sys involved ∆S surr, ∆S uni not needed ∆Hsys ∆Ssys ∆Gsys Description - + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, All Temp + - ∆G = ∆H - T∆S ∆G = + ve Non spontaneous, All Temp + + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, High ↑ Temp - - ∆G = ∆H - T∆S ∆G = - ve Spontaneous, Low ↓ Temp CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2 Reactant (+596) Product (+589) kJG G STHG syssyssys 888 )007.0(298890 −=∆ −−−=∆ ∆−∆=∆ ∆Hsys = - 890 kJ kJS JKS S SSS sys sys sys reactprodsys 007.0 7 596589 1 )()( −=∆ −=∆ −=∆ −=∆ − ∆G < 0 spontaneous Entropy change ∆S greater at low temp
  • 12. ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -868 - (-51) = - 817 kJ Predicting Spontaneity rxn ∆G - Temp/Pressure remain constant Assume ∆S/∆H constant with temp Using ∆Gsys to predict spontaneity syssyssys STHG ∆−∆=∆ CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) Reactant (-51) Product (-868) ∆G < 0 spontaneous Easier Unit ∆G - kJ mol-1 CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) Only ∆Ssys involved ∆S surr, ∆S uni not needed ∆Hsys ∆Ssys ∆Gsys Description - + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at all Temp + - ∆G = ∆H - T ∆S ∆G = + ve Non spontaneous, all Temp + + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp - - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2 Reactant (+ 596) Product (+ 589) kJG G STHG syssyssys 888 )007.0(298890 −=∆ −−−=∆ ∆−∆=∆ ∆Hsys = - 890 kJ kJS JKS S SSS sys sys sys reactprodsys 007.0 7 596589 1 )()( −=∆ −=∆ −=∆ −=∆ − ∆G < 0 spontaneous Using ∆Gsys to predict spontaneity Easier CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l) ∆G0 - 51 0 - 394 - 237 x 2 Method 1 Method 2 )()( reactfprofsys GGG °° ∆−∆=∆ CH4(g) + 2 O2 (g) CO2(g) + 2H2O(g) C + 2O2 + 2H2 Reactants Products ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product)Elements • Neither ∆H or ∆S can predict feasibility of spontaneous rxn • Gibbs Free Energy (∆G) – measure spontaneity and useful energy available • Gibbs Free Energy (∆G) - max amt useful work at constant Temp/Pressure • Involve ∆H sys and ∆S sys • ∆G involve only sys while ∆S uni involve sys and surr • Easier to find ∆H and ∆S for system Gibbs Free Energy change formation, ∆Gf 0 At std condition/states Temp - 298K Press - 1 atm
  • 13. ∆G - Temp/Pressure remain constant Assume ∆S/∆H constant with temp Using ∆Gsys to predict spontaneity syssyssys STHG ∆−∆=∆ Easier Unit ∆G - kJCH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) Only ∆S sys involved ∆S surr, ∆S uni not needed ∆Hsys ∆Ssys ∆Gsys Description - + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, All Temp + - ∆G = ∆H - T∆S ∆G = + ve Non spontaneous, All Temp + + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, High ↑ Temp - - ∆G = ∆H - T∆S ∆G = - ve Spontaneous, Low ↓ Temp CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2 Reactant (+ 596) Product (+ 589) kJG G G STHG syssyssys 888 2890 )007.0(298890 −=∆ +−=∆ −−−=∆ ∆−∆=∆ ∆Hsys = - 890 kJ kJS JKS S SSS sys sys sys reactprodsys 007.0 7 596589 1 )()( −=∆ −=∆ −=∆ −=∆ − ∆G < 0 spontaneous Gibbs Free Energy Change, ∆G ∆G sys T∆S sys Total energy change, ∆H Measure spontaneity and useful energy available Max amt useful work at constant Temp/Pressure Free Energy syssyssys STHG ∆−∆=∆ Free energy available to do work not available for work syssyssys STHG ∆−∆=∆ Free Energy Total energy change, ∆H ∆G sys T∆S sys -890kJ Free energy available to do work not available for work -888kJ +2 kJ
