Block 3
Exact Angles
What is to be Learned?
• The exact trig values of vital angles
• How to use exact values with related
angles
Finding the angles
450
450
1
1
√2
H
O
A
sin450
= 1
/√2
cos450
= 1
/√2
tan450
= 1
/1 = 1
Finding the angles
600
600
2
2
2
H
O
A
sin600
= √3
/2
cos600
= 1
/2
tan600
= √3
/1 = √3
600
1 1
300
300
√3
Finding the angles
600
2
H
O
A
sin600
= √3
/2
cos600
= 1
/2
tan600
= √3
/1 = √3
1
300
√3
cos300
= √3
/2
sin300
= 1
/2
tan300
= 1
/√3
And Finally
y = sinx y = cosx
Sin00
= 0
Sin900
= 1
Cos00
= 1
Cos900
= 0
Exact Values
There are some trig values we must
memorise – they are exact (not
approximations)
0000
303000
454500
606000
909000
sin
cos
tan
0 π
/2
π
/3
π
/4
π
/6
degrees
rads
0 1½ 1
/√2
√3
/2
1 √3
/2
1
/√2 ½ 0
0 1
/√3 1 √3 ∞
Finding all the relations
There are 4 related angles (usually)
Less than 900
Between 900
and 1800
Between 1800
and 2700
Between 2700
and 3600
a0
a0
180 – a
180 + a
360 – a
3200
1400
2200
400
Finding relations using NWD
a0
180 – a
180 + a 360 – a
iii
iii iv
Easiest when starting
in Quadrant 1
(Acute angle)
Relations of 700 i 700
ii 180 – 70 = 1100
iii 180 + 70 = 2500
iv 360 – 70 = 2900
AS
T C
Relations from non acute angles
Ex 2300
180 – a
180 + a
iii
iii iv
a0
360 - a
AS
T C
Quad iii
so 180 + a = 2300
a = 500
can easily find
rest of relations
180 – 50 = 1300
360 – 50 = 3100
0, 3600
1800
2700
- need related acute angle
900
Relations from non acute angles
Ex 3300
180 – a
180 + a
iii
iii iv
a0
360 – a
AS
T C
Quad iv
so 360 – a = 3300
a = 300
rest of relations
180 – 30 = 1500
180 + 30 = 2100
0, 3600
900
1800
2700
900
Find relations of these angles
1. 1000
800
2600
2800
2. 2000
200
1600
3400
3. 3000
600
1200
2400
4. 1950
150
1650
3450
5. 3080
520
1280
2320
Exact Values of non acute angles
Ex sin 3300
180 – a
180 + a
iii
iii iv
a0
360 – a
AS
T C
Quad iv
so 360 – a
a = 300
sin 300
sin3300
= ½
- need related acute angle
–
= 3300 900
1800
0
Acute Exact Value
= ½
Related Exact Value
Check Sign
00
,3600
Exact Values of non acute angles
Ex tan 1350
180 – a
180 + a
iii
iii iv
a0
360 – a
AS
T C
Quad ii
so 180 – a
a = 450
tan 450
tan1350
= 1
- need related acute angle
–
= 1350 900
1800
0
Acute Exact Value
= 1
Related Exact Value
Check Sign
00
,3600
Exact Values of non acute angles
Ex cos 2400
180 – a
180 + a
iii
iii iv
a0
360 – a
AS
T C
Quad iii
so 180 + a
a = 600
cos 600
cos 2400
= ½
- need related acute angle
–
= 2400 900
1800
0
00
,3600
Acute Exact Value
= ½
Related Exact Value
Check Sign
You Try
1. sin1200
2. cos2400
3. tan1350
4. sin2250
5. tan2100
6. cos3300
7. sin1800
(beware!)
√3
/2
- ½
-1
- 1
/√2
1
/√3
√3
/2
0
Key Question
It gets nastier!
Ex cos5π
/4
180 – a
180 + a
iii
iii iv
a0
360 - a
AS
T C
Quad iii
so 180 + a = 2250
a = 450
cos450
= 1
/√2
cos2250
= - 1
/√2
55π
/4 X 180
/ π = 900 π
/4 π
= 2250
i.e. coscos55π
/4 = - 1
/√2

Exact values

  • 1.
