SlideShare a Scribd company logo
Multidimensional Monotonicity Discovery
with mBART
Ed George
Wharton, University of Pennsylvania
edgeorge@upenn.edu
Collaborations with:
Hugh Chipman (Acadia)
Rob McCulloch (Arizona State)
Tom Shively (UT Austin)
Bayesian, Fiducial, and Frequentist Conference
Duke University
April 29, 2019
1 / 45
Plan
I) Review BART
II) Introduce Monotone BART: mBART
III) Monotonicity Discovery with mBART
2 / 45
Part I. BART (Bayesian Additive Regression Trees)
Data: n observations of y and x = (x1, ..., xp)
Suppose: Y = f (x) + , symmetric with mean 0
Bayesian Ensemble Idea: Approximate unknown f (x) by the form
f (x) = g(x; θ1) + g(x; θ2) + ... + g(x; θm)
θ1, θ2, . . . , θm iid ∼ π(θ)
and use the posterior of f given y for inference.
BART is obtained when each g(x; θj ) is a regression tree.
Key calibration: Using y, set π(θ) so that Var(f ) ≈ Var(y).
3 / 45
Beginning with a Single Tree Model
4 / 45
Bayesian CART: Just add a prior π(M, T)
Bayesian CART Model Search
(Chipman, George, McCulloch 1998)
π(M, T) = π(M | T)π(T)
π(M | T) : (µ1, µ2, . . . , µb) ∼ Nb(0, τ2I)
π(T): Stochastic process to generate tree skeleton plus uniform
prior on splitting variables and splitting rules.
Closed form for π(T | y) facilitates MCMC stochastic search for
promising trees.
5 / 45
Moving on to BART
Bayesian Additive Regression Trees
(Chipman, George, McCulloch 2010)
The BART ensemble model
Y = g(x; T1, M1)+g(x; T2, M2)+. . .+g(x; Tm, Mm)+σz, z ∼ N(0, 1)
Each (Ti , Mi ) identifies a single tree.
E(Y | x, T1, M1, . . . , Tm, Mm) is the sum of m bottom node µ’s,
one from each tree.
Number of trees m can be much larger than sample size n.
g(x; T1, M1), g(x; T2, M2), ..., g(x; Tm, Mm) is a highly redundant
“over-complete basis” with many many parameters.
6 / 45
Complete the Model with a Regularization Prior
π((T1, M1), (T2, M2), . . . , (Tm, Mm), σ)
π applies the Bayesian CART prior to each (Tj , Mj ) independently
so that:
Each T small.
Each µ small.
σ will be compatible with the observed variation of y.
The observed variation of y is used to guide the choice of the
hyperparameters for the µ and σ priors.
π is a “regularization prior” as it keeps the contribution of each
g(x; Ti , Mi ) small, explaining only a small portion of the fit.
7 / 45
Build up the fit, by adding up tiny bits of fit ..
8 / 45
Connections to Other Modeling Ideas
Bayesian Nonparametrics:
Lots of parameters (to make model flexible)
A strong prior to shrink towards simple structure (regularization)
BART shrinks towards additive models with some interaction
Dynamic Random Basis:
g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive
Gradient Boosting:
Overall fit becomes the cumulative effort of many “weak learners”
Connections to Other Modeling Ideas
Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z
plus
#((T1,M1),....(Tm,Mm),&)
12
Bayesian Nonparametrics:
Lots of parameters (to make model flexible)
A strong prior to shrink towards simple structure (regularization)
BART shrinks towards additive models with some interaction
Dynamic Random Basis Elements:
g(x; T1, M1), ..., g(x; Tm, Mm) are dimensionally adaptive
Gradient Boosting:
Fit becomes the cumulative effort of many weak learners
9 / 45
A Sketch of the BART MCMC Algorithm
Bayesian Nonparametrics:
Lots of parameters (to make model flexible)
A strong prior to shrink towards simple structure (regularization)
BART shrinks towards additive models with some interaction
Dynamic Random Basis:
g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive
Gradient Boosting:
Overall fit becomes the cumulative effort of many “weak learners”
Connections to Other Modeling Ideas
Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z
plus
#((T1,M1),....(Tm,Mm),&)
12
Bayesian Backfitting: Outer loop is a “simple” Gibbs sampler
(Ti , Mi ) | Y , all other (Tj , Mj ), and σ
σ | Y , (T1, M1, . . . , . . . , Tm, Mm)
To draw (Ti , Mi ) above, subtract the contributions of the other
trees from both sides to get a simple one-tree model.
We integrate out M to draw T and then draw M | T.
10 / 45
For the draw of T we use a Metropolis-Hastings within Gibbs step.
Our proposal moves around tree space by proposing local
modifications such as the “birth-death” step:Because p(T | data) is available in closed form (up to a norming constant),
we use a Metropolis-Hastings algorithm.
Our proposal moves around tree space by proposing local modifications
such as
=>
?
=>
?
propose a more complex tree
propose a simpler tree
Such modifications are accepted according to their compatibility
with p(T | data).
20
Simulating p(T | data) with the Bayesian CART Algorithm
... as the MCMC runs, each tree in the sum will grow and shrink,
swapping fit amongst them ....
11 / 45
Using the MCMC Output to Draw Inference
Each iteration d results in a draw from the posterior of f
ˆfd (·) = g(·; T1d , M1d ) + · · · + g(·; Tmd , Mmd )
To estimate f (x) we simply average the ˆfd (·) draws at x
Posterior uncertainty is captured by variation of the ˆfd (x)
eg, 95% credible region estimated by middle 95% of values
Can do the same with functionals of f .
12 / 45
Out of Sample Prediction
Predictive comparisons on 42 data sets.
Data from Kim, Loh, Shih and Chaudhuri (2006) (thanks Wei-Yin Loh!)
p = 3 to 65, n = 100 to 7,000.
for each data set 20 random splits into 5/6 train and 1/6 test
use 5-fold cross-validation on train to pick hyperparameters (except
BART-default!)
gives 20*42 = 840 out-of-sample predictions, for each prediction, divide rmse
of different methods by the smallest
+ each boxplots represents
840 predictions for a
method
+ 1.2 means you are 20%
worse than the best
+ BART-cv best
+ BART-default (use default
prior) does amazingly
well!!
RondomForestsNeuralNetBoostingBART−cvBART−default
1.0 1.1 1.2 1.3 1.4 1.5
13 / 45
Automatic Uncertainty Quantification