  • 14. Gibbs Free Energy Change, ∆G ∆G - Temp/Pressure remain constant Assume ∆S/∆H constant with temp Using ∆Gsys to predict spontaneity syssyssys STHG ∆−∆=∆ Easier Unit ∆G - kJ mol-1 Only ∆Ssys involved ∆S surr, ∆S uni not needed Using ∆Gsys to predict spontaneity Easier Method 1 Method 2 )()( reactfprofsys GGG °° ∆−∆=∆ At std condition/states Temp - 298K Press - 1 atm Gibbs Free Energy change formation, ∆Gf 0 At High Temp ↑ Temp dependent syssyssys STHG ∆−∆=∆ At low Temp ↓ veG STG HST sys −=∆ ∆−≈∆ ∆>∆− syssyssys STHG ∆−∆=∆ veG HG STH −=∆ ∆≈∆ ∆−>∆ spontaneous spontaneous surrsysuni SSS ∆+∆=∆ T H S sys surr ∆− =∆ syssysuni STHST ∆−∆=∆− Deriving Gibbs Free Energy Change, ∆G T H SS sys sysuni ∆ −∆=∆ ∆S sys / ∆H sys multi by -T syssyssys STHG ∆−∆=∆ ∆Hsys ∆Ssys ∆Gsys Description - + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at all Temp + - ∆G = ∆H - T ∆S ∆G = + ve Non spontaneous, all Temp unisys STG ∆−=∆ syssyssys STHG ∆−∆=∆ Only ∆H sys/∆Ssys involved ∆S surr, ∆S uni not needed °°° ∆−∆=∆ syssyssys STHG Non standard conditionStandard condition or Gibbs Free Energy Change, ∆G syssyssys STHG ∆−∆=∆unisys STG ∆−=∆ veGsys −=∆ ∆Suni = +ve Spontaneous Spontaneous veGsys −=∆ ∆H = - ve ∆S sys = +ve ∆Hsys ∆Ssys ∆Gsys Description + + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp - - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp
  • 15. kJG G STHG 130 )16.0(298178 +=∆ +−+=∆ ∆−∆=∆ Predict entropy change - quatitatively Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJHsys 178)1206(1028 +=−−−=∆ ∆G uni > 0 - Decomposition at 298K - Non Spontaneous Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) CaCO3 (s) CaO→ (s) + CO2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆Hf 0 - 1206 - 635 - 393 S0 + 93 + 40 + 213 kJS S S SSS sys sys sys treacproductsys 16.0 160 93253 )tan()( +=∆ +=∆ −=∆ −=∆ Decomposition at 298K Decomposition at 1500K CaCO3 (s) CaO→ (s) + CO2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆Hf 0 - 1206 - 635 - 393 S0 + 93 + 40 + 213 kJHsys 178)1206(1028 +=−−−=∆ Rxn Temp dependent Spontaneous at High temp↑ 1500K 298K Decomposition limestone CaCO3 spontaneous? Gibbs Free Energy Change, ∆G kJS S S SSS sys sys sys treacproductsys 16.0 160 93253 )tan()( +=∆ +=∆ −=∆ −=∆ kJG G STHG 62 )16.0(1500178 −=∆ +−+=∆ ∆−∆=∆ ∆G uni < 0 - Decomposition at 1500K - Spontaneous ∆H = +ve ∆S = +ve Temp dependent ∆Hsys ∆Ssys ∆Gsys Description + + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp - - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp At Low Temp At High Temp
  • 16. Predict entropy change - quatitatively Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆G uni > 0 - Decomposition at 298K - Non Spontaneous Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) Rxn Temp dependent Spontaneous at Low temp↓ 298K (25C) Gibbs Free Energy Change, ∆G ∆G uni < 0 - Decomposition at 1500K - Spontaneous ∆H = - ve ∆S = - ve Temp dependent ∆Hsys ∆Ssys ∆Gsys Description + + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp - - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp H2O (l) H→ 2O(s) H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 Freezing at 298K (25C) Is Freezing spontaneous? kJHsys 6)286(292 −=−−−=∆ kJS S S SSS sys sys sys treacproductsys 02.0 22 7048 )tan()( −=∆ −=∆ −=∆ −=∆ kJG G STHG 55.0 )022.0(2986 +=∆ −−−=∆ ∆−∆=∆ Freezing at 263K (-10C) H2O (l) H→ 2O(s) H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 kJHsys 6)286(292 −=−−−=∆ kJS S S SSS sys sys sys treacproductsys 02.0 22 7048 )tan()( −=∆ −=∆ −=∆ −=∆ 263K (-10C) kJG G STHG 21.0 )022.0(2636 −=∆ −−−=∆ ∆−∆=∆ At High Temp At Low Temp
