SlideShare a Scribd company logo
HYPOXIC ISCHAEMIC
ENCEPHALOPATHY
Dr. Mohit Goel, JRIII
Department of Radiodiagnosis
Bharati Vidyapeeth University,
Pune
19/05/2014
INTRODUCTION
 Hypoxic-ischemic injury (HII) to the brain is a devastating occurrence that
frequently results in death or profound long-term neurologic disability in
both children and adults.
 Imaging findings in HII are highly variable and depend on a number of
factors, including brain maturity, severity and duration of insult, and type
and timing of imaging studies.
PATHOPHYSIOLOGY
 Regardless of the specific cause of injury, the common underlying
physiologic processes that result in HII are diminished cerebral blood
flow (ischemia) and reduced blood oxygenation (hypoxemia).
 In general, infants and children are more likely to suffer asphyxial
events, which result in hypoxemia and brain hypoxia.
 With prolonged hypoxemia, cardiac hypoxia occurs, leading to
diminished cardiac output and, ultimately, to brain ischemia.
PATHOPHYSIOLOGY
 Adults more frequently suffer brain ischemia as a result of cardiac
arrest or cerebrovascular disease, with secondary hypoxia due to
reduced blood flow.
From the model just described, we can draw the following
conclusions:
 (a) the areas of the brain with the highest concentrations of
glutamate or other excitatory amino acid receptors (primarily
located in gray matter) are more susceptible to excitotoxic injury
that occurs as a result of hypoxia-ischemia.
 (b) the areas of the brain with the greatest energy demands
become energy depleted most rapidly during hypoxia-ischemia,
and are therefore injured early on.
 (c) because of delayed cell death from apoptosis, some injuries
may not be evident until days after the initial insult has occurred
HIE
 In any given patient, the sites in the brain that tend to be
most vulnerable to hypoxic injury will be determined largely
by the maturity of the brain, which, in turn, is a function of
patient age and, in infants, gestational age at birth. This is
why HII in the perinatal period (up to 1 month of age) differs
from HII in adults or even in older infants.
HIE
 The severity of a hypoxic-ischemic insult also plays an
important role in determining the distribution of injuries in the
brain.
 Duration of insult also seems to be a key determinant of the
pattern of injury in HII,
TERM NEONATE
 HII in term neonates is associated with antepartum risk factors alone
(including maternal hypotension, infertility treatment, multiple
gestation, prenatal infection, and thyroid disease) or antepartum
factors in combination with intrapartum factors.
 Intrapartum factors alone (including forceps delivery, breech
extraction, umbilical cord prolapse, abruptio placentae, tight nuchal
cord, and maternal fever) are responsible for a small minority of
cases of HII.
SEVERE ASPHYXIA
 Severe asphyxial events in term neonates result in a primarily central
pattern of injury involving the deep gray matter (putamina,
ventrolateral thalami, hippocampi, dorsal brainstem, and lateral
geniculate nuclei) and occasionally the perirolandic cortex.
 These areas of the brain are actively myelinating (an energy-
intensive process) or contain the highest concentrations of NMDA
receptors at term and are, therefore, the most susceptible to neonatal
HII
USG
 Early US findings include a global increase in cerebral echogenicity
and obliteration of the cerebrospinal fluid (CSF)–containing spaces,
suggesting diffuse cerebral edema.
 Increased echogenicity in the basal ganglia, thalami, and brainstem
can also be seen in the 1st week but is more readily apparent after 7
days.
USG
 Late findings include prominence of the ventricles and extraaxial
CSF-containing spaces, likely due to atrophy.
 The presence of diminished resistive indexes (<60) in the anterior
and middle cerebral arteries has been associated with a poor clinical
outcome, even in the absence of other US abnormalities.
MRI
 Diffusion-weighted imaging is sensitive for the detection of
injury in the first 24 hours, during which time conventional T1-
and T2-weighted images may appear normal.
 Diffusion-weighted images will demonstrate increased signal
intensity in the region of the ventrolateral thalami and basal
ganglia (particularly the posterior putamina), in the
perirolandic regions, and along the corticospinal tracts
MRI
 It should be noted that, although diffusion-weighted images
seemingly improve and appear relatively normal by the end
of the 1st week, this finding does not imply that there has
been improvement or reversal of underlying disease. Hence,
we use the term pseudonormalization.
MRI
 Conventional T1- and T2-weighted MR images obtained on day 1 are
frequently normal and are therefore less useful than diffusion-
weighted images obtained for the diagnosis of HII in the acute
setting. By day 2, injured areas may demonstrate hyperintensity on
both T1- and T2-weighted images.
 In the chronic stage of injury, atrophy of the injured structures will be
seen along with T2 hyperintensity, particularly in the ventrolateral
thalami, posterior putamina, and corticospinal tracts.
Severe neonatal HII in a 7-day-old term infant.
Axial T1-weighted MR image obtained at the level of the basal ganglia shows
increased signal intensity in the lentiform nuclei (*) and ventrolateral thalami (arrows).
T2-weighted MR image shows decreased signal intensity in the posterior aspects of
the putamina (arrowheads) and ventrolateral thalami (arrows)
Diffusion-weighted MR image shows a relative lack of hyperintensity in the
locations cited earlier, findings that represent pseudonormalization. Only the left
globus pallidus shows high signal intensity. Corresponding ADC map shows
hypointensity
Severe neonatal HII in a 5-day-old term infant who suffered profound birth asphyxia.
(a, b) Axial T1-weighted MR images show hyperintensity in the ventrolateral thalami
(arrowheads in a), basal ganglia (arrows in a), and perirolandic cortex (arrows inb)
Axial T2-weighted MR images obtained approximately 7 months later show diffuse
atrophy as well as hyperintensity (gliosis) in the ventrolateral thalami (arrowheads
in c), posterior putamina (arrows in c), and perirolandic regions (arrows in d).
PARTIAL ASPHYXIA
 The brainstem, cerebellum, and deep gray matter structures are
generally spared from injury in mild to moderate hypoxic-ischemic
insults, since autoregulatory mechanisms are able to maintain
perfusion to these areas of the brain.
 In neonates, moderate insults of short duration cause little or no
injury to the brain; however, more prolonged insults result in injury to
the intervascular boundary (watershed) zones, which are relatively
hypoperfused as a result of this shunting.
MRI
 Diffusion-weighted images are the earliest to change, usually within
the first 24 hours following injury, and typically demonstrate cortical
and subcortical white matter restriction, most pronounced in the
parasagittal watershed territories.
 By day 2, T2-weighted images will often demonstrate cortical swelling
with loss of differentiation between gray matter and white matter and
hyperintensity in the cortex and subcortical white matter,
predominantly in the parasagittal watershed zones but occasionally
involving the hemispheres diffusely.
Partial neonatal HII in a 2-day-old term infant who experienced seizures
shortly after birth. (a, b)Axial T1-weighted (a) and T2-weighted (b) MR images
appear essentially normal.
Diffusion-weighted MR image (c) and corresponding ADC map (d) show
restricted diffusion in the cortex and subcortical white matter in a parasagittal
watershed distribution.
PRETERM NEONATE
 HII is more common in preterm neonates than in term
neonates.
 HII in preterm infants, particularly those of very low birth
weight, is difficult to diagnose clinically early on because
signs may be lacking or mistaken to result from
developmental immaturity.
 Profound hypoxic-ischemic events in preterm neonates
manifest predominantly as damage to the deep gray matter
structures and brainstem.
 Events of mild to moderate severity in this population
typically manifest as either germinal matrix–intraventricular
hemorrhages or periventricular white matter damage (also
referred to as periventricular leukomalacia.
SEVERE ASPHYXIA
 Injury to the thalami, basal ganglia, hippocampi, cerebellum, and
corticospinal tracts can be seen, with the thalami, anterior vermis,
and dorsal brainstem being most frequently involved.
 Although basal ganglia injury is frequently encountered in this group,
involvement of these structures is less severe compared with
involvement of the thalami, particularly among neonates born at less
than 32 weeks gestation.
 Germinal matrix hemorrhages and periventricular white matter injury
may also be seen.
USG
 US of the brain in preterm neonates with HII may
demonstrate increased echogenicity in the thalami by 48–72
hours following an insult but may also be normal, particularly
in the first 2 days.
MRI
 Conventional MR imaging performed within the 1st day after injury
may be normal or show only subtle abnormalities.
 Diffusion abnormalities are usually evident in the thalami within 24
hours .
 After 2 days, T2 prolongation can be seen in the thalami and basal
ganglia.
MRI
 By the 3rd day following injury, T1 shortening (hyperintense)
will be seen in the injured areas.
 Diffusion-weighted abnormalities are most apparent around
days 3–5 following insult and subsequently begin to
pseudonormalize . T2 shortening (hypointense) develops in
the injured areas at approximately 7 days, and T1 shortening
persists into the chronic stage.
Diffusion-weighted MR image and corresponding ADC map obtained the
following day(b) show restricted diffusion in the ventrolateral thalami
MILD TO MODERATE
ASPHYXIA
 The overall prevalence of intraventricular hemorrhage in
preterm neonates weighing less than 2000 g is approximately
25%, and in the majority of cases this bleeding occurs within
the first 24 hours of life.
 Prevalence is inversely related to gestational age and weight
at birth. The majority of intraventricular hemorrhages in
preterm neonates are associated with germinal matrix
hemorrhages.
Sonographic grading system proposed by Burstein and Papile et.al:
grade I
restricted to subependymal region / germinal matrix which is seen in the
caudothalamic groove
grade II
extension into normal sized ventricles and typically filling less than 50% of the
volume of the ventricle
grade III
extension into dilated ventricles
grade IV
grade III with parenchymal haemorrhage
90% mortality.
It should be noted that it is now thought that grade IV bleeds are not simply
extensions of germinal matrix haemorrhage into adjacent brain, but rather
represent sequelae of venous infarction
Grading of neonatal intracranial haemorrhage
In grade I hemorrhage, small subependymal hemorrhages are seen as
hyperechoic foci in the region of the caudothalamic grooves