A simple simulated 1-dimensional example
−1.0 −0.5 0.0 0.5 1.0
−1.0−0.50.00.51.0
x
y
95% pointwise posterior intervals, BART
posterior mean
true f
−1.0 −0.5 0.0 0.5 1.0
−1.0−0.50.00.51.0
x
y
95% pointwise posterior intervals, mBART
Note: mBART on the right plot to be introduced next
14 / 45
Part II. Monotone BART - mBART
Multidimensional Monotone BART
(Chipman, George, McCulloch, Shively 2018)
Idea:
Approximate multivariate monotone functions by the sum of many
single tree models, each of which is monotonic.
15 / 45
An Example of a Monotonic Tree
x1
x2
f(x)
Three different views of
a bivariate monotonic
tree.
16 / 45
What makes this single tree monotonic?
x1
x2
f(x)
A function g is said to be monotonic in xi if for any δ > 0,
g(x1, x2, . . . , xi + δ, xi+1, . . . , xk; T, M)
≥ g(x1, x2, . . . , xi , xi+1, . . . , xk; T, M).
For simplicity and wlog, let’s restrict attention to monotone
nondecreasing functions.
17 / 45
Constraining a tree to be monotone is easy: we simply constrain
the mean level of a node to be greater than those of its below
neighbors and less than those of its above neighbors.
0.2 0.4 0.6 0.8
0.20.40.60.8
x1
x2
4
10
11
12
13
7
node 7 is disjoint from node 4.
node 10 is a below neighbor of node 13.
node 7 is an above neighbor of node 13.
The mean level of node 13 must be greater than those of 10 and
12 and less than that of node 7.
18 / 45
The mBART Prior
Recall the BART parameter
θ = ((T1, M1), (T2, M2), . . . , (Tm, Mm), σ)
Let S = {θ : every tree is monotonic in a desired subset of xi s}
To impose the monotonicity we simply truncate the BART prior
π(θ) to the set S
π∗
(θ) ∝ π(θ) IS (θ)
where IS (θ) is 1 if every tree in θ is monotonic.
19 / 45
A New BART MCMC “Christmas Tree” Algorithm
π((T1, M1), (T2, M2), . . . , (Tm, Mm), σ | y))
Bayesian backfitting again: Iteratively sample each (Tj , Mj ) given
(y, σ) and other (Tj , Mj )’s
Each (T0, M0) → (T1, M1) update is sampled as follows:
Denote move as
(T0, M0
Common, M0
Old ) → (T1, M0
Common, M1
New )
Propose T∗ via birth, death, etc.
If M-H with π(T, M | y) accepts (T∗, M0
Common)
Set (T1
, M1
Common) = (T∗
, M0
Common)
Sample M1
New from π(MNew | T1
, M1
Common, y)
Only M0
Old → M1
New needs to be updated.
Works for both BART and mBART.
20 / 45
Example: Product of two x’s
Let’s consider a very simple simulated monotone example:
Y = x1 x2 + , xi ∼ Uniform(0, 1).
Here is the plot of the true function f (x1, x2) = x1 x2
0.2 0.4 0.6 0.8 1.0
0.20.40.60.81.0
x1
x2
x1
x2
f(x)
21 / 45
First we try a single (just one tree), unconstrained tree model.
Here is the graph of the fit.
0.2 0.4 0.6 0.8
0.20.40.60.8
x1
x2
x1
x2
f(x)
The fit is not terrible, but there are some aspects of the fit which
violate monotonicity.
22 / 45
Here is the graph of the fit with the monotone constraint:
0.2 0.4 0.6 0.8
0.20.40.60.8
x1
x2
x1
x2
f(x)
We see that our fit is monotonic, and more representative of the
true f .
23 / 45
Here is the unconstrained BART fit:
0.2 0.4 0.6 0.8
0.20.40.60.8
x1
x2
x1
x2
f(x)
Much better (of course) but not monotone!
24 / 45
And, finally, the constrained BART fit:
0.2 0.4 0.6 0.8
0.20.40.60.8
x1
x2
x1
x2
f(x)
Not Bad!
Same method works with any number of x’s!
25 / 45
Example: MSE Reduction by Monotone Regularization
Y = x1 x2
2 + x3 x3
4 + x5 + ,
∼ N(0, σ2
), xi ∼ Uniform(0, 1).
For various values of σ, we simulated 5,000 observations.
26 / 45
RMSE improvement over unconstrained BART
qqq
q
q
q
q
qq
q
qq
q
qq
q
q
bart−1 mbart−1 bart−2 mbart−2 bart−3 mbart−3 bart−4 mbart−4
0.100.150.200.250.300.35
σ = 0.2, 0.5, 0.7, 1.0
27 / 45
Part III. Discovering Monotonicity with mBART
Suppose we don’t know if f (x) is monotone up, monotone down or
even monotone at all.
Of course, a simple strategy would be simply compare the fits from
BART and mBART.
Good news, we can do much better than this!
As we’ll now see, mBART can be deployed to simultaneously
estimate all the monotone components of f .
With this strategy, monotonicity can be discovered rather than
imposed!
28 / 45
The Monotone Decomposition of a Function
To begin simply, suppose x is one-dimensional and f is of bounded
variation.
Any such f can be uniquely written (up to an additive
constant) as the sum of a monotone up function and a
monotone down function
f (x) = fup(x) + fdown(x)
where
when f (x) is increasing, fup(x) increases at the same
rate and is flat otherwise,
when f (x) is decreasing, fdown(x) decreases at the
same rate and is flat otherwise.
29 / 45
More precisely, when f is differentiable,
fup(x) =
f (x) when f (x) > 0
0 when f (x) ≤ 0
and
fdown(x) =
f (x) when f (x) < 0
0 when f (x) ≥ 0
Notice the orthogonal decomposition of f
f (x) = fup(x) + fdown(x)
30 / 45
The Discovery Strategy with mBART
Key Idea: To discover the monotone decomposition of f , we
embed f (x) as a two-dimensional function in R2,
f (x) = f ∗
(x, x) = fup(x) + fdown(x).
Letting x1 = x2 = x be duplicate copies of x, we apply mBART to
estimate f ∗(x1, x2)
constrained to be monotone up in the x1 direction, and
constrained to be monotone down in the x2 direction.
We are effectively estimating the monotone projections of
f ∗(x1, x2) onto the x1 and x2 axes
P[x1]f ∗(x1, x2) = fup(x1)
P[x2]f ∗(x1, x2) = fdown(x2)
31 / 45
Example: Suppose Y = x3 + .
q
q
q
q
qq
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qqqq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
qq
q
q
qq
q
q
q
q
q
q
q
−1.0 −0.5 0.0 0.5 1.0
−1.0−0.50.00.5
x
y
BART and mBART
BART
mBART
q
q
q
q
qq
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qqqq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
qq
q
q
qq
q
q
q
q
q
q
q
−1.0 −0.5 0.0 0.5 1.0
−1.0−0.50.00.5
x
y
mBARTD, fup, fdown
mBART: fup
mBART: fdown
mBARTD: overall fit
Note that ˆfdown ≈ 0 (the red in the right plot), as we would expect
when f is monotone up.
32 / 45