  • 17. C3H8(g) + 5 O2 (g) 3CO2(g) + 4H2O(l) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X 1 syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l) ∆H = -2220 kJ at 298K C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l) S0 +270 +205 x 5 +213 x 3 +70 x 4 1295 919 Reactant Product kJG G STHG 2108 )376.0(2982220 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 376.0 376 1295919 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = -2220 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Is Combustion at 298K spontaneous? Using Free Energy to predict spontaneity Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -2130 - (-23) = - 2153 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Combustion at 298K - Spontaneous C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l) ∆G0 - 23 0 - 394 x 3 - 237 x 4 Elements 3C + 5O2 + 4H2 Reactant (-23) Product (-2130) ∆G < 0 - Combustion at 298K - Spontaneous
  • 18. CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(g) ∆H = - 890 kJ at 298K CH4(g) + 2 O2 (g) CO2(g) + 2H2O(g) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X 2 syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 596 + 589 Reactant Product kJG G STHG 888 )007.0(298890 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 007.0 7 596589 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 890 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Is Combustion at 298K spontaneous? Using Free Energy to predict spontaneity Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -868 - (-51) = - 817 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Combustion at 298K - Spontaneous CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l) ∆G0 - 51 0 - 394 - 237 x 2 Elements C + 2O2 + 2H2 Reactant (-51) Product (-868) ∆G < 0 - Combustion at 298K - Spontaneous CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2
  • 19. H2O (g) H→ 2O(l) ∆H = - 44.1 kJ at 298K H2O(g) H2O(l) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 188 + 70 Reactant Product kJG G STHG 1.9 )118.0(2981.44 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 118.0 118 18870 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 44.1 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -237 - (-228) = - 9 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Combustion at 298K - Spontaneous H2O(g) H→ 2O(l) ∆G0 -228 - 237 Elements H2 + O2 Reactant (-228) Product (-237) ∆G < 0 - Combustion at 298K - Spontaneous Condensation steam at 298K (25C) spontaneous? H2O (g) H→ 2O(l) S0 + 188 + 70 3 Using Free Energy to predict spontaneity
  • 20. H2(g) 2 H→ (g) ∆H = + 436 kJ at 298K H2(g) 2H(g) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 130 + 230 Reactant Product kJG G STHG 406 )1.0(298436 +=∆ +−+=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 1.0 100 130230 1 )tan()( +=∆ +=∆ −=∆ −=∆ − ∆H = + 436 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = + 406 - (0) = +406 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G > 0 - Atomization at 298K - Non Spontaneous H2(g) 2H→ (g) ∆G0 0 + 203 x 2 Elements H2 Reactant (0) Product ( + 406) 4Is Atomization of H2 at 298K spontaneous? H2 (g) 2 H→ (g) S0 + 130 + 115 x 2 ∆G > 0 - Atomization at 298K - Non Spontaneous Using Free Energy to predict spontaneity
  • 21. H2O (l) H→ 2O(s) ∆H = - 6 kJ at 298K H2O(l) H2O(s) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X 2 syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 70 + 48 Reactant Product kJG G STHG 55.0 )022.0(2986 +=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 022.0 22 7048 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 6 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -236.6 - (-237) = + 0.4kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G > 0 -Freezing at 298K - Non Spontaneous H2O(l) H→ 2O(s) ∆G0 -237 - 236.6 Elements H2 + O2 Reactant (-237) Product (-236.6) 5 H2O (l) H→ 2O(s) S0 + 70 + 48 ∆G > 0 -Freezing at 298K - Non Spontaneous Is Freezing water to ice at 298K (25C) spontaneous? Using Free Energy to predict spontaneity