Grade II hemorrhage is seen in the caudothalamic grooves (arrows) with
blood extending into the lateral ventricles
In grade III hemorrhage , intraventricular extension of hemorrhage is again seen,
in this case involving both lateral ventricles (arrowheads) and the third ventricle
(arrow). Marked ventriculomegaly is also noted
In grade IV hemorrhage , there is hemorrhage originating in the
periventricular white matter (arrow) and extending into the ventricles.
 Cerebellar hemorrhages have also been reported at autopsy in
up to 25% of preterm infants with very low birth weight.
 It has been hypothesized that these hemorrhages are in fact
germinal matrix hemorrhages arising from germinal zones
known to exist within the external granule cell layer of the
cerebellar hemispheres.
 These hemorrhages are usually lentiform or
crescentic and are located peripherally in the dorsal
aspects of the cerebellar hemispheres.
Coronal and sagittal US images obtained in the 1st week of life demonstrate an
area of echogenicity (arrow) in the left cerebellar hemisphere, a finding that is
compatible with hemorrhage.
On a coronal US image obtained approximately 2 weeks later, the area of
interest is hypoechoic (arrow), a finding that suggests liquefaction of the
hemorrhage.
 Periventricular leukomalacia (PVL), also referred to as white
matter injury of prematurity, is a common occurrence among
premature infants.
 PVL is most frequently observed adjacent to the trigones of the
lateral ventricles and adjacent to the foramina of Monro.
 Initially, there is necrosis, often progressing to cavitation and
the development of porencephalic cysts
 Four stages of PVL have been described at US . Initially, there is
congestion, which manifests as globular areas of increased
echogenicity (sometimes referred to as “flares”) in the
periventricular regions in the first 48 hours.
 These findings are followed by a transient period of relative
normalization, usually by the 2nd–4th weeks of life.
 Periventricular cyst development then occurs at approximately
3–6 weeks of life.
 Finally, by 6 months of age, end-stage PVL results, with
resolution of cysts and associated ventricular enlargement
Coronal head US image obtained in the 1st week of life shows increased
echogenicity in the periventricular white matter (arrows)
Follow-up US image obtained 2 months later shows development of
cystic changes in these regions and dilatation of the adjacent lateral
ventricles
MRI
 At MR imaging, early white matter injury will manifest as
periventricular foci of T1 shortening/hyperintensity (without
corresponding T2 shortening/hypointensity) within larger areas of T2
prolongation.
 These foci are usually evident by 3–4 days, subsequently giving way
to mild T2 shortening at 6–7 days .
 In contrast, hemorrhage (reported to be present in 64% of cases of
PVL) initially manifests with much lower signal intensity on T2-
weighted images.
Axial T1-weighted and T2-weighted MR images obtained on day 4 of life
demonstrate T1 hypointensity and T2 hyperintensity in the periventricular white
matter. Note the punctate foci of high signal intensity on the T1-weighted image
End stage PVL - Axial fluid-attenuated inversion recovery MR images
demonstrate increased signal intensity and a few tiny cysts in the
immediate periventricular white matter.
There is enlargement of the atria of the lateral ventricles with a decrease
in volume of the adjacent white matter, and the walls of the lateral
ventricles have a wavy appearance.
POSTNATAL INFANTS &
YOUNG CHILDREN
 Hypoxic-ischemic injuries in infants and young children are
usually the result of drowning, choking, or non accidental
trauma.
 As myelination nears completion by about 2 years of age,
injuries similar to the pattern seen in adults begin to appear.
SEVERE ASPHYXIA
 Severe insults to infants between 1 and 2 years of age result
in injuries to the corpora striata, lateral geniculate nuclei,
hippocampi, and cerebral cortex (particularly the anterior
frontal and parieto-occipital cortex), with relative sparing of
the thalami and perirolandic cortex.
 Injuries occurring after the immediate perinatal period but
before 1 year of age can demonstrate features of both birth
asphyxia and later infantile asphyxia, with involvement of the
basal ganglia (predominantly posteriorly), lateral thalami, and
dorsal midbrain, as well as cortical injury.
CT
 Early CT performed within 24 hours of an insult may be negative or
may demonstrate only subtle hypoattenuation of the deep gray matter
structures .
 Subsequent CT will demonstrate diffuse basal ganglia abnormalities
along with diffuse cerebral edema, manifesting as cortical
hypoattenuation, loss of normal “gray-white” differentiation, and
cisternal and sulcal effacement.
 There may be relative sparing of the perirolandic regions .
Hemorrhagic infarctions of the basal ganglia may be evident by 4–6
days .
 Imaging in the chronic phase will demonstrate diffuse atrophy with
sulcal and ventricular enlargement
CT
 Within the first 24 hours, a small number of these patients may
demonstrate the “reversal sign,” in which there is reversal in the
normal CT attenuation of gray matter and white matter.
 Another well-known CT sign of severe HII is the “white cerebellum
sign” , which has been described in at least one study as a
component of the reversal sign and in which there is diffuse edema
and hypoattenuation of the cerebral hemispheres with sparing of
the cerebellum and brainstem, resulting in apparent high
attenuation of the cerebellum and brainstem relative to the cerebral
hemispheres.
Unenhanced CT scan shows diffuse cortical swelling and hyperattenuation in
the white matter relative to areas of preserved cortex, a finding that is referred to
as the reversal sign and generally portends a poor prognosis. A small amount of
extraaxial hemorrhage adjacent to the left frontal lobe is also seen.
Unenhanced CT scan demonstrates the white cerebellum sign. The
cerebellar hemispheres (*) are hyperattenuating relative to the supratentorial
structures, which are hypoattenuating due to edema.
Unenhanced CT scan obtained at the level of the basal ganglia after
cardiopulmonary arrest that lasted 30 minutes is essentially unremarkable
On an unenhanced CT scan, the cerebellum appears slightly hyperattenuating
relative to the rest of the brain
Diffusion-weighted and T2-weighted MR images obtained 4 days later show
high signal intensity with corresponding T2 abnormalities in the caudate nuclei
(white arrows), lentiform nuclei (black arrows), and occipital lobes (*
MRI
 MR imaging is frequently performed in children with HII.
Diffusion-weighted images will usually be abnormal within the
first 12–24 hours, initially demonstrating bright signal
intensity in the posterolateral lentiform nuclei ; thalamic
involvement (when present) will usually involve the
ventrolateral nuclei.
 Over the next 48 hours, there is typically significant
progression of involvement to include the remainder of the
basal ganglia and the cortex
MRI
 Conventional T1- and T2-weighted images obtained in the
first 24 hours are often normal and may appear so for up to 2
days.
 By 48 hours, T2-weighted images will usually demonstrate
diffuse basal ganglia and cortical signal intensity abnormality
MILD TO MODERATE ASPHYXIA
 As in term neonates, milder anoxic events in older infants will
generally result in watershed zone injuries involving the
cortex and subcortical white matter.
 White matter lesions are more common in children under 1
year of age. Relative sparing of the periventricular white
matter will be seen.
Unenhanced head CT scan shows bilateral cortical and subcortical
hypoattenuation in the parasagittal watershed regions
Diffusion-weighted MR image obtained at the same level shows corresponding
high-signal-intensity areas compatible with watershed infarcts.
OLDER CHILDREN & ADULTS
 HII in adults is more often a result of cardiac arrest or
cerebrovascular disease, with secondary hypoxemia.
 Drowning and asphyxiation remain common causes of HII in
older children.
 Mild to moderate global ischemic insults to the brain usually
result in watershed zone infarcts.
 Severe HII in this population primarily affects the gray matter
structures: the basal ganglia, thalami, cerebral cortex (in
particular the sensorimotor and visual cortices, although
involvement is often diffuse), cerebellum, and hippocampi
CT
 In older patients, CT is generally the initial imaging study
performed when brain injury is suspected.
 CT findings include diffuse edema with effacement of the
CSF-containing spaces, decreased cortical gray matter
attenuation with loss of normal gray-white differentiation, and
decreased bilateral basal ganglia attenuation.
 As in young children, the reversal sign and the white
cerebellum sign may be seen in adults.
MRI
 Diffusion-weighted MR imaging is the earliest imaging
modality to become positive, usually within the first few hours
after a hypoxic-ischemic event.
 During the first 24 hours, diffusion-weighted imaging may
demonstrate increased signal intensity in the cerebellar
hemispheres, basal ganglia, or cerebral cortex (in particular,
the perirolandic and occipital cortices) .
 The thalami, brainstem, or hippocampi may also be involved
MRI
 As in younger patients, conventional T1- and T2-weighted images are
often normal or demonstrate only very subtle abnormalities.
 In the early subacute period (24 hours–2 weeks), conventional T2-
weighted images typically become positive and demonstrate increased
signal intensity and swelling of the injured gray matter structures,
although these findings may be subtle. As mentioned earlier, diffusion-
weighted imaging abnormalities usually pseudonormalize by the end of
the 1st week .
 Gray matter signal intensity abnormalities at conventional MR imaging
may persist into the end of the 2nd week.
 In the chronic stage, T2-weighted images may demonstrate some
residual hyperintensity in the basal ganglia, and T1-weighted images may
show cortical necrosis , which is seen as areas of high signal intensity in
the cortex
Axial T2-weighted and diffusion-weighted MR images show diffuse white matter
hyperintensity. On the corresponding ADC map, the white matter is hypointense
MR SPECTROSCOPY
 MR spectroscopy is perhaps more sensitive to injury and more
indicative of the severity of injury in the first 24 hours after a
hypoxic-ischemic episode, when conventional and diffusion-
weighted MR imaging may yield false-negative findings or lead
to significant underestimation of the extent of injury.
 MR spectroscopy will demonstrate substantial lactate elevation
(appearing as a doublet centered in the deep gray nuclei, parieto-
occipital region, or white matter of the parasagittal watershed
zones by as early as 2–8 hours .
 A glutamine-glutamate peak may also be detected , probably
reflecting the release of glutamate that occurs in HII.
THANK YOU

