Hyperbola
Helen M. Ogoc
Punta National High School
Punta, Dipolog City
With Teacher
Martin-Gay, Developmental Mathematics 2
Hyperbola
Definition:
A hyperbola is the set of all points P such that the
difference of the distance from P to two fixed points,
called the foci, is constant.
The line through the foci intersects the hyperbola at two
points, the vertices.
The line segment joining the vertices is the transverse
axis, and its midpoint is the center of the hyperbola.
A hyperbola has two branches and two asymptotes.
Martin-Gay, Developmental Mathematics 3
The asymptotes contain the diagonals of a
rectangle centered at the hyperbola’s center.
To get the correct shape of the hyperbola, we need
to find the asymptotes of the hyperbola.
The asymptotes are lines that are approached but
not touched or crossed.
These asymptotes are boundaries of the hyperbola.
This is one difference between a hyperbola and a
parabola.
Martin-Gay, Developmental Mathematics 4
For the hyperbolas that
open right/left,
the asymptotes are:
and for hyperbolas
opening up/down, the
asymptotes are:
Martin-Gay, Developmental Mathematics 5
Characteristics of Hyperbola (center of origin)
Equation Transverse Axis Asymptotes Vertices
Horizontal Y = ±(b/a)x (±a, 0)
Vertical Y = ±(a/b)x (0, ±a)
Foci: c² = a² + b²
Martin-Gay, Developmental Mathematics 6
Diagram of Hyperbola Standard Form
Martin-Gay, Developmental Mathematics 7
Diagram of Hyperbola Standard Form
Translation of
Hyperbola
Martin-Gay, Developmental Mathematics 9
If the hyperbola opens right/left the translation is:
with the equations of the asymptotic lines as:
y - k = + (b/a)(x - h)
If the hyperbola opens up/down the translation is:
with the equations of the asymptotic lines as:
y - k = + (a/b)(x - h)
horizontal transverse axis
Hyperbola
Martin-Gay, Developmental Mathematics 11
Hyperbola horizontal transverse axis
"a" is the number in the denominator of the positive term
If the x-term is positive, then the hyperbola is horizontal
a = semi-transverse axis
b = semi-conjugate axis
center: (h, k)
vertices: (h + a, k), (h - a, k)
Martin-Gay, Developmental Mathematics 12
c = distance from the center to each focus along
the transverse axis
foci: (h + c, k), (h - c, k)
The eccentricity e > 1
The eccentricity e > 1
Hyperbola horizontal transverse axis
Martin-Gay, Developmental Mathematics 13
Hyperbola horizontal transverse axis
Martin-Gay, Developmental Mathematics 14
Hyperbola horizontal transverse axis
Draw the hyperbola given by 
Solution:
Therefore, a = 3, b = 2 and c = 3.6.
This hyperbola opens right/left because it is in the form x - y.
a2
= 9, b2
= 4, c2
= 9 + 4 = 13.
Martin-Gay, Developmental Mathematics 15
Hyperbola horizontal transverse axis
a
b
Martin-Gay, Developmental Mathematics 16
Example 2:Example 2:
Hyperbola horizontal transverse axis
Martin-Gay, Developmental Mathematics 17
Solution: From the standard form:
Hyperbola horizontal transverse axis
x - h x - 2 h = 2
y - k y - 0 k = 0 Center: (2,0)
a2
= 4 a = 2 b2
= 25 b = 5
This means we move 2 units to the left and right of the
center and 5 units up and down from the center to arrive at
points on the guide rectangle.
The asymptotes pass through the center of the hyperbola as
well as the corners of the rectangle.
Martin-Gay, Developmental Mathematics 18
Hyperbola horizontal transverse axis
Martin-Gay, Developmental Mathematics 19
y2
term is being subtracted from the x2
term,
the branches of the hyperbola open to the left and right
this means that the transverse axis lies along the x-axis
the conjugate axis lies along the vertical line x = 2
the vertices of the hyperbola are where the hyperbola
intersects the transverse axis
the vertices are 2 units to the left and right of (2, 0)
which is the center
vertices: (0,0) and (4, 0)
Hyperbola horizontal transverse axis
Martin-Gay, Developmental Mathematics 20
To find the foci, we need
(-3.39,0) and (7.39,0)
To determine the equations of the asymptotes, recall that the
asymptotes go through the center of the hyperbola, (2; 0), as
well as the corners of guide rectangle,
Using the point-slope equation of a line,
We get,
Hyperbola horizontal transverse axis
Martin-Gay, Developmental Mathematics 21
Putting it all together, we get
Center: (2,0)
vertices: (0; 0) and (4; 0)
(-3.39,0) and (7.39,0)
Asymptotes:
Hyperbola horizontal transverse axis
Martin-Gay, Developmental Mathematics 22
Exercises :Exercises :
1. Graph the hyperbola. Find the center, the lines which
contain the transverse and conjugate axes, the vertices, the
foci and the equations of the asymptotes of
Center:
Tranverse Axis:
Congugate Axis:
Vertices:
Foci:
Asymptote:
(4, 2)
y = 2
x = 4
Hyperbola horizontal transverse axis
Martin-Gay, Developmental Mathematics 23
Hyperbola horizontal transverse axis
Martin-Gay, Developmental Mathematics 24
Exercises :Exercises :
Center:
Tranverse Axis:
Congugate Axis:
Vertices:
Foci:
Asymptote:
(3,-1)
y = -1
x = 3
Hyperbola horizontal transverse axis
2. Put the equation in standard form. Find the center, the lines
which contain the transverse and conjugate axes, the vertices,
the foci and the equations of the asymptotes.