As the sample size is increased from 200 to 1,000, ˆfdown gets even
flatter.
q
q
q
qq
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
qq
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
qq
q
q
q
qqq
q
q
q
qq
q
q
q
q
q
qq
qq
q
q
q
q
qq
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
qqq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
qq
q
qqq
qq
q
q
q
q
q
qq
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
qq
qq
q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqq
q
q
q
q
q
qq
q
q
qq
q
q
q
qq
q
q
q
qq
q
q
qq
q
q
q
q
q
qq
qq
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
qq
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
qqq
q
q
q
q
q
q
qqqq
q
q
q
qq
q
q
q
q
q
qq
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
qqq
q
qq
q
q
q
q
q
q
q
q
qq
q
qqq
qq
q
q
q
qq
q
q
qq
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
qqq
q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
qqq
qq
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
qq
q
q
q
q
qq
q
q
−1.0 −0.5 0.0 0.5 1.0
−1.0−0.50.00.51.0
x
y
BART and mBART
BART
mBART
q
q
q
qq
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
qq
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
qq
q
q
q
qqq
q
q
q
qq
q
q
q
q
q
qq
qq
q
q
q
q
qq
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
qqq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
qq
q
qqq
qq
q
q
q
q
q
qq
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
qq
qq
q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqq
q
q
q
q
q
qq
q
q
qq
q
q
q
qq
q
q
q
qq
q
q
qq
q
q
q
q
q
qq
qq
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
qq
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
qqq
q
q
q
q
q
q
qqqq
q
q
q
qq
q
q
q
q
q
qq
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
qqq
q
qq
q
q
q
q
q
q
q
q
qq
q
qqq
qq
q
q
q
qq
q
q
qq
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
qqq
q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
qqq
qq
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
qq
q
q
q
q
qq
q
q
−1.0 −0.5 0.0 0.5 1.0
−1.0−0.50.00.51.0
x
y
mBARTD, fup, fdown
mBART: fup
mBART: fdown
mBARTD: overall fit
Suggests consistent estimation of the monotone components!!
33 / 45
Example: Suppose Y = x2 + .
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
qq
q
q
qq
q
q
q
q
q
q
q
−1.0 −0.5 0.0 0.5 1.0
0.00.20.40.60.81.0
x
y
BART and mBART
BART
mBART
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
qq
q
q
qq
q
q
q
q
q
q
q
−1.0 −0.5 0.0 0.5 1.0
0.00.20.40.60.81.0
x
y
mBARTD, fup, fdown
mBART: fup
mBART: fdown
mBARTD: overall fit
On the left, BART is good, but simple mBART is not.
On the right, ˆfup and ˆfdown are spot on.
And mBARTD = ˆfup + ˆfdown seems just as good as BART!
34 / 45
Example: Suppose Y = sin(x) + .
qq
qqqq
qqqq
qqqq
q
q
qq
q
q
q
q
qq
qqq
qq
qqq
qq
q
q
qq
q
qq
q
q
q
qqq
q
q
q
q
q
q
qqqqqq
qq
q
qqq
qq
q
q
q
q
q
q
qq
q
qqqqqqqqq
q
qqqqq
q
q
qqqq
qqqqq
q
q
q
q
qqqq
qq
qqqq
q
qqq
q
q
q
qqq
qq
qq
q
q
q
qqq
q
q
q
q
qqq
q
q
q
qq
q
q
qqqqqqqqqq
qq
q
q
q
qq
qqq
q
q
qqq
q
q
q
q
q
q
qq
q
q
q
q
q
qqqq
q
qqq
qq
q
q
qq
qqq
q
qqq
qq
q
qqq
qq
q
q
q
qq
q
q
q
qq
qq
qqqq
q
qqqqq
q
qq
q
q
q
qq
q
q
q
q
q
qqq
q
q
q
qq
q
q
qqqqq
q
q
qq
q
qq
q
qqq
qqq
q
qqqqqq
q
qq
q
qqqq
q
qqqq
qqqq
qq
q
qqq
qq
q
qqq
q
qq
qqqqq
qqqq
q
qq
q
q
q
q
q
qqqq
qqq
qq
qq
q
q
q
qqq
q
q
q
qq
qq
q
qq
qq
q
q
qq
qqq
qqqqq
qqqq
qq
q
q
qqq
q
qqq
q
q
q
q
q
q
qqqq
q
q
qqqqqqq
q
q
q
q
qq
q
qqq
q
qq
q
qqq
qq
q
qqqq
qqq
qqqqq
q
q
q
q
q
q
q
qq
qqqqq
q
q
qqq
qqqqqqqq
q
q
qq
qq
q
q
qqqq
q
qqq
qqqq
q
qq
q
q
q
q
qq
−10 −5 0 5 10
−3−2−10123
x
y
BART and mBART
BART
mBART
qq
qqqq
qqqq
qqqq
q
q
qq
q
q
q
q
qq
qqq
qq
qqq
qq
q
q
qq
q
qq
q
q
q
qqq
q
q
q
q
q
q
qqqqqq
qq
q
qqq
qq
q
q
q
q
q
q
qq
q
qqqqqqqqq
q
qqqqq
q
q
qqqq
qqqqq
q
q
q
q
qqqq
qq
qqqq
q
qqq
q
q
q
qqq
qq
qq
q
q
q
qqq
q
q
q
q
qqq
q
q
q
qq
q
q
qqqqqqqqqq
qq
q
q
q
qq
qqq
q
q
qqq
q
q
q
q
q
q
qq
q
q
q
q
q
qqqq
q
qqq
qq
q
q
qq
qqq
q
qqq
qq
q
qqq
qq
q
q
q
qq
q
q
q
qq
qq
qqqq
q
qqqqq
q
qq
q
q
q
qq
q
q
q
q
q
qqq
q
q
q
qq
q
q
qqqqq
q
q
qq
q
qq
q
qqq
qqq
q
qqqqqq
q
qq
q
qqqq
q
qqqq
qqqq
qq
q
qqq
qq
q
qqq
q
qq
qqqqq
qqqq
q
qq
q
q
q
q
q
qqqq
qqq
qq
qq
q
q
q
qqq
q
q
q
qq
qq
q
qq
qq
q
q
qq
qqq
qqqqq
qqqq
qq
q
q
qqq
q
qqq
q
q
q
q
q
q
qqqq
q
q
qqqqqqq
q
q
q
q
qq
q
qqq
q
qq
q
qqq
qq
q
qqqq
qqq
qqqqq
q
q
q
q
q
q
q
qq
qqqqq
q
q
qqq
qqqqqqqq
q
q
qq
qq
q
q
qqqq
q
qqq
qqqq
q
qq
q
q
q
q
qq
−10 −5 0 5 10
−3−2−10123
x
y
mBARTD, fup, fdown
mBART: fup
mBART: fdown
mBARTD: overall fit
BART is great, but simple mBART reveals nothing.
ˆfup and ˆfdown have discovered the monotone decomposition.
And mBARTD = ˆfup + ˆfdown is great too.
To extend this approach to multidimensional x, we simply
duplicate each and every component of x !!!
35 / 45
Example: House Price Data
Let’s look at a simple real example where y = house price,
and x = three characteristics of each house.
> head(x)
nbhd size brick
[1,] 2 1.79 0
[2,] 2 2.03 0
[3,] 2 1.74 0
[4,] 2 1.98 0
[5,] 2 2.13 0
[6,] 1 1.78 0
> dim(x)
[1] 128 3
> summary(x)
nbhd size brick
Min. :1.000 Min. :1.450 Min. :0.0000
1st Qu.:1.000 1st Qu.:1.880 1st Qu.:0.0000
Median :2.000 Median :2.000 Median :0.0000
Mean :1.961 Mean :2.001 Mean :0.3281
3rd Qu.:3.000 3rd Qu.:2.140 3rd Qu.:1.0000
Max. :3.000 Max. :2.590 Max. :1.0000
> summary(y)
Min. 1st Qu. Median Mean 3rd Qu. Max.
69.1 111.3 126.0 130.4 148.2 211.2
y: dollars (thousands).
x: nbhd (categorial), size (sq ft thousands), brick (indicator).
36 / 45
Call:
lm(formula = price ~ nbhd + size + brick, data = hdat)
Residuals:
Min 1Q Median 3Q Max
-30.049 -8.519 0.137 7.640 36.912
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.725 10.766 1.739 0.0845 .
nbhd2 5.556 2.779 1.999 0.0478 *
nbhd3 36.770 2.958 12.430 < 2e-16 ***
size 46.109 5.527 8.342 1.25e-13 ***
brickYes 19.152 2.438 7.855 1.69e-12 ***
---
Residual standard error: 12.5 on 123 degrees of freedom
Multiple R-squared: 0.7903,Adjusted R-squared: 0.7834