More Related Content

What's hot

Imaging in SAH
Imaging  in  SAHImaging  in  SAH
Imaging in SAH
Sarath Menon
 
Diagnostic Imaging of the Pituitary Gland
Diagnostic Imaging of the Pituitary GlandDiagnostic Imaging of the Pituitary Gland
Diagnostic Imaging of the Pituitary Gland
Mohamed M.A. Zaitoun
 
Presentation1, radiological imaging of hypertrophic pyloric stenosis.
Presentation1, radiological imaging of hypertrophic pyloric stenosis.Presentation1, radiological imaging of hypertrophic pyloric stenosis.
Presentation1, radiological imaging of hypertrophic pyloric stenosis.
Abdellah Nazeer
 
Imaging of white matter diseases
Imaging of white matter diseasesImaging of white matter diseases
Imaging of white matter diseases
Navni Garg
 
Neurosonogram.. Dr.Padmesh
Neurosonogram.. Dr.PadmeshNeurosonogram.. Dr.Padmesh
Neurosonogram.. Dr.Padmesh
Dr Padmesh Vadakepat
 
Neonatal neurosonography
Neonatal neurosonographyNeonatal neurosonography
Neonatal neurosonography
Harshita Saxena
 
Skull base imaging
Skull base imagingSkull base imaging
Skull base imaging
Murali Chand Nallamothu
 
Presentation1.pptx sellar and para sellar masses
Presentation1.pptx sellar and para sellar massesPresentation1.pptx sellar and para sellar masses
Presentation1.pptx sellar and para sellar massesAbdellah Nazeer
 
Radiological features of intracranial tumors 1
Radiological features of intracranial tumors 1Radiological features of intracranial tumors 1
Radiological features of intracranial tumors 1
Dr Praveen kumar tripathi
 
imaging of viral encephalitis
imaging of viral encephalitisimaging of viral encephalitis
imaging of viral encephalitis
Osama Ragab
 
Presentation1.pptx, radiological imaging of spinal dysraphism.
Presentation1.pptx, radiological imaging of spinal dysraphism.Presentation1.pptx, radiological imaging of spinal dysraphism.
Presentation1.pptx, radiological imaging of spinal dysraphism.
Abdellah Nazeer
 
Patterns of Enhancement in the Brain
Patterns of Enhancement in the BrainPatterns of Enhancement in the Brain
Patterns of Enhancement in the Brain
Mohamed M.A. Zaitoun
 
Larynx anatomy ct and mri
Larynx anatomy ct and mriLarynx anatomy ct and mri
Larynx anatomy ct and mri
Anish Choudhary
 
Ectopic pregnancy Radiology
Ectopic pregnancy RadiologyEctopic pregnancy Radiology
Ectopic pregnancy Radiology
Sajan Paul
 
Presentation2.pptx. posterior fossa tumour
Presentation2.pptx. posterior fossa tumourPresentation2.pptx. posterior fossa tumour
Presentation2.pptx. posterior fossa tumourAbdellah Nazeer
 
IMAGING IN ABDOMINAL TUBERCULOSIS
IMAGING IN ABDOMINAL TUBERCULOSISIMAGING IN ABDOMINAL TUBERCULOSIS
IMAGING IN ABDOMINAL TUBERCULOSIS
Navni Garg
 
Presentation1.pptx, radiological imaging of peri natal acute ischemia and hyp...
Presentation1.pptx, radiological imaging of peri natal acute ischemia and hyp...Presentation1.pptx, radiological imaging of peri natal acute ischemia and hyp...
Presentation1.pptx, radiological imaging of peri natal acute ischemia and hyp...Abdellah Nazeer
 
Diagnostic Imaging of Pineal Region Masses
Diagnostic Imaging of Pineal Region MassesDiagnostic Imaging of Pineal Region Masses
Diagnostic Imaging of Pineal Region Masses
Mohamed M.A. Zaitoun
 
Bronchial Artery Embolization- By Dr.Tinku Joseph
Bronchial Artery Embolization- By Dr.Tinku JosephBronchial Artery Embolization- By Dr.Tinku Joseph
Bronchial Artery Embolization- By Dr.Tinku Joseph
Dr.Tinku Joseph
 

What's hot (20)

Imaging in SAH
Imaging  in  SAHImaging  in  SAH
Imaging in SAH
 
Diagnostic Imaging of the Pituitary Gland
Diagnostic Imaging of the Pituitary GlandDiagnostic Imaging of the Pituitary Gland
Diagnostic Imaging of the Pituitary Gland
 
Presentation1, radiological imaging of hypertrophic pyloric stenosis.
Presentation1, radiological imaging of hypertrophic pyloric stenosis.Presentation1, radiological imaging of hypertrophic pyloric stenosis.
Presentation1, radiological imaging of hypertrophic pyloric stenosis.
 