9x2
- 25y2
- 54x - 50y - 169 = 0
Equation in standard form:
Martin-Gay, Developmental Mathematics 25
Exercises :Exercises :
Hyperbola horizontal transverse axis
3. Find the standard form of the equation of the hyperbola
which has the given properties..
a. Vertex (0, 1), Vertex (8, 1), Focus (-3, 1)
c. Vertices (3, 2), (13, 2);
Endpoints of the Conjugate Axis (8, 4), (8, 0)
Martin-Gay, Developmental Mathematics 26
Answers :Answers :
Hyperbola horizontal transverse axis
a. Vertex (0, 1), Vertex (8, 1), Focus (-3, 1)
c. Vertices (3, 2), (13, 2);
Endpoints of the Conjugate Axis (8, 4), (8, 0)
Martin-Gay, Developmental Mathematics 27
Hyperbola horizontal transverse axis
4. Find the standard form of the following equation using
then graph the conic section.
d. 9x2
- 4y2
- 36x - 24y - 36 = 0
a. x2
- 2x - 4y - 11 = 0
b. x2
+ y2
- 8x + 4y + 11 = 0
c. 9x2
+ 4y2
- 36x + 24y + 36 = 0
Martin-Gay, Developmental Mathematics 28
Hyperbola horizontal transverse axis
4. Find the standard form of the following equation using
then graph the conic section.
a. x2
- 2x - 4y - 11 = 0 b. x2
+ y2
- 8x + 4y + 11 = 0
Answers :Answers :
Martin-Gay, Developmental Mathematics 29
Hyperbola horizontal transverse axis
4. Find the standard form of the following equation using
then graph the conic section.
d. 9x2
- 4y2
- 36x - 24y - 36 = 0c. 9x2
+ 4y2
- 36x + 24y + 36 = 0
Martin-Gay, Developmental Mathematics 30
T
H
A
N K YO
U
for
listening

Hyperbola

  • 1.
    Hyperbola Helen M. Ogoc PuntaNational High School Punta, Dipolog City With Teacher
  • 2.
    Martin-Gay, Developmental Mathematics2 Hyperbola Definition: A hyperbola is the set of all points P such that the difference of the distance from P to two fixed points, called the foci, is constant. The line through the foci intersects the hyperbola at two points, the vertices. The line segment joining the vertices is the transverse axis, and its midpoint is the center of the hyperbola. A hyperbola has two branches and two asymptotes.
  • 3.
    Martin-Gay, Developmental Mathematics3 The asymptotes contain the diagonals of a rectangle centered at the hyperbola’s center. To get the correct shape of the hyperbola, we need to find the asymptotes of the hyperbola. The asymptotes are lines that are approached but not touched or crossed. These asymptotes are boundaries of the hyperbola. This is one difference between a hyperbola and a parabola.
  • 4.
    Martin-Gay, Developmental Mathematics4 For the hyperbolas that open right/left, the asymptotes are: and for hyperbolas opening up/down, the asymptotes are:
  • 5.
    Martin-Gay, Developmental Mathematics5 Characteristics of Hyperbola (center of origin) Equation Transverse Axis Asymptotes Vertices Horizontal Y = ±(b/a)x (±a, 0) Vertical Y = ±(a/b)x (0, ±a) Foci: c² = a² + b²
  • 6.
    Martin-Gay, Developmental Mathematics6 Diagram of Hyperbola Standard Form
  • 7.
    Martin-Gay, Developmental Mathematics7 Diagram of Hyperbola Standard Form
  • 8.
  • 9.
    Martin-Gay, Developmental Mathematics9 If the hyperbola opens right/left the translation is: with the equations of the asymptotic lines as: y - k = + (b/a)(x - h) If the hyperbola opens up/down the translation is: with the equations of the asymptotic lines as: y - k = + (a/b)(x - h)
  • 10.
  • 11.
    Martin-Gay, Developmental Mathematics11 Hyperbola horizontal transverse axis "a" is the number in the denominator of the positive term If the x-term is positive, then the hyperbola is horizontal a = semi-transverse axis b = semi-conjugate axis center: (h, k) vertices: (h + a, k), (h - a, k)
  • 12.
    Martin-Gay, Developmental Mathematics12 c = distance from the center to each focus along the transverse axis foci: (h + c, k), (h - c, k) The eccentricity e > 1 The eccentricity e > 1 Hyperbola horizontal transverse axis
  • 13.