  • 22. H2O (l) H→ 2O(s) ∆H = - 6 kJ at 263K H2O(l) H2O(s) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X 2 syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 70 + 48 Reactant Product kJG G STHG 21.0 )022.0(2636 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 022.0 22 7048 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 6 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -237.2 - (-237) = - 0.2 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 -Freezing at 263K - Spontaneous H2O(l) H→ 2O(s) ∆G0 -237 - 237.2 Elements H2 + O2 Reactant (-237) Product (-237.2) 6 H2O (l) H→ 2O(s) S0 + 70 + 48 ∆G < 0 -Freezing at 263K - Spontaneous Is Freezing water to ice at 263K (-10C) spontaneous? Assume std condition at 263K Using Free Energy to predict spontaneity
  • 23. CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 298K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 93 + 253 Reactant Product kJG G STHG 130 )16.0(298178 +=∆ +−+=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 16.0 160 93253 1 )tan()( +=∆ +=∆ −=∆ −=∆ − ∆H = + 178 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = - 999 - (- 1129) = + 130 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G > 0 - Decomposition at 298K - Non Spontaneous CaCO3(s) CaO + CO→ 2(g) ∆G0 -1129 - 604 - 395 Elements Ca + C + O2 Reactant ( -1129) Product (- 999) 7 Decomposition CaCO3 at 298K (25C) spontaneous? CaCO3 (s) CaO→ (s) + CO2(g) S0 + 93 + 40 + 213 ∆G > 0 - Decomposition at 298K - Non Spontaneous CaCO3 (s) CaO (s) + CO2(g) Using Free Energy to predict spontaneity
  • 24. CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 1500K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 93 + 253 Reactant Product kJG G STHG 62 )16.0(1500178 −=∆ +−+=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 16.0 160 93253 1 )tan()( +=∆ +=∆ −=∆ −=∆ − ∆H = + 178 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = - 999 - (- 939) = - 60 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Decomposition at 1500K - Spontaneous CaCO3(s) CaO + CO→ 2(g) ∆G0 -939 - 604 - 395 Elements Ca + C + O2 Reactant (- 939) Product (- 999) 8 CaCO3 (s) CaO→ (s) + CO2(g) S0 + 93 + 40 + 213 CaCO3 (s) CaO (s) + CO2(g) Decomposition CaCO3 at 1500K (1227C) spontaneous? ∆G < 0 - Decomposition at 1500K - Spontaneous Assume std condition at 1500K Using Free Energy to predict spontaneity
  • 25. 2NO(g) + O2(g) 2NO→ 2(g) ∆H = - 114 kJ at 298K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 522 + 480 Reactant Product kJG G STHG 101 )042.0(298114 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 042.0 42 522480 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 114 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = + 104 - (174) = - 70 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Decomposition at 298K - Spontaneous 2 NO + O2 2NO→ 2(g) ∆G0 + 87 x 2 0 + 52 x 2 Elements N2 + O2 Reactant (+ 174) Product (+ 104) 9 2 NO(g) + O2 (g) 2NO2(g) ∆G < 0 - Decomposition at 298K - Spontaneous Is Oxidation of NO at 298K (25C) spontaneous? 2 NO(g) + O2 (g) 2NO→ 2(g) S0 + 210 x 2 + 102 + 240 x 2 Using Free Energy to predict spontaneity
  • 26. N2(g) + 3H2(g) 2NH→ 3(g) ∆H = - 92 kJ at 298K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 585 + 384 Reactant Product kJG G STHG 32 )2.0(29892 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 2.0 201 585384 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 92 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = - 34 - (0) = - 34 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - NH3 production at 298K - Spontaneous N2 + 3H2 2NH→ 3(g) ∆G0 0 0 - 17 x 2 Elements N2 + H2 Reactant (0) Product (- 34) 10 N2(g) + 3H2 (g) 2NH3(g) Is Haber, NH3 production 298K (25C) spontaneous? NH3 N2(g) + 3H2 (g) 2NH→ 3(g) S0 + 192 + 131 x 3 + 192 x 2 ∆G < 0 - NH3 production at 298K - Spontaneous Using Free Energy to predict spontaneity