F-statistic: 115.9 on 4 and 123 DF, p-value: < 2.2e-16
If the linear model is correct, we are monotone up in all three
variables.
Remark: For the linear model we have to dummy up nbhd, but for
BART and mBART we can simply leave it as an ordered numerical
categorical variable.
37 / 45
Just using x = size, y = price appears to be marginally increasing
in size. (ˆfdown ≈ 0).
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
1.6 1.8 2.0 2.2 2.4 2.6
80100120140160180200
x
y
BART, mBART, and mBARTD
BART
mBART
mBARTD
linear
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
1.6 1.8 2.0 2.2 2.4 2.6
80100120140160180200
x
y
mBARTD: y on (x up, x down)
mBARTD: monotone up fit
mBARTD: monotone down fit
mBARTD
linear
mBART and mBARTD seem much better than BART.
38 / 45
Using x = (nbhd, size, brick), here are the relationships between
the fitted values from various models.
y
100 120 140 160 180
q qq
q
q
q
qq
q
q
q
q
q
q
q
q q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q qq
q
q
q
qq
q
q
q
q
q
q
q
q q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
100 120 140 160 180
q qq
q
q
q
qq
q
q
q
q
q
q
q
q q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q qq
q
q
q
qq
q
q
q
q
q
q
q
q q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
85 90 95
80120160200
qq q
q
q
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
100140180
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
bart
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q q
q q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
qq
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
mbart
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
qq
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
qq
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
100140180
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
100120140160180
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
mbartD
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
fup
100140180
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
80 120 160 200
859095
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
100 120 140 160 180
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
100 120 140 160 180 200
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
fdown
Note the high correlation between mBART, mBARTD and ˆfup.
39 / 45
x axis: mBARTD = ˆfup + ˆfdown.
y axis: red: ˆfup, green: ˆfdown.
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
80 100 120 140 160 180 200
80100120140160180200
yhat−mbartd
fupandfdown
q fup
fdown
mBARTD ≈ ˆfup suggests f is multivariate monotonic !!!
40 / 45
Let’s now look at the effect of size conditionally on the six possible
values of (nbdh, brick)
1.7 1.8 1.9 2.0 2.1 2.2 2.3
100120140160180
size
price
N
N
N
N N
N
N
N
N
N
N
N
N
N
N
N
N
N
N N
N
N
N
N
N
N
N
N
N
N
N
N
N
N N
N
N
N
N
N
N
N
N
N
N
B
B
B
B B
B
B B
B
B
B
B
B
B
B
B
B
B
B B
B
B
B
B
B
B
B
B
B
B
B
B
B
B B
B
B
B
B
B
B
B
B
B
B
BART: conditional effect of size
NBHD1
NBHD2
NBHD3
1.7 1.8 1.9 2.0 2.1 2.2 2.3
100120140160180
size
price
N
N
N
N N N N N
N
N N N
N
N
N
N
N
N
N N N N N
N
N N N
N
N
NN
N
N
N N N N N
N
N N N
N
N
N
B
B
B
B B B B B
B
B B B
B
B
B
B
B
B
B B B B B
B
B B B
B
B
B
B
B
B
B B B B B
B
B B B
B
B
B
mBART: conditional effect of size
1.7 1.8 1.9 2.0 2.1 2.2 2.3
100120140160180
size
price
N
N N
N N N N N
N
N N N
N
N
N
N
N N
N N N N N
N
N N N
N
N
N
N
N N
N N N N N
N
N N N
N
N
N
B
B B
B B B B B
B
B B B
B
B
B
B
B B
B B B B B
B
B B B
B
B
B
B
B B
B B B B B
B
B B B
B
B
B
mBARTD: conditional effect of size
The conditionally monotone effect of size is becoming clearer!
41 / 45
And finally, the effect of size conditionally on the six possible
values of (nbdh, brick) via ˆfup and ˆfdown
1.7 1.8 1.9 2.0 2.1 2.2 2.3
80100120140160180200
size
price
N
N N N N N N N
N
N N N N
N N
N
N N N N N N N
N
N N N N
N NN
N N N N N N N
N
N N N N
N N
B
B B B B B B B
B
B B B B
B B
B
B B B B B B B
B
B B B B
B BB
B B B B B B B
B
B B B B
B B
mBART, fup: conditional effect of size
1.7 1.8 1.9 2.0 2.1 2.2 2.3
80100120140160180200
size
price
N N N N N N N N N N N N N N NN N N N N N N N N N N N N N NN N N N N N N N N N N N N N NB B B B B B B B B B B B B B BB B B B B B B B B B B B B B BB B B B B B B B B B B B B B B
mBARTD, fdown: conditional effect of size
Price is clearly conditionally monotone up in all three variables!
By simultaneously estimating ˆfup + ˆfdown, we have discovered
monotonicity without any imposed assumptions!!!
42 / 45
Concluding Remarks
mBARTD = ˆfup + ˆfdown provides a monotone assumption free
approach for the discovery of the monotone components of f
in multidimensional settings.
Discovering such regions of monotonicity may of scientific
interest in real applications.
We have used informal variable selection to identify the
monotone components here. More formal variable selection
can be used in higher dimensional settings.
As a doubly adaptive shape-constrained regularization
approach,
mBARTD will adapt to mBART when monotonicity is present,
mBARTD will adapt to BART when monotonicity absent,
mBARTD seems at least as good and maybe better, than the
best of mBART and BART in general.
43 / 45
Concluding Remarks
The fully Bayesian nature of BART greatly facilitates
extensions such as mBART, mBARTD and many others.
Despite its many compelling successes in practice, theoretical
frequentist support for BART only now beginning to appear.
For example, Rockova and van der Pas (2017) Posterior
Concentration for Bayesian Regression Trees and Their
Ensembles recently laid out a framework for the first
theoretical results for Bayesian CART and BART, showing
near-minimax posterior concentration when p > n for classes
of Holder continuous functions.
Monotone BART paper is available on Arxiv. Software for
mBART is available at https://bitbucket.org/remcc/mbart.
44 / 45
Thank You!
45 / 45