Imaging of white matter diseases
Imaging of white matter diseasesImaging of white matter diseases
Imaging of white matter diseases
 
Neurosonogram.. Dr.Padmesh
Neurosonogram.. Dr.PadmeshNeurosonogram.. Dr.Padmesh
Neurosonogram.. Dr.Padmesh
 
Neonatal neurosonography
Neonatal neurosonographyNeonatal neurosonography
Neonatal neurosonography
 
Skull base imaging
Skull base imagingSkull base imaging
Skull base imaging
 
Presentation1.pptx sellar and para sellar masses
Presentation1.pptx sellar and para sellar massesPresentation1.pptx sellar and para sellar masses
Presentation1.pptx sellar and para sellar masses
 
Radiological features of intracranial tumors 1
Radiological features of intracranial tumors 1Radiological features of intracranial tumors 1
Radiological features of intracranial tumors 1
 
imaging of viral encephalitis
imaging of viral encephalitisimaging of viral encephalitis
imaging of viral encephalitis
 
CSF cisterns
CSF cisternsCSF cisterns
CSF cisterns
 
Presentation1.pptx, radiological imaging of spinal dysraphism.
Presentation1.pptx, radiological imaging of spinal dysraphism.Presentation1.pptx, radiological imaging of spinal dysraphism.
Presentation1.pptx, radiological imaging of spinal dysraphism.
 
Patterns of Enhancement in the Brain
Patterns of Enhancement in the BrainPatterns of Enhancement in the Brain
Patterns of Enhancement in the Brain
 
Larynx anatomy ct and mri
Larynx anatomy ct and mriLarynx anatomy ct and mri
Larynx anatomy ct and mri
 
Ectopic pregnancy Radiology
Ectopic pregnancy RadiologyEctopic pregnancy Radiology
Ectopic pregnancy Radiology
 
Presentation2.pptx. posterior fossa tumour
Presentation2.pptx. posterior fossa tumourPresentation2.pptx. posterior fossa tumour
Presentation2.pptx. posterior fossa tumour
 
IMAGING IN ABDOMINAL TUBERCULOSIS
IMAGING IN ABDOMINAL TUBERCULOSISIMAGING IN ABDOMINAL TUBERCULOSIS
IMAGING IN ABDOMINAL TUBERCULOSIS
 
Presentation1.pptx, radiological imaging of peri natal acute ischemia and hyp...
Presentation1.pptx, radiological imaging of peri natal acute ischemia and hyp...Presentation1.pptx, radiological imaging of peri natal acute ischemia and hyp...
Presentation1.pptx, radiological imaging of peri natal acute ischemia and hyp...
 
Diagnostic Imaging of Pineal Region Masses
Diagnostic Imaging of Pineal Region MassesDiagnostic Imaging of Pineal Region Masses
Diagnostic Imaging of Pineal Region Masses
 
Bronchial Artery Embolization- By Dr.Tinku Joseph
Bronchial Artery Embolization- By Dr.Tinku JosephBronchial Artery Embolization- By Dr.Tinku Joseph
Bronchial Artery Embolization- By Dr.Tinku Joseph
 

Similar to Hie old

Hypoxic ischemic encephalopathy
Hypoxic ischemic encephalopathyHypoxic ischemic encephalopathy
Hypoxic ischemic encephalopathy
Dr. Mohit Goel
 
Hypoxic ischemic insult, by prof Ayman Galhom, ass prof neurosurgery, Suez ca...
Hypoxic ischemic insult, by prof Ayman Galhom, ass prof neurosurgery, Suez ca...Hypoxic ischemic insult, by prof Ayman Galhom, ass prof neurosurgery, Suez ca...
Hypoxic ischemic insult, by prof Ayman Galhom, ass prof neurosurgery, Suez ca...
mohamed osama hussein
 
Case record...Cerebral palsy
Case record...Cerebral palsyCase record...Cerebral palsy
Case record...Cerebral palsy
Professor Yasser Metwally
 
Ecr2017 c 0909
Ecr2017 c 0909Ecr2017 c 0909
Ecr2017 c 0909
MarintamaIndra
 
PHYSIOTHERAPY MANAGEMENT IN CEREBRAL PALSY.pptx
PHYSIOTHERAPY MANAGEMENT IN CEREBRAL PALSY.pptxPHYSIOTHERAPY MANAGEMENT IN CEREBRAL PALSY.pptx
PHYSIOTHERAPY MANAGEMENT IN CEREBRAL PALSY.pptx
StutiGaikwad5
 
Presentation1, radiological imaging of wilson disease.
Presentation1, radiological imaging of wilson disease.Presentation1, radiological imaging of wilson disease.
Presentation1, radiological imaging of wilson disease.
Abdellah Nazeer
 
Traumatic brain injury and shaken baby syndrome
Traumatic brain injury and shaken baby syndromeTraumatic brain injury and shaken baby syndrome
Traumatic brain injury and shaken baby syndromeAlison Stevens
 
Imaging of common viral brain infection in india PPT
Imaging of common  viral brain infection in india PPTImaging of common  viral brain infection in india PPT
Imaging of common viral brain infection in india PPT
Naba Kumar Barman
 
Hypoxic ischemic encephalopathy radiological imaging
Hypoxic ischemic encephalopathy radiological imagingHypoxic ischemic encephalopathy radiological imaging
Hypoxic ischemic encephalopathy radiological imaging
Shubham661884
 
Brachial plexus
Brachial plexusBrachial plexus
Brachial plexus
palpeds
 
Magnetic resonance features of pyogenic brain abscesses and differential diag...
Magnetic resonance features of pyogenic brain abscesses and differential diag...Magnetic resonance features of pyogenic brain abscesses and differential diag...
Magnetic resonance features of pyogenic brain abscesses and differential diag...
Felice D'Arco
 
MRI in obstetric practice part 2
MRI in obstetric practice   part 2MRI in obstetric practice   part 2
MRI in obstetric practice part 2
Shivamurthy Hm
 
Case record...Idiopathic postinfectious transverse myelitis
Case record...Idiopathic postinfectious transverse myelitisCase record...Idiopathic postinfectious transverse myelitis
Case record...Idiopathic postinfectious transverse myelitis
Professor Yasser Metwally
 
缺氧缺血性脑病(英文)2009
缺氧缺血性脑病(英文)2009缺氧缺血性脑病(英文)2009
缺氧缺血性脑病(英文)2009Deep Deep
 
hypotonia by Dr tadele teshome
hypotonia  by Dr tadele teshomehypotonia  by Dr tadele teshome
hypotonia by Dr tadele teshome
meriestop ethiopia
 
TRANSCRANIAL ULTRASOUND
TRANSCRANIAL ULTRASOUNDTRANSCRANIAL ULTRASOUND
TRANSCRANIAL ULTRASOUND
Ameen Rageh
 

Similar to Hie old (20)

Hypoxic ischemic encephalopathy
Hypoxic ischemic encephalopathyHypoxic ischemic encephalopathy
Hypoxic ischemic encephalopathy
 
Hypoxic ischemic insult, by prof Ayman Galhom, ass prof neurosurgery, Suez ca...
Hypoxic ischemic insult, by prof Ayman Galhom, ass prof neurosurgery, Suez ca...Hypoxic ischemic insult, by prof Ayman Galhom, ass prof neurosurgery, Suez ca...
Hypoxic ischemic insult, by prof Ayman Galhom, ass prof neurosurgery, Suez ca...
 