  • 27. Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s) ∆H = - 851 kJ at 298K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 143 + 105 Reactant Product kJG G STHG 840 )038.0(298851 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 038.0 38 143105 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 851 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -1576 - (-741) = - 835 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - AI production at 298K - Spontaneous Fe2O3 + 2AI 2Fe + AI→ 2O3 ∆G0 - 741 0 0 - 1576 Elements Fe + AI+ O2 Reactant (-741) Product (- 1576) 11Is Thermite, AI production 298K (25C) spontaneous? Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s) S0 + 87 + 28 x 2 + 27 x 2 + 51 ∆G < 0 - AI production at 298K - Spontaneous Fe2O3(s) + 2AI(s) 2Fe(s) + AI2O3(s) Using Free Energy to predict spontaneity
  • 28. 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) ∆H = - 144 kJ at 298K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 572 + 535 Reactant Product kJG G STHG 133 )037.0(298144 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 037.0 37 572535 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 144 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -1317 - (-1160) = - 157 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Decomposition at 298K - Spontaneous 4KCIO3 3 KCIO→ 4 + KCI ∆G0 - 290 x 4 - 303 x 3 - 408 Elements K + CI2 + O2 Reactant (-1160) Product (- 1317) 13 ∆G < 0 - Decomposition at 298K - Spontaneous Is decomposition KCIO3 298K (25C) spontaneous? 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) S0 + 143 x 4 + 151 x 3 + 82 4KCIO3(s) 3KCIO4(s) + KCI(s) Using Free Energy to predict spontaneity
  • 29. Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 821 + 1698 Reactant Product kJG G STHG 3071 )877.0(2982810 −=∆ +−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 877.0 877 8211698 1 )tan()( +=∆ +=∆ −=∆ −=∆ − ∆H = - 2810 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -3792 - (-910) = - 2882 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 Combustion sugar at 298K - Spontaneous Elements C + H2 + O2 Reactant (-910) Product (- 3792) 14 Is combustion sugar 298K (25C) spontaneous? C6H12O6(s) + 6O2 (g) 6CO→ 2(g) + 6H2O(l) ∆H = - 2810 kJ at 298K C6H12O6 (s) + 6O2(g) 6CO→ 2(g) + 6H2O(l) S0 + 209 +102 x 6 + 213 x 6 + 70 x 6 ∆G < 0 Combustion sugar at 298K - Spontaneous C6H12O6 + 6O2 6CO2 + 6H2O(l) C6H12O6 (s) + 6O2(g) 6CO→ 2(g) + 6H2O(l) ∆G0 - 910 0 - 395 x 6 - 237 x 6 Using Free Energy to predict spontaneity
  • 30. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict entropy change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l) ∆Hf 0 - 74 0 - 393 - 286 x 2 S0 + 186 +205 x 2 +213 + 171 x 2 ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJS JKS S SSS sys sys sys treacproductsys 041.0 41 596555 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJHsys 890)74(964 −=−−−=∆ Is Combustion at 298K spontaneous? Unit for ∆S - JK-1 Unit for ∆H - kJ C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l) C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l) ∆Hf 0 - 104 0 - 393 x 3 - 286 x 4 S0 +270 +205 x 5 + 213 x 3 + 171 x 4 Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react)∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) kJS JKS S SSS sys sys sys treacproductsys 028.0 28 12951323 1 )tan()( +=∆ +=∆ −=∆ −=∆ − kJHsys 2219)104(2323 −=−−−=∆ 1 2 kJG G STHG 877 )041.0(298890 −=∆ −−−=∆ ∆−∆=∆ ∆G < 0 Combustion sugar at 298K - Spontaneous kJG G STHG 881 )028.0(2982219 −=∆ +−−=∆ ∆−∆=∆ ∆G < 0 Combustion sugar at 298K - Spontaneous