More Related Content

What's hot

Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4
Fabian Pedregosa
 
An Altering Distance Function in Fuzzy Metric Fixed Point Theorems
An Altering Distance Function in Fuzzy Metric Fixed Point TheoremsAn Altering Distance Function in Fuzzy Metric Fixed Point Theorems
An Altering Distance Function in Fuzzy Metric Fixed Point Theorems
ijtsrd
 
Some real life data analysis on stationary and non-stationary Time Series
Some real life data analysis on stationary and non-stationary Time SeriesSome real life data analysis on stationary and non-stationary Time Series
Some real life data analysis on stationary and non-stationary Time Series
Ajay Bidyarthy
 
Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...
Umberto Picchini
 
Understanding variable importances in forests of randomized trees
Understanding variable importances in forests of randomized treesUnderstanding variable importances in forests of randomized trees
Understanding variable importances in forests of randomized trees
Gilles Louppe
 
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Umberto Picchini
 
Nber slides11 lecture2
Nber slides11 lecture2Nber slides11 lecture2
Nber slides11 lecture2
NBER
 
A likelihood-free version of the stochastic approximation EM algorithm (SAEM)...
A likelihood-free version of the stochastic approximation EM algorithm (SAEM)...A likelihood-free version of the stochastic approximation EM algorithm (SAEM)...
A likelihood-free version of the stochastic approximation EM algorithm (SAEM)...
Umberto Picchini
 
Bias-variance decomposition in Random Forests
Bias-variance decomposition in Random ForestsBias-variance decomposition in Random Forests
Bias-variance decomposition in Random Forests
Gilles Louppe
 
ABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space models
Umberto Picchini
 
Chapter 4 Image Processing: Image Transformation
Chapter 4 Image Processing: Image TransformationChapter 4 Image Processing: Image Transformation
Chapter 4 Image Processing: Image Transformation
Varun Ojha
 
L1-based compression of random forest modelSlide
L1-based compression of random forest modelSlideL1-based compression of random forest modelSlide
L1-based compression of random forest modelSlide
Arnaud Joly
 
12. Random Forest
12. Random Forest12. Random Forest
12. Random Forest
FAO
 
Icros2021 handout
Icros2021 handoutIcros2021 handout
Icros2021 handout
ssuser233dc3
 
X01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorieX01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorie
Marco Moldenhauer
 
Propensity albert
Propensity albertPropensity albert
Propensity albert
Jae-kwang Kim
 
Chapter 3 Image Processing: Basic Transformation
Chapter 3 Image Processing:  Basic TransformationChapter 3 Image Processing:  Basic Transformation
Chapter 3 Image Processing: Basic Transformation
Varun Ojha
 
A bit about мcmc
A bit about мcmcA bit about мcmc
A bit about мcmc
Alexander Favorov
 
Approximate Bayesian model choice via random forests
Approximate Bayesian model choice via random forestsApproximate Bayesian model choice via random forests
Approximate Bayesian model choice via random forests
Christian Robert
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
gregthom992
 

What's hot (20)

Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4
 
An Altering Distance Function in Fuzzy Metric Fixed Point Theorems
An Altering Distance Function in Fuzzy Metric Fixed Point TheoremsAn Altering Distance Function in Fuzzy Metric Fixed Point Theorems
An Altering Distance Function in Fuzzy Metric Fixed Point Theorems
 
Some real life data analysis on stationary and non-stationary Time Series
Some real life data analysis on stationary and non-stationary Time SeriesSome real life data analysis on stationary and non-stationary Time Series
Some real life data analysis on stationary and non-stationary Time Series
 
Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...
 