Case record...Cerebral palsy
Case record...Cerebral palsyCase record...Cerebral palsy
Case record...Cerebral palsy
 
Ecr2017 c 0909
Ecr2017 c 0909Ecr2017 c 0909
Ecr2017 c 0909
 
PHYSIOTHERAPY MANAGEMENT IN CEREBRAL PALSY.pptx
PHYSIOTHERAPY MANAGEMENT IN CEREBRAL PALSY.pptxPHYSIOTHERAPY MANAGEMENT IN CEREBRAL PALSY.pptx
PHYSIOTHERAPY MANAGEMENT IN CEREBRAL PALSY.pptx
 
Presentation1, radiological imaging of wilson disease.
Presentation1, radiological imaging of wilson disease.Presentation1, radiological imaging of wilson disease.
Presentation1, radiological imaging of wilson disease.
 
Traumatic brain injury and shaken baby syndrome
Traumatic brain injury and shaken baby syndromeTraumatic brain injury and shaken baby syndrome
Traumatic brain injury and shaken baby syndrome
 
Imaging of common viral brain infection in india PPT
Imaging of common  viral brain infection in india PPTImaging of common  viral brain infection in india PPT
Imaging of common viral brain infection in india PPT
 
Hypoxic ischemic encephalopathy radiological imaging
Hypoxic ischemic encephalopathy radiological imagingHypoxic ischemic encephalopathy radiological imaging
Hypoxic ischemic encephalopathy radiological imaging
 
Brachial plexus
Brachial plexusBrachial plexus
Brachial plexus
 
Barnes article
Barnes articleBarnes article
Barnes article
 
Barnes Article
Barnes ArticleBarnes Article
Barnes Article
 
Magnetic resonance features of pyogenic brain abscesses and differential diag...
Magnetic resonance features of pyogenic brain abscesses and differential diag...Magnetic resonance features of pyogenic brain abscesses and differential diag...
Magnetic resonance features of pyogenic brain abscesses and differential diag...
 
MRI in obstetric practice part 2
MRI in obstetric practice   part 2MRI in obstetric practice   part 2
MRI in obstetric practice part 2
 
Cns infections
Cns infections Cns infections
Cns infections
 
Case record...Idiopathic postinfectious transverse myelitis
Case record...Idiopathic postinfectious transverse myelitisCase record...Idiopathic postinfectious transverse myelitis
Case record...Idiopathic postinfectious transverse myelitis
 
Hie
HieHie
Hie
 
缺氧缺血性脑病(英文)2009
缺氧缺血性脑病(英文)2009缺氧缺血性脑病(英文)2009
缺氧缺血性脑病(英文)2009
 
hypotonia by Dr tadele teshome
hypotonia  by Dr tadele teshomehypotonia  by Dr tadele teshome
hypotonia by Dr tadele teshome
 
TRANSCRANIAL ULTRASOUND
TRANSCRANIAL ULTRASOUNDTRANSCRANIAL ULTRASOUND
TRANSCRANIAL ULTRASOUND
 

More from Anish Choudhary

Pulmonary embolism radiology
Pulmonary embolism radiologyPulmonary embolism radiology
Pulmonary embolism radiology
Anish Choudhary
 
Anatomy of esophgus
Anatomy of esophgusAnatomy of esophgus
Anatomy of esophgus
Anish Choudhary
 
Malignant liver masses
Malignant liver massesMalignant liver masses
Malignant liver masses
Anish Choudhary
 
KEYS OF RADIOLOGY SPOTTERS GIT
KEYS OF RADIOLOGY SPOTTERS GITKEYS OF RADIOLOGY SPOTTERS GIT
KEYS OF RADIOLOGY SPOTTERS GIT
Anish Choudhary
 
RADIOLOGY SPOTTERS GIT
RADIOLOGY SPOTTERS GITRADIOLOGY SPOTTERS GIT
RADIOLOGY SPOTTERS GIT
Anish Choudhary
 
radiology Spotters mixed bag
radiology Spotters mixed bagradiology Spotters mixed bag
radiology Spotters mixed bag
Anish Choudhary
 
Radiology Spotters
Radiology Spotters Radiology Spotters
Radiology Spotters
Anish Choudhary
 
Usg gb & biliary t
Usg gb & biliary tUsg gb & biliary t
Usg gb & biliary t
Anish Choudhary
 
Ultrasoud hernia
Ultrasoud herniaUltrasoud hernia
Ultrasoud hernia
Anish Choudhary
 
Tvs image gallery
Tvs image galleryTvs image gallery
Tvs image gallery
Anish Choudhary
 
Treat. contrast reaction
Treat. contrast reactionTreat. contrast reaction
Treat. contrast reaction
Anish Choudhary
 
Transitional vertebrae
Transitional vertebraeTransitional vertebrae
Transitional vertebrae
Anish Choudhary
 
Spots with keys
Spots with keysSpots with keys
Spots with keys
Anish Choudhary
 
Spots with keys (2)
Spots with keys (2)Spots with keys (2)
Spots with keys (2)
Anish Choudhary
 
Shoulder ultrasound
Shoulder ultrasoundShoulder ultrasound
Shoulder ultrasound
Anish Choudhary
 
Sectional anatomy of abdomen
Sectional anatomy of abdomenSectional anatomy of abdomen
Sectional anatomy of abdomen
Anish Choudhary
 
Retroperitoneal masses
Retroperitoneal massesRetroperitoneal masses
Retroperitoneal masses
Anish Choudhary
 
Renal doppler
Renal dopplerRenal doppler
Renal doppler
Anish Choudhary
 
Precocious puberty
Precocious pubertyPrecocious puberty
Precocious puberty
Anish Choudhary
 
Pre fess pns ct
Pre fess pns ctPre fess pns ct
Pre fess pns ct
Anish Choudhary
 

More from Anish Choudhary (20)

Pulmonary embolism radiology
Pulmonary embolism radiologyPulmonary embolism radiology
Pulmonary embolism radiology
 
Anatomy of esophgus
Anatomy of esophgusAnatomy of esophgus
Anatomy of esophgus
 
Malignant liver masses
Malignant liver massesMalignant liver masses
Malignant liver masses
 
KEYS OF RADIOLOGY SPOTTERS GIT
KEYS OF RADIOLOGY SPOTTERS GITKEYS OF RADIOLOGY SPOTTERS GIT
KEYS OF RADIOLOGY SPOTTERS GIT
 
RADIOLOGY SPOTTERS GIT
RADIOLOGY SPOTTERS GITRADIOLOGY SPOTTERS GIT
RADIOLOGY SPOTTERS GIT
 
radiology Spotters mixed bag
radiology Spotters mixed bagradiology Spotters mixed bag
radiology Spotters mixed bag
 
Radiology Spotters
Radiology Spotters Radiology Spotters
Radiology Spotters
 
Usg gb & biliary t
Usg gb & biliary tUsg gb & biliary t
Usg gb & biliary t
 
Ultrasoud hernia
Ultrasoud herniaUltrasoud hernia
Ultrasoud hernia
 
Tvs image gallery
Tvs image galleryTvs image gallery
Tvs image gallery
 
Treat. contrast reaction
Treat. contrast reactionTreat. contrast reaction
Treat. contrast reaction
 
Transitional vertebrae
Transitional vertebraeTransitional vertebrae
Transitional vertebrae
 
Spots with keys
Spots with keysSpots with keys
Spots with keys
 
Spots with keys (2)
Spots with keys (2)Spots with keys (2)
Spots with keys (2)
 
Shoulder ultrasound
Shoulder ultrasoundShoulder ultrasound
Shoulder ultrasound
 
Sectional anatomy of abdomen
Sectional anatomy of abdomenSectional anatomy of abdomen
Sectional anatomy of abdomen
 
Retroperitoneal masses
Retroperitoneal massesRetroperitoneal masses
Retroperitoneal masses
 