    Martin-Gay, Developmental Mathematics13 Hyperbola horizontal transverse axis
  • 14.
    Martin-Gay, Developmental Mathematics14 Hyperbola horizontal transverse axis Draw the hyperbola given by  Solution: Therefore, a = 3, b = 2 and c = 3.6. This hyperbola opens right/left because it is in the form x - y. a2 = 9, b2 = 4, c2 = 9 + 4 = 13.
  • 15.
    Martin-Gay, Developmental Mathematics15 Hyperbola horizontal transverse axis a b
  • 16.
    Martin-Gay, Developmental Mathematics16 Example 2:Example 2: Hyperbola horizontal transverse axis
  • 17.
    Martin-Gay, Developmental Mathematics17 Solution: From the standard form: Hyperbola horizontal transverse axis x - h x - 2 h = 2 y - k y - 0 k = 0 Center: (2,0) a2 = 4 a = 2 b2 = 25 b = 5 This means we move 2 units to the left and right of the center and 5 units up and down from the center to arrive at points on the guide rectangle. The asymptotes pass through the center of the hyperbola as well as the corners of the rectangle.
  • 18.
    Martin-Gay, Developmental Mathematics18 Hyperbola horizontal transverse axis
  • 19.
    Martin-Gay, Developmental Mathematics19 y2 term is being subtracted from the x2 term, the branches of the hyperbola open to the left and right this means that the transverse axis lies along the x-axis the conjugate axis lies along the vertical line x = 2 the vertices of the hyperbola are where the hyperbola intersects the transverse axis the vertices are 2 units to the left and right of (2, 0) which is the center vertices: (0,0) and (4, 0) Hyperbola horizontal transverse axis
  • 20.
    Martin-Gay, Developmental Mathematics20 To find the foci, we need (-3.39,0) and (7.39,0) To determine the equations of the asymptotes, recall that the asymptotes go through the center of the hyperbola, (2; 0), as well as the corners of guide rectangle, Using the point-slope equation of a line, We get, Hyperbola horizontal transverse axis
  • 21.
    Martin-Gay, Developmental Mathematics21 Putting it all together, we get Center: (2,0) vertices: (0; 0) and (4; 0) (-3.39,0) and (7.39,0) Asymptotes: Hyperbola horizontal transverse axis
  • 22.
    Martin-Gay, Developmental Mathematics22 Exercises :Exercises : 1. Graph the hyperbola. Find the center, the lines which contain the transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes of Center: Tranverse Axis: Congugate Axis: Vertices: Foci: Asymptote: (4, 2) y = 2 x = 4 Hyperbola horizontal transverse axis
  • 23.
    Martin-Gay, Developmental Mathematics23 Hyperbola horizontal transverse axis
  • 24.
    Martin-Gay, Developmental Mathematics24 Exercises :Exercises : Center: Tranverse Axis: Congugate Axis: Vertices: Foci: Asymptote: (3,-1) y = -1 x = 3 Hyperbola horizontal transverse axis 2. Put the equation in standard form. Find the center, the lines which contain the transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes. 9x2 - 25y2 - 54x - 50y - 169 = 0 Equation in standard form:
  • 25.
    Martin-Gay, Developmental Mathematics25 Exercises :Exercises : Hyperbola horizontal transverse axis 3. Find the standard form of the equation of the hyperbola which has the given properties.. a. Vertex (0, 1), Vertex (8, 1), Focus (-3, 1) c. Vertices (3, 2), (13, 2); Endpoints of the Conjugate Axis (8, 4), (8, 0)
  • 26.
    Martin-Gay, Developmental Mathematics26 Answers :Answers : Hyperbola horizontal transverse axis a. Vertex (0, 1), Vertex (8, 1), Focus (-3, 1) c. Vertices (3, 2), (13, 2); Endpoints of the Conjugate Axis (8, 4), (8, 0)
  • 27.
    Martin-Gay, Developmental Mathematics27 Hyperbola horizontal transverse axis 4. Find the standard form of the following equation using then graph the conic section. d. 9x2 - 4y2 - 36x - 24y - 36 = 0 a. x2 - 2x - 4y - 11 = 0 b. x2 + y2 - 8x + 4y + 11 = 0 c. 9x2 + 4y2 - 36x + 24y + 36 = 0
  • 28.
    Martin-Gay, Developmental Mathematics28 Hyperbola horizontal transverse axis 4. Find the standard form of the following equation using then graph the conic section. a. x2 - 2x - 4y - 11 = 0 b. x2 + y2 - 8x + 4y + 11 = 0 Answers :Answers :
  • 29.
    Martin-Gay, Developmental Mathematics29 Hyperbola horizontal transverse axis 4. Find the standard form of the following equation using then graph the conic section. d. 9x2 - 4y2 - 36x - 24y - 36 = 0c. 9x2 + 4y2 - 36x + 24y + 36 = 0
  • 30.
    Martin-Gay, Developmental Mathematics30 T H A N K YO U for listening