Understanding variable importances in forests of randomized trees
Understanding variable importances in forests of randomized treesUnderstanding variable importances in forests of randomized trees
Understanding variable importances in forests of randomized trees
 
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
 
Nber slides11 lecture2
Nber slides11 lecture2Nber slides11 lecture2
Nber slides11 lecture2
 
A likelihood-free version of the stochastic approximation EM algorithm (SAEM)...
A likelihood-free version of the stochastic approximation EM algorithm (SAEM)...A likelihood-free version of the stochastic approximation EM algorithm (SAEM)...
A likelihood-free version of the stochastic approximation EM algorithm (SAEM)...
 
Bias-variance decomposition in Random Forests
Bias-variance decomposition in Random ForestsBias-variance decomposition in Random Forests
Bias-variance decomposition in Random Forests
 
ABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space models
 
Chapter 4 Image Processing: Image Transformation
Chapter 4 Image Processing: Image TransformationChapter 4 Image Processing: Image Transformation
Chapter 4 Image Processing: Image Transformation
 
L1-based compression of random forest modelSlide
L1-based compression of random forest modelSlideL1-based compression of random forest modelSlide
L1-based compression of random forest modelSlide
 
12. Random Forest
12. Random Forest12. Random Forest
12. Random Forest
 
Icros2021 handout
Icros2021 handoutIcros2021 handout
Icros2021 handout
 
X01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorieX01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorie
 
Propensity albert
Propensity albertPropensity albert
Propensity albert
 
Chapter 3 Image Processing: Basic Transformation
Chapter 3 Image Processing:  Basic TransformationChapter 3 Image Processing:  Basic Transformation
Chapter 3 Image Processing: Basic Transformation
 
A bit about мcmc
A bit about мcmcA bit about мcmc
A bit about мcmc
 
Approximate Bayesian model choice via random forests
Approximate Bayesian model choice via random forestsApproximate Bayesian model choice via random forests
Approximate Bayesian model choice via random forests
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
 

Similar to MUMS: Bayesian, Fiducial, and Frequentist Conference - Multidimensional Monotonicity Discovery with MBART, Ed George, April 29, 2019

MUMS Opening Workshop - Quantifying Nonparametric Modeling Uncertainty with B...
MUMS Opening Workshop - Quantifying Nonparametric Modeling Uncertainty with B...MUMS Opening Workshop - Quantifying Nonparametric Modeling Uncertainty with B...
MUMS Opening Workshop - Quantifying Nonparametric Modeling Uncertainty with B...
The Statistical and Applied Mathematical Sciences Institute
 
Input analysis
Input analysisInput analysis
Input analysis
Bhavik A Shah
 
ABC short course: model choice chapter
ABC short course: model choice chapterABC short course: model choice chapter
ABC short course: model choice chapter
Christian Robert
 
Bayesian Deep Learning
Bayesian Deep LearningBayesian Deep Learning
Bayesian Deep Learning
RayKim51
 
Tree models with Scikit-Learn: Great models with little assumptions
Tree models with Scikit-Learn: Great models with little assumptionsTree models with Scikit-Learn: Great models with little assumptions
Tree models with Scikit-Learn: Great models with little assumptions
Gilles Louppe
 
the ABC of ABC
the ABC of ABCthe ABC of ABC
the ABC of ABC
Christian Robert
 
Understanding Random Forests: From Theory to Practice
Understanding Random Forests: From Theory to PracticeUnderstanding Random Forests: From Theory to Practice
Understanding Random Forests: From Theory to Practice
Gilles Louppe
 
Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10
FredrikRonquist
 
Benelearn2016
Benelearn2016Benelearn2016
Benelearn2016
Antonio Sutera
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
Christian Robert
 
2_GLMs_printable.pdf
2_GLMs_printable.pdf2_GLMs_printable.pdf
2_GLMs_printable.pdf
Elio Laureano
 
Lecture_9.pdf
Lecture_9.pdfLecture_9.pdf
Lecture_9.pdf
BrofessorPaulNguyen
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
Christian Robert
 
Controlled sequential Monte Carlo
Controlled sequential Monte Carlo Controlled sequential Monte Carlo
Controlled sequential Monte Carlo
JeremyHeng10
 
NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)
Christian Robert
 
Presentation.pdf
Presentation.pdfPresentation.pdf
Presentation.pdf
Chiheb Ben Hammouda
 
Jörg Stelzer
Jörg StelzerJörg Stelzer
Jörg Stelzer
butest
 
Conceptual Introduction to Gaussian Processes
Conceptual Introduction to Gaussian ProcessesConceptual Introduction to Gaussian Processes
Conceptual Introduction to Gaussian Processes
JuanPabloCarbajal3
 
Introduction to Machine Learning Lectures
Introduction to Machine Learning LecturesIntroduction to Machine Learning Lectures
Introduction to Machine Learning Lectures
ssuserfece35
 
Workshop in honour of Don Poskitt and Gael Martin
Workshop in honour of Don Poskitt and Gael MartinWorkshop in honour of Don Poskitt and Gael Martin
Workshop in honour of Don Poskitt and Gael Martin
Christian Robert
 

Similar to MUMS: Bayesian, Fiducial, and Frequentist Conference - Multidimensional Monotonicity Discovery with MBART, Ed George, April 29, 2019 (20)

MUMS Opening Workshop - Quantifying Nonparametric Modeling Uncertainty with B...
MUMS Opening Workshop - Quantifying Nonparametric Modeling Uncertainty with B...MUMS Opening Workshop - Quantifying Nonparametric Modeling Uncertainty with B...
MUMS Opening Workshop - Quantifying Nonparametric Modeling Uncertainty with B...
 