Renal doppler
Renal dopplerRenal doppler
Renal doppler
 
Precocious puberty
Precocious pubertyPrecocious puberty
Precocious puberty
 
Pre fess pns ct
Pre fess pns ctPre fess pns ct
Pre fess pns ct
 

Recently uploaded

Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Prof. Marcus Renato de Carvalho
 
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptxHow STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
FFragrant
 
ARTIFICIAL INTELLIGENCE IN HEALTHCARE.pdf
ARTIFICIAL INTELLIGENCE IN  HEALTHCARE.pdfARTIFICIAL INTELLIGENCE IN  HEALTHCARE.pdf
ARTIFICIAL INTELLIGENCE IN HEALTHCARE.pdf
Anujkumaranit
 
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
bkling
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
Dr. Rabia Inam Gandapore
 
BRACHYTHERAPY OVERVIEW AND APPLICATORS
BRACHYTHERAPY OVERVIEW  AND  APPLICATORSBRACHYTHERAPY OVERVIEW  AND  APPLICATORS
BRACHYTHERAPY OVERVIEW AND APPLICATORS
Krishan Murari
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Saeid Safari
 
KDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologistsKDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologists
د.محمود نجيب
 
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
VarunMahajani
 
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness JourneyTom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
greendigital
 
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptxPharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Dr. Rabia Inam Gandapore
 
Cervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptxCervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptx
Dr. Rabia Inam Gandapore
 
Physiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of TastePhysiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of Taste
MedicoseAcademics
 
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdfAlcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Dr Jeenal Mistry
 
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIONDACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
DR SETH JOTHAM
 
Non-respiratory Functions of the Lungs.pdf
Non-respiratory Functions of the Lungs.pdfNon-respiratory Functions of the Lungs.pdf
Non-respiratory Functions of the Lungs.pdf
MedicoseAcademics
 
Ophthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE examOphthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE exam
KafrELShiekh University
 
Couples presenting to the infertility clinic- Do they really have infertility...
Couples presenting to the infertility clinic- Do they really have infertility...Couples presenting to the infertility clinic- Do they really have infertility...
Couples presenting to the infertility clinic- Do they really have infertility...
Sujoy Dasgupta
 
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
kevinkariuki227
 
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptxMaxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Dr. Rabia Inam Gandapore
 

Recently uploaded (20)

Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
 
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptxHow STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
 
ARTIFICIAL INTELLIGENCE IN HEALTHCARE.pdf
ARTIFICIAL INTELLIGENCE IN  HEALTHCARE.pdfARTIFICIAL INTELLIGENCE IN  HEALTHCARE.pdf
ARTIFICIAL INTELLIGENCE IN HEALTHCARE.pdf
 
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
 
BRACHYTHERAPY OVERVIEW AND APPLICATORS
BRACHYTHERAPY OVERVIEW  AND  APPLICATORSBRACHYTHERAPY OVERVIEW  AND  APPLICATORS
BRACHYTHERAPY OVERVIEW AND APPLICATORS
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
 
KDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologistsKDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologists
 
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
 
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness JourneyTom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
 
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptxPharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
 
Cervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptxCervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptx
 
Physiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of TastePhysiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of Taste
 
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdfAlcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
 
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIONDACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
ACUTE SCROTUM.....pdf. ACUTE SCROTAL CONDITIOND
 
Non-respiratory Functions of the Lungs.pdf
Non-respiratory Functions of the Lungs.pdfNon-respiratory Functions of the Lungs.pdf
Non-respiratory Functions of the Lungs.pdf
 
Ophthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE examOphthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE exam
 
Couples presenting to the infertility clinic- Do they really have infertility...
Couples presenting to the infertility clinic- Do they really have infertility...Couples presenting to the infertility clinic- Do they really have infertility...
Couples presenting to the infertility clinic- Do they really have infertility...
 
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
 
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptxMaxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
 