  • 31. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict entropy change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJS JKS S SSS sys sys sys treacproductsys 118.0 118 18870 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJHsys 44)242(286 −=−−−=∆ Is Condensation/Freezing at 298K spontaneous? Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) kJS JKS S SSS sys sys sys treacproductsys 022.0 22 7048 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJHsys 6)286(292 −=−−−=∆ 3 4H2O (g) H→ 2O(l) H2O (l) H→ 2O(s) H2O (g) H→ 2O(l) ∆Hf 0 - 242 - 286 S0 + 188 + 70 H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 kJG G STHG 1.9 )118.0(2981.44 −=∆ −−−=∆ ∆−∆=∆ ∆G < 0 Condensation at 298K - Spontaneous kJG G STHG 55.0 )022.0(2986 +=∆ −−−=∆ ∆−∆=∆ ∆G > 0 Freezing at 298K – Non Spontaneous
  • 32. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict entropy change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJHsys 92)0(92 −=−−=∆ Are these rxn at 298K spontaneous? Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react)∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) kJHsys 168)1564(1732 −=−−−=∆ 5 6N2(g) + 3H2(g) 2NH→ 3(g) N2(g) + 3H2 (g) 2NH→ 3(g) ∆Hf 0 0 0 - 46 x 2 S0 + 192 + 131 x 3 + 192 x 2 kJS JKS S SSS sys sys sys treacproductsys 201.0 201 585384 1 )tan()( −=∆ −=∆ −=∆ −=∆ − 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) ∆Hf 0 - 391 x 4 - 432 x 3 - 436 S0 + 143 x 4 + 151 x 3 + 82 kJS JKS S SSS sys sys sys treacproductsys 037.0 37 572535 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJG G STHG 32 )2.0(29892 −=∆ −−−=∆ ∆−∆=∆ ∆G < 0 NH3 production at 298K - Spontaneous kJG G STHG 157 )037.0(298168 −=∆ −−−=∆ ∆−∆=∆ ∆G < 0 KCIO3 production at 298K - Spontaneous
  • 33. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict entropy change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJHsys 178)1206(1028 +=−−−=∆ Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react)∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) 7 8CaCO3 (s) CaO→ (s) + CO2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆Hf 0 - 1206 - 635 - 393 S0 + 93 + 40 + 213 kJS JKS S SSS sys sys sys treacproductsys 16.0 160 93253 1 )tan()( +=∆ +=∆ −=∆ −=∆ − Decomposition at 298K Decomposition at 1500K CaCO3 (s) CaO→ (s) + CO2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆Hf 0 - 1206 - 635 - 393 S0 + 93 + 40 + 213 kJHsys 178)1206(1028 +=−−−=∆ Rxn Temp dependent Spontaneous at High temp↑ 1500K 298K (25C) Decomposition limestone CaCO3 spontaneous? kJG G STHG 130 )16.0(298178 +=∆ +−+=∆ ∆−∆=∆ ∆G > 0 Decomposition at 298K – Non Spontaneous kJS JKS S SSS sys sys sys treacproductsys 16.0 160 93253 1 )tan()( +=∆ +=∆ −=∆ −=∆ − kJG G STHG 62 )16.0(1500178 −=∆ +−+=∆ ∆−∆=∆ ∆G < 0 Decomposition at 1500 K - Spontaneous At Low Temp At High Temp
  • 34. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict entropy change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJS JKS S SSS sys sys sys treacproductsys 022.0 22 7048 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJHsys 6)286(292 −=−−−=∆ Is Freezing spontaneous? Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) kJS JKS S SSS sys sys sys treacproductsys 022.0 22 7048 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJHsys 6)286(292 −=−−−=∆ 9 10H2O (l) H→ 2O(s) H2O (l) H→ 2O(s) H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 Freezing at 298K (25C) Freezing at 263K (-10C) Rxn Temp dependent Spontaneous at Low temp↓ 263K (-10C)298K (25C) kJG G STHG 55.0 )022.0(2986 +=∆ −−−=∆ ∆−∆=∆ ∆G > 0 Freezing at 298K – Non Spontaneous kJG G STHG 21.0 )022.0(2636 −=∆ −−−=∆ ∆−∆=∆ ∆G < 0 Freezing at 263K – Spontaneous At High Temp At Low Temp
  • 35. Acknowledgements Thanks to source of pictures and video used in this presentation Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com