Input analysis
Input analysisInput analysis
Input analysis
 
ABC short course: model choice chapter
ABC short course: model choice chapterABC short course: model choice chapter
ABC short course: model choice chapter
 
Bayesian Deep Learning
Bayesian Deep LearningBayesian Deep Learning
Bayesian Deep Learning
 
Tree models with Scikit-Learn: Great models with little assumptions
Tree models with Scikit-Learn: Great models with little assumptionsTree models with Scikit-Learn: Great models with little assumptions
Tree models with Scikit-Learn: Great models with little assumptions
 
the ABC of ABC
the ABC of ABCthe ABC of ABC
the ABC of ABC
 
Understanding Random Forests: From Theory to Practice
Understanding Random Forests: From Theory to PracticeUnderstanding Random Forests: From Theory to Practice
Understanding Random Forests: From Theory to Practice
 
Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10
 
Benelearn2016
Benelearn2016Benelearn2016
Benelearn2016
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
 
2_GLMs_printable.pdf
2_GLMs_printable.pdf2_GLMs_printable.pdf
2_GLMs_printable.pdf
 
Lecture_9.pdf
Lecture_9.pdfLecture_9.pdf
Lecture_9.pdf
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
 
Controlled sequential Monte Carlo
Controlled sequential Monte Carlo Controlled sequential Monte Carlo
Controlled sequential Monte Carlo
 
NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)
 
Presentation.pdf
Presentation.pdfPresentation.pdf
Presentation.pdf
 
Jörg Stelzer
Jörg StelzerJörg Stelzer
Jörg Stelzer
 
Conceptual Introduction to Gaussian Processes
Conceptual Introduction to Gaussian ProcessesConceptual Introduction to Gaussian Processes
Conceptual Introduction to Gaussian Processes
 
Introduction to Machine Learning Lectures
Introduction to Machine Learning LecturesIntroduction to Machine Learning Lectures
Introduction to Machine Learning Lectures
 
Workshop in honour of Don Poskitt and Gael Martin
Workshop in honour of Don Poskitt and Gael MartinWorkshop in honour of Don Poskitt and Gael Martin
Workshop in honour of Don Poskitt and Gael Martin
 

More from The Statistical and Applied Mathematical Sciences Institute

Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
The Statistical and Applied Mathematical Sciences Institute
 
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
The Statistical and Applied Mathematical Sciences Institute
 
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
The Statistical and Applied Mathematical Sciences Institute
 
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
The Statistical and Applied Mathematical Sciences Institute
 
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
The Statistical and Applied Mathematical Sciences Institute
 
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
The Statistical and Applied Mathematical Sciences Institute
 

More from The Statistical and Applied Mathematical Sciences Institute (20)

Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
 
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
 
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
 
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
 
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
 
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
 
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
 
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
 
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
 
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
 
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
 
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
 
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
 
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
 
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
 
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
 
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
 
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
 
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
 
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
 

Recently uploaded

Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptxBeyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
EduSkills OECD
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
Krassimira Luka
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
math operations ued in python and all used
math operations ued in python and all usedmath operations ued in python and all used
math operations ued in python and all used
ssuser13ffe4
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
HajraNaeem15
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
haiqairshad
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
MysoreMuleSoftMeetup
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Denish Jangid
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
MJDuyan
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
S. Raj Kumar
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
ZK on Polkadot zero knowledge proofs - sub0.pptx
ZK on Polkadot zero knowledge proofs - sub0.pptxZK on Polkadot zero knowledge proofs - sub0.pptx
ZK on Polkadot zero knowledge proofs - sub0.pptx
dot55audits
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
Gender and Mental Health - Counselling and Family Therapy Applications and In...
Gender and Mental Health - Counselling and Family Therapy Applications and In...Gender and Mental Health - Counselling and Family Therapy Applications and In...
Gender and Mental Health - Counselling and Family Therapy Applications and In...
PsychoTech Services
 

Recently uploaded (20)

Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptxBeyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
math operations ued in python and all used
math operations ued in python and all usedmath operations ued in python and all used
math operations ued in python and all used
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
ZK on Polkadot zero knowledge proofs - sub0.pptx
ZK on Polkadot zero knowledge proofs - sub0.pptxZK on Polkadot zero knowledge proofs - sub0.pptx
ZK on Polkadot zero knowledge proofs - sub0.pptx
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
Gender and Mental Health - Counselling and Family Therapy Applications and In...
Gender and Mental Health - Counselling and Family Therapy Applications and In...Gender and Mental Health - Counselling and Family Therapy Applications and In...
Gender and Mental Health - Counselling and Family Therapy Applications and In...
 

MUMS: Bayesian, Fiducial, and Frequentist Conference - Multidimensional Monotonicity Discovery with MBART, Ed George, April 29, 2019

  • 1. Multidimensional Monotonicity Discovery with mBART Ed George Wharton, University of Pennsylvania edgeorge@upenn.edu Collaborations with: Hugh Chipman (Acadia) Rob McCulloch (Arizona State) Tom Shively (UT Austin) Bayesian, Fiducial, and Frequentist Conference Duke University April 29, 2019 1 / 45
  • 2. Plan I) Review BART II) Introduce Monotone BART: mBART III) Monotonicity Discovery with mBART 2 / 45
  • 3. Part I. BART (Bayesian Additive Regression Trees) Data: n observations of y and x = (x1, ..., xp) Suppose: Y = f (x) + , symmetric with mean 0 Bayesian Ensemble Idea: Approximate unknown f (x) by the form f (x) = g(x; θ1) + g(x; θ2) + ... + g(x; θm) θ1, θ2, . . . , θm iid ∼ π(θ) and use the posterior of f given y for inference. BART is obtained when each g(x; θj ) is a regression tree. Key calibration: Using y, set π(θ) so that Var(f ) ≈ Var(y). 3 / 45
  • 4. Beginning with a Single Tree Model 4 / 45
  • 5. Bayesian CART: Just add a prior π(M, T) Bayesian CART Model Search (Chipman, George, McCulloch 1998) π(M, T) = π(M | T)π(T) π(M | T) : (µ1, µ2, . . . , µb) ∼ Nb(0, τ2I) π(T): Stochastic process to generate tree skeleton plus uniform prior on splitting variables and splitting rules. Closed form for π(T | y) facilitates MCMC stochastic search for promising trees. 5 / 45
  • 6. Moving on to BART Bayesian Additive Regression Trees (Chipman, George, McCulloch 2010) The BART ensemble model Y = g(x; T1, M1)+g(x; T2, M2)+. . .+g(x; Tm, Mm)+σz, z ∼ N(0, 1) Each (Ti , Mi ) identifies a single tree. E(Y | x, T1, M1, . . . , Tm, Mm) is the sum of m bottom node µ’s, one from each tree. Number of trees m can be much larger than sample size n. g(x; T1, M1), g(x; T2, M2), ..., g(x; Tm, Mm) is a highly redundant “over-complete basis” with many many parameters. 6 / 45
  • 7. Complete the Model with a Regularization Prior π((T1, M1), (T2, M2), . . . , (Tm, Mm), σ) π applies the Bayesian CART prior to each (Tj , Mj ) independently so that: Each T small. Each µ small. σ will be compatible with the observed variation of y. The observed variation of y is used to guide the choice of the hyperparameters for the µ and σ priors. π is a “regularization prior” as it keeps the contribution of each g(x; Ti , Mi ) small, explaining only a small portion of the fit. 7 / 45
  • 8. Build up the fit, by adding up tiny bits of fit .. 8 / 45
  • 9. Connections to Other Modeling Ideas Bayesian Nonparametrics: Lots of parameters (to make model flexible) A strong prior to shrink towards simple structure (regularization) BART shrinks towards additive models with some interaction Dynamic Random Basis: g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive Gradient Boosting: Overall fit becomes the cumulative effort of many “weak learners” Connections to Other Modeling Ideas Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z plus #((T1,M1),....(Tm,Mm),&) 12 Bayesian Nonparametrics: Lots of parameters (to make model flexible) A strong prior to shrink towards simple structure (regularization) BART shrinks towards additive models with some interaction Dynamic Random Basis Elements: g(x; T1, M1), ..., g(x; Tm, Mm) are dimensionally adaptive Gradient Boosting: Fit becomes the cumulative effort of many weak learners 9 / 45
  • 10. A Sketch of the BART MCMC Algorithm Bayesian Nonparametrics: Lots of parameters (to make model flexible) A strong prior to shrink towards simple structure (regularization) BART shrinks towards additive models with some interaction Dynamic Random Basis: g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive Gradient Boosting: Overall fit becomes the cumulative effort of many “weak learners” Connections to Other Modeling Ideas Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z plus #((T1,M1),....(Tm,Mm),&) 12 Bayesian Backfitting: Outer loop is a “simple” Gibbs sampler (Ti , Mi ) | Y , all other (Tj , Mj ), and σ σ | Y , (T1, M1, . . . , . . . , Tm, Mm) To draw (Ti , Mi ) above, subtract the contributions of the other trees from both sides to get a simple one-tree model. We integrate out M to draw T and then draw M | T. 10 / 45
  • 11. For the draw of T we use a Metropolis-Hastings within Gibbs step. Our proposal moves around tree space by proposing local modifications such as the “birth-death” step:Because p(T | data) is available in closed form (up to a norming constant), we use a Metropolis-Hastings algorithm. Our proposal moves around tree space by proposing local modifications such as => ? => ? propose a more complex tree propose a simpler tree Such modifications are accepted according to their compatibility with p(T | data). 20 Simulating p(T | data) with the Bayesian CART Algorithm ... as the MCMC runs, each tree in the sum will grow and shrink, swapping fit amongst them .... 11 / 45
  • 12. Using the MCMC Output to Draw Inference Each iteration d results in a draw from the posterior of f ˆfd (·) = g(·; T1d , M1d ) + · · · + g(·; Tmd , Mmd ) To estimate f (x) we simply average the ˆfd (·) draws at x Posterior uncertainty is captured by variation of the ˆfd (x) eg, 95% credible region estimated by middle 95% of values Can do the same with functionals of f . 12 / 45
  • 13. Out of Sample Prediction Predictive comparisons on 42 data sets. Data from Kim, Loh, Shih and Chaudhuri (2006) (thanks Wei-Yin Loh!) p = 3 to 65, n = 100 to 7,000. for each data set 20 random splits into 5/6 train and 1/6 test use 5-fold cross-validation on train to pick hyperparameters (except BART-default!) gives 20*42 = 840 out-of-sample predictions, for each prediction, divide rmse of different methods by the smallest + each boxplots represents 840 predictions for a method + 1.2 means you are 20% worse than the best + BART-cv best + BART-default (use default prior) does amazingly well!! RondomForestsNeuralNetBoostingBART−cvBART−default 1.0 1.1 1.2 1.3 1.4 1.5 13 / 45
  • 14. Automatic Uncertainty Quantification A simple simulated 1-dimensional example −1.0 −0.5 0.0 0.5 1.0 −1.0−0.50.00.51.0 x y 95% pointwise posterior intervals, BART posterior mean true f −1.0 −0.5 0.0 0.5 1.0 −1.0−0.50.00.51.0 x y 95% pointwise posterior intervals, mBART Note: mBART on the right plot to be introduced next 14 / 45
  • 15. Part II. Monotone BART - mBART Multidimensional Monotone BART (Chipman, George, McCulloch, Shively 2018) Idea: Approximate multivariate monotone functions by the sum of many single tree models, each of which is monotonic. 15 / 45
  • 16. An Example of a Monotonic Tree x1 x2 f(x) Three different views of a bivariate monotonic tree. 16 / 45
  • 17. What makes this single tree monotonic? x1 x2 f(x) A function g is said to be monotonic in xi if for any δ > 0, g(x1, x2, . . . , xi + δ, xi+1, . . . , xk; T, M) ≥ g(x1, x2, . . . , xi , xi+1, . . . , xk; T, M). For simplicity and wlog, let’s restrict attention to monotone nondecreasing functions. 17 / 45
  • 18. Constraining a tree to be monotone is easy: we simply constrain the mean level of a node to be greater than those of its below neighbors and less than those of its above neighbors. 0.2 0.4 0.6 0.8 0.20.40.60.8 x1 x2 4 10 11 12 13 7 node 7 is disjoint from node 4. node 10 is a below neighbor of node 13. node 7 is an above neighbor of node 13. The mean level of node 13 must be greater than those of 10 and 12 and less than that of node 7. 18 / 45
  • 19. The mBART Prior Recall the BART parameter θ = ((T1, M1), (T2, M2), . . . , (Tm, Mm), σ) Let S = {θ : every tree is monotonic in a desired subset of xi s} To impose the monotonicity we simply truncate the BART prior π(θ) to the set S π∗ (θ) ∝ π(θ) IS (θ) where IS (θ) is 1 if every tree in θ is monotonic. 19 / 45
  • 20. A New BART MCMC “Christmas Tree” Algorithm π((T1, M1), (T2, M2), . . . , (Tm, Mm), σ | y)) Bayesian