Hie old

  • 1. HYPOXIC ISCHAEMIC ENCEPHALOPATHY Dr. Mohit Goel, JRIII Department of Radiodiagnosis Bharati Vidyapeeth University, Pune 19/05/2014
  • 2. INTRODUCTION  Hypoxic-ischemic injury (HII) to the brain is a devastating occurrence that frequently results in death or profound long-term neurologic disability in both children and adults.  Imaging findings in HII are highly variable and depend on a number of factors, including brain maturity, severity and duration of insult, and type and timing of imaging studies.
  • 3. PATHOPHYSIOLOGY  Regardless of the specific cause of injury, the common underlying physiologic processes that result in HII are diminished cerebral blood flow (ischemia) and reduced blood oxygenation (hypoxemia).  In general, infants and children are more likely to suffer asphyxial events, which result in hypoxemia and brain hypoxia.  With prolonged hypoxemia, cardiac hypoxia occurs, leading to diminished cardiac output and, ultimately, to brain ischemia.
  • 4. PATHOPHYSIOLOGY  Adults more frequently suffer brain ischemia as a result of cardiac arrest or cerebrovascular disease, with secondary hypoxia due to reduced blood flow.
  • 5.
  • 6. From the model just described, we can draw the following conclusions:  (a) the areas of the brain with the highest concentrations of glutamate or other excitatory amino acid receptors (primarily located in gray matter) are more susceptible to excitotoxic injury that occurs as a result of hypoxia-ischemia.  (b) the areas of the brain with the greatest energy demands become energy depleted most rapidly during hypoxia-ischemia, and are therefore injured early on.  (c) because of delayed cell death from apoptosis, some injuries may not be evident until days after the initial insult has occurred
  • 7. HIE  In any given patient, the sites in the brain that tend to be most vulnerable to hypoxic injury will be determined largely by the maturity of the brain, which, in turn, is a function of patient age and, in infants, gestational age at birth. This is why HII in the perinatal period (up to 1 month of age) differs from HII in adults or even in older infants.
  • 8. HIE  The severity of a hypoxic-ischemic insult also plays an important role in determining the distribution of injuries in the brain.  Duration of insult also seems to be a key determinant of the pattern of injury in HII,
  • 9. TERM NEONATE  HII in term neonates is associated with antepartum risk factors alone (including maternal hypotension, infertility treatment, multiple gestation, prenatal infection, and thyroid disease) or antepartum factors in combination with intrapartum factors.  Intrapartum factors alone (including forceps delivery, breech extraction, umbilical cord prolapse, abruptio placentae, tight nuchal cord, and maternal fever) are responsible for a small minority of cases of HII.
  • 10. SEVERE ASPHYXIA  Severe asphyxial events in term neonates result in a primarily central pattern of injury involving the deep gray matter (putamina, ventrolateral thalami, hippocampi, dorsal brainstem, and lateral geniculate nuclei) and occasionally the perirolandic cortex.  These areas of the brain are actively myelinating (an energy- intensive process) or contain the highest concentrations of NMDA receptors at term and are, therefore, the most susceptible to neonatal HII
  • 11. USG  Early US findings include a global increase in cerebral echogenicity and obliteration of the cerebrospinal fluid (CSF)–containing spaces, suggesting diffuse cerebral edema.  Increased echogenicity in the basal ganglia, thalami, and brainstem can also be seen in the 1st week but is more readily apparent after 7 days.
  • 12. USG  Late findings include prominence of the ventricles and extraaxial CSF-containing spaces, likely due to atrophy.  The presence of diminished resistive indexes (<60) in the anterior and middle cerebral arteries has been associated with a poor clinical outcome, even in the absence of other US abnormalities.
  • 13. MRI  Diffusion-weighted imaging is sensitive for the detection of injury in the first 24 hours, during which time conventional T1- and T2-weighted images may appear normal.  Diffusion-weighted images will demonstrate increased signal intensity in the region of the ventrolateral thalami and basal ganglia (particularly the posterior putamina), in the perirolandic regions, and along the corticospinal tracts
  • 14. MRI  It should be noted that, although diffusion-weighted images seemingly improve and appear relatively normal by the end of the 1st week, this finding does not imply that there has been improvement or reversal of underlying disease. Hence, we use the term pseudonormalization.
  • 15. MRI  Conventional T1- and T2-weighted MR images obtained on day 1 are frequently normal and are therefore less useful than diffusion- weighted images obtained for the diagnosis of HII in the acute setting. By day 2, injured areas may demonstrate hyperintensity on both T1- and T2-weighted images.  In the chronic stage of injury, atrophy of the injured structures will be seen along with T2 hyperintensity, particularly in the ventrolateral thalami, posterior putamina, and corticospinal tracts.
  • 16. Severe neonatal HII in a 7-day-old term infant. Axial T1-weighted MR image obtained at the level of the basal ganglia shows increased signal intensity in the lentiform nuclei (*) and ventrolateral thalami (arrows). T2-weighted MR image shows decreased signal intensity in the posterior aspects of the putamina (arrowheads) and ventrolateral thalami (arrows)
  • 17. Diffusion-weighted MR image shows a relative lack of hyperintensity in the locations cited earlier, findings that represent pseudonormalization. Only the left globus pallidus shows high signal intensity. Corresponding ADC map shows hypointensity
  • 18. Severe neonatal HII in a 5-day-old term infant who suffered profound birth asphyxia. (a, b) Axial T1-weighted MR images show hyperintensity in the ventrolateral thalami (arrowheads in a), basal ganglia (arrows in a), and perirolandic cortex (arrows inb)
  • 19. Axial T2-weighted MR images obtained approximately 7 months later show diffuse atrophy as well as hyperintensity (gliosis) in the ventrolateral thalami (arrowheads in c), posterior putamina (arrows in c), and perirolandic regions (arrows in d).
  • 20. PARTIAL ASPHYXIA  The brainstem, cerebellum, and deep gray matter structures are generally spared from injury in mild to moderate hypoxic-ischemic insults, since autoregulatory mechanisms are able to maintain perfusion to these areas of the brain.  In neonates, moderate insults of short duration cause little or no injury to the brain; however, more prolonged insults result in injury to the intervascular boundary (watershed) zones, which are relatively hypoperfused as a result of this shunting.
  • 21. MRI  Diffusion-weighted images are the earliest to change, usually within the first 24 hours following injury, and typically demonstrate cortical and subcortical white matter restriction, most pronounced in the parasagittal watershed territories.  By day 2, T2-weighted images will often demonstrate cortical swelling with loss of differentiation between gray matter and white matter and hyperintensity in the cortex and subcortical white matter, predominantly in the parasagittal watershed zones but occasionally involving the hemispheres diffusely.
  • 22. Partial neonatal HII in a 2-day-old term infant who experienced seizures shortly after birth. (a, b)Axial T1-weighted (a) and T2-weighted (b) MR images appear essentially normal.
  • 23. Diffusion-weighted MR image (c) and corresponding ADC map (d) show restricted diffusion in the cortex and subcortical white matter in a parasagittal watershed distribution.
  • 24. PRETERM NEONATE  HII is more common in preterm neonates than in term neonates.  HII in preterm infants, particularly those of very low birth weight, is difficult to diagnose clinically early on because signs may be lacking or mistaken to result from developmental immaturity.
  • 25.  Profound hypoxic-ischemic events in preterm neonates manifest predominantly as damage to the deep gray matter structures and brainstem.  Events of mild to moderate severity in this population typically manifest as either germinal matrix–intraventricular hemorrhages or periventricular white matter damage (also referred to as periventricular leukomalacia.
  • 26. SEVERE ASPHYXIA  Injury to the thalami, basal ganglia, hippocampi, cerebellum, and corticospinal tracts can be seen, with the thalami, anterior vermis, and dorsal brainstem being most frequently involved.  Although basal ganglia injury is frequently encountered in this group, involvement of these structures is less severe compared with involvement of the thalami, particularly among neonates born at less than 32 weeks gestation.  Germinal matrix hemorrhages and periventricular white matter injury may also be seen.
  • 27. USG  US of the brain in preterm neonates with HII may demonstrate increased echogenicity in the thalami by 48–72 hours following an insult but may also be normal, particularly in the first 2 days.
  • 28. MRI  Conventional MR imaging performed within the 1st day after injury may be normal or show only subtle abnormalities.  Diffusion abnormalities are usually evident in the thalami within 24 hours .  After 2 days, T2 prolongation can be seen in the thalami and basal ganglia.
  • 29. MRI  By the 3rd day following injury, T1 shortening (hyperintense) will be seen in the injured areas.  Diffusion-weighted abnormalities are most apparent around days 3–5 following insult and subsequently begin to pseudonormalize . T2 shortening (hypointense) develops in the injured areas at approximately 7 days, and T1 shortening persists into the chronic stage.
  • 30. Diffusion-weighted MR image and corresponding ADC map obtained the following day(b) show restricted diffusion in the ventrolateral thalami
  • 31. MILD TO MODERATE ASPHYXIA  The overall prevalence of intraventricular hemorrhage in preterm neonates weighing less than 2000 g is approximately 25%, and in the majority of cases this bleeding occurs within the first 24 hours of life.  Prevalence is inversely related to gestational age and weight at birth. The majority of intraventricular hemorrhages in preterm neonates are associated with germinal matrix hemorrhages.
  • 32. Sonographic grading system proposed by Burstein and Papile et.al: grade I restricted to subependymal region / germinal matrix which is seen in the caudothalamic groove grade II extension into normal sized ventricles and typically filling less than 50% of the volume of the ventricle grade III extension into dilated ventricles grade IV grade III with parenchymal haemorrhage 90% mortality. It should be noted that it is now thought that grade IV bleeds are not simply extensions of germinal matrix haemorrhage into adjacent brain, but rather represent sequelae of venous infarction Grading of neonatal intracranial haemorrhage
  • 33. In grade I hemorrhage, small subependymal hemorrhages are seen as hyperechoic foci in the region of the caudothalamic grooves
  • 34. Grade II hemorrhage is seen in the caudothalamic grooves (arrows) with blood extending into the lateral ventricles
  • 35. In grade III hemorrhage , intraventricular extension of hemorrhage is again seen, in this case involving both lateral ventricles (arrowheads) and the third ventricle (arrow). Marked ventriculomegaly is also noted
  • 36. In grade IV hemorrhage , there is hemorrhage originating in the periventricular white matter (arrow) and extending into the ventricles.
  • 37.  Cerebellar hemorrhages have also been reported at autopsy in up to 25% of preterm infants with very low birth weight.  It has been hypothesized that these hemorrhages are in fact germinal matrix hemorrhages arising from germinal zones known to exist within the external granule cell layer of the cerebellar hemispheres.
  • 38.  These hemorrhages are usually lentiform or crescentic and are located peripherally in the dorsal aspects of the cerebellar hemispheres.
  • 39. Coronal and sagittal US images obtained in the 1st week of life demonstrate an area of echogenicity (arrow) in the left cerebellar hemisphere, a finding that is compatible with hemorrhage.
  • 40. On a coronal US image obtained approximately 2 weeks later, the area of interest is hypoechoic (arrow), a finding that suggests liquefaction of the hemorrhage.
  • 41.  Periventricular leukomalacia (PVL), also referred to as white matter injury of prematurity, is a common occurrence among premature infants.  PVL is most frequently observed adjacent to the trigones of the lateral ventricles and adjacent to the foramina of Monro.  Initially, there is necrosis, often progressing to cavitation and the development of porencephalic cysts
  • 42.  Four stages of PVL have been described at US . Initially, there is congestion, which manifests as globular areas of increased echogenicity (sometimes referred to as “flares”) in the periventricular regions in the first 48 hours.  These findings are followed by a transient period of relative normalization, usually by the 2nd–4th weeks of life.  Periventricular cyst development then occurs at approximately 3–6 weeks of life.  Finally, by 6 months of age, end-stage PVL results, with resolution of cysts and associated ventricular enlargement
  • 43. Coronal head US image obtained in the 1st week of life shows increased echogenicity in the periventricular white matter (arrows)
  • 44. Follow-up US image obtained 2 months later shows development of cystic changes in these regions and dilatation of the adjacent lateral ventricles
  • 45. MRI  At MR imaging, early white matter injury will manifest as periventricular foci of T1 shortening/hyperintensity (without corresponding T2 shortening/hypointensity) within larger areas of T2 prolongation.  These foci are usually evident by 3–4 days, subsequently giving way to mild T2 shortening at 6–7 days .  In contrast, hemorrhage (reported to be present in 64% of cases of PVL) initially manifests with much lower signal intensity on T2- weighted images.
  • 46. Axial T1-weighted and T2-weighted MR images obtained on day 4 of life demonstrate T1 hypointensity and T2 hyperintensity in the periventricular white matter. Note the punctate foci of high signal intensity on the T1-weighted image
  • 47. End stage PVL - Axial fluid-attenuated inversion recovery MR images demonstrate increased signal intensity and a few tiny cysts in the immediate periventricular white matter.
  • 48. There is enlargement of the atria of the lateral ventricles with a decrease in volume of the adjacent white matter, and the walls of the lateral ventricles have a wavy appearance.
  • 49. POSTNATAL INFANTS & YOUNG CHILDREN  Hypoxic-ischemic injuries in infants and young children are usually the result of drowning, choking, or non accidental trauma.  As myelination nears completion by about 2 years of age, injuries similar to the pattern seen in adults begin to appear.
  • 50. SEVERE ASPHYXIA  Severe insults to infants between 1 and 2 years of age result in injuries to the corpora striata, lateral geniculate nuclei, hippocampi, and cerebral cortex (particularly the anterior frontal and parieto-occipital cortex), with relative sparing of the thalami and perirolandic cortex.  Injuries occurring after the immediate perinatal period but before 1 year of age can demonstrate features of both birth asphyxia and later infantile asphyxia, with involvement of the basal ganglia (predominantly posteriorly), lateral thalami, and dorsal midbrain, as well as cortical injury.
  • 51. CT  Early CT performed within 24 hours of an insult may be negative or may demonstrate only subtle hypoattenuation of the deep gray matter structures .  Subsequent CT will demonstrate diffuse basal ganglia abnormalities along with diffuse cerebral edema, manifesting as cortical hypoattenuation, loss of normal “gray-white” differentiation, and cisternal and sulcal effacement.  There may be relative sparing of the perirolandic regions . Hemorrhagic infarctions of the basal ganglia may be evident by 4–6 days .  Imaging in the chronic phase will demonstrate diffuse atrophy with sulcal and ventricular enlargement
  • 52. CT  Within the first 24 hours, a small number of these patients may demonstrate the “reversal sign,” in which there is reversal in the normal CT attenuation of gray matter and white matter.  Another well-known CT sign of severe HII is the “white cerebellum sign” , which has been described in at least one study as a component of the reversal sign and in which there is diffuse edema and hypoattenuation of the cerebral hemispheres with sparing of the cerebellum and brainstem, resulting in apparent high attenuation of the cerebellum and brainstem relative to the cerebral hemispheres.
  • 53. Unenhanced CT scan shows diffuse cortical swelling and hyperattenuation in the white matter relative to areas of preserved cortex, a finding that is referred to as the reversal sign and generally portends a poor prognosis. A small amount of extraaxial hemorrhage adjacent to the left frontal lobe is also seen.
  • 54. Unenhanced CT scan demonstrates the white cerebellum sign. The cerebellar hemispheres (*) are hyperattenuating relative to the supratentorial structures, which are hypoattenuating due to edema.
  • 55. Unenhanced CT scan obtained at the level of the basal ganglia after cardiopulmonary arrest that lasted 30 minutes is essentially unremarkable
  • 56. On an unenhanced CT scan, the cerebellum appears slightly hyperattenuating relative to the rest of the brain
  • 57. Diffusion-weighted and T2-weighted MR images obtained 4 days later show high signal intensity with corresponding T2 abnormalities in the caudate nuclei (white arrows), lentiform nuclei (black arrows), and occipital lobes (*
  • 58. MRI  MR imaging is frequently performed in children with HII. Diffusion-weighted images will usually be abnormal within the first 12–24 hours, initially demonstrating bright signal intensity in the posterolateral lentiform nuclei ; thalamic involvement (when present) will usually involve the ventrolateral nuclei.  Over the next 48 hours, there is typically significant progression of involvement to include the remainder of the basal ganglia and the cortex
  • 59. MRI  Conventional T1- and T2-weighted images obtained in the first 24 hours are often normal and may appear so for up to 2 days.  By 48 hours, T2-weighted images will usually demonstrate diffuse basal ganglia and cortical signal intensity abnormality
  • 60. MILD TO MODERATE ASPHYXIA  As in term neonates, milder anoxic events in older infants will generally result in watershed zone injuries involving the cortex and subcortical white matter.  White matter lesions are more common in children under 1 year of age. Relative sparing of the periventricular white matter will be seen.
  • 61. Unenhanced head CT scan shows bilateral cortical and subcortical hypoattenuation in the parasagittal watershed regions
  • 62. Diffusion-weighted MR image obtained at the same level shows corresponding high-signal-intensity areas compatible with watershed infarcts.
  • 63. OLDER CHILDREN & ADULTS  HII in adults is more often a result of cardiac arrest or cerebrovascular disease, with secondary hypoxemia.  Drowning and asphyxiation remain common causes of HII in older children.  Mild to moderate global ischemic insults to the brain usually result in watershed zone infarcts.  Severe HII in this population primarily affects the gray matter structures: the basal ganglia, thalami, cerebral cortex (in particular the sensorimotor and visual cortices, although involvement is often diffuse), cerebellum, and hippocampi
  • 64. CT  In older patients, CT is generally the initial imaging study performed when brain injury is suspected.  CT findings include diffuse edema with effacement of the CSF-containing spaces, decreased cortical gray matter attenuation with loss of normal gray-white differentiation, and decreased bilateral basal ganglia attenuation.  As in young children, the reversal sign and the white cerebellum sign may be seen in adults.
  • 65. MRI  Diffusion-weighted MR imaging is the earliest imaging modality to become positive, usually within the first few hours after a hypoxic-ischemic event.  During the first 24 hours, diffusion-weighted imaging may demonstrate increased signal intensity in the cerebellar hemispheres, basal ganglia, or cerebral cortex (in particular, the perirolandic and occipital cortices) .  The thalami, brainstem, or hippocampi may also be involved
  • 66. MRI  As in younger patients, conventional T1- and T2-weighted images are often normal or demonstrate only very subtle abnormalities.  In the early subacute period (24 hours–2 weeks), conventional T2- weighted images typically become positive and demonstrate increased signal intensity and swelling of the injured gray matter structures, although these findings may be subtle. As mentioned earlier, diffusion- weighted imaging abnormalities usually pseudonormalize by the end of the 1st week .  Gray matter signal intensity abnormalities at conventional MR imaging may persist into the end of the 2nd week.  In the chronic stage, T2-weighted images may demonstrate some residual hyperintensity in the basal ganglia, and T1-weighted images may show cortical necrosis , which is seen as areas of high signal intensity in the cortex
  • 67. Axial T2-weighted and diffusion-weighted MR images show diffuse white matter hyperintensity. On the corresponding ADC map, the white matter is hypointense
  • 68. MR SPECTROSCOPY  MR spectroscopy is perhaps more sensitive to injury and more indicative of the severity of injury in the first 24 hours after a hypoxic-ischemic episode, when conventional and diffusion- weighted MR imaging may yield false-negative findings or lead to significant underestimation of the extent of injury.
  • 69.  MR spectroscopy will demonstrate substantial lactate elevation (appearing as a doublet centered in the deep gray nuclei, parieto- occipital region, or white matter of the parasagittal watershed zones by as early as 2–8 hours .  A glutamine-glutamate peak may also be detected , probably reflecting the release of glutamate that occurs in HII.
  • 70.

Editor's Notes

  1. B/O Danwale Sushma Ravindra
  2. B/O Dhonde Ujjawla Anil
  3. B/O Liman Trupti Suhas
  4. B/O Saste Manisha Sachin
  5. B/O Dhumal Sumitra Narsingh
  6. B/O Katkar Sheetal Ramdas