  • 2.
    What is tobe Learned? • The exact trig values of vital angles • How to use exact values with related angles
  • 3.
    Finding the angles 450 450 1 1 √2 H O A sin450 =1 /√2 cos450 = 1 /√2 tan450 = 1 /1 = 1
  • 4.
    Finding the angles 600 600 2 2 2 H O A sin600 =√3 /2 cos600 = 1 /2 tan600 = √3 /1 = √3 600 1 1 300 300 √3
  • 5.
    Finding the angles 600 2 H O A sin600 =√3 /2 cos600 = 1 /2 tan600 = √3 /1 = √3 1 300 √3 cos300 = √3 /2 sin300 = 1 /2 tan300 = 1 /√3
  • 6.
    And Finally y =sinx y = cosx Sin00 = 0 Sin900 = 1 Cos00 = 1 Cos900 = 0
  • 7.
    Exact Values There aresome trig values we must memorise – they are exact (not approximations)
  • 8.
    0000 303000 454500 606000 909000 sin cos tan 0 π /2 π /3 π /4 π /6 degrees rads 0 1½1 /√2 √3 /2 1 √3 /2 1 /√2 ½ 0 0 1 /√3 1 √3 ∞
  • 9.
    Finding all therelations There are 4 related angles (usually) Less than 900 Between 900 and 1800 Between 1800 and 2700 Between 2700 and 3600 a0 a0 180 – a 180 + a 360 – a 3200 1400 2200 400
  • 10.
    Finding relations usingNWD a0 180 – a 180 + a 360 – a iii iii iv Easiest when starting in Quadrant 1 (Acute angle) Relations of 700 i 700 ii 180 – 70 = 1100 iii 180 + 70 = 2500 iv 360 – 70 = 2900 AS T C
  • 11.
    Relations from nonacute angles Ex 2300 180 – a 180 + a iii iii iv a0 360 - a AS T C Quad iii so 180 + a = 2300 a = 500 can easily find rest of relations 180 – 50 = 1300 360 – 50 = 3100 0, 3600 1800 2700 - need related acute angle 900
  • 12.
    Relations from nonacute angles Ex 3300 180 – a 180 + a iii iii iv a0 360 – a AS T C Quad iv so 360 – a = 3300 a = 300 rest of relations 180 – 30 = 1500 180 + 30 = 2100 0, 3600 900 1800 2700 900
  • 13.
    Find relations ofthese angles 1. 1000 800 2600 2800 2. 2000 200 1600 3400 3. 3000 600 1200 2400 4. 1950 150 1650 3450 5. 3080 520 1280 2320
  • 14.
    Exact Values ofnon acute angles Ex sin 3300 180 – a 180 + a iii iii iv a0 360 – a AS T C Quad iv so 360 – a a = 300 sin 300 sin3300 = ½ - need related acute angle – = 3300 900 1800 0 Acute Exact Value = ½ Related Exact Value Check Sign 00 ,3600
  • 15.
    Exact Values ofnon acute angles Ex tan 1350 180 – a 180 + a iii iii iv a0 360 – a AS T C Quad ii so 180 – a a = 450 tan 450 tan1350 = 1 - need related acute angle – = 1350 900 1800 0 Acute Exact Value = 1 Related Exact Value Check Sign 00 ,3600
  • 16.
    Exact Values ofnon acute angles Ex cos 2400 180 – a 180 + a iii iii iv a0 360 – a AS T C Quad iii so 180 + a a = 600 cos 600 cos 2400 = ½ - need related acute angle – = 2400 900 1800 0 00 ,3600 Acute Exact Value = ½ Related Exact Value Check Sign
  • 17.
    You Try 1. sin1200 2.cos2400 3. tan1350 4. sin2250 5. tan2100 6. cos3300 7. sin1800 (beware!) √3 /2 - ½ -1 - 1 /√2 1 /√3 √3 /2 0 Key Question
  • 18.
    It gets nastier! Excos5π /4 180 – a 180 + a iii iii iv a0 360 - a AS T C Quad iii so 180 + a = 2250 a = 450 cos450 = 1 /√2 cos2250 = - 1 /√2 55π /4 X 180 / π = 900 π /4 π = 2250 i.e. coscos55π /4 = - 1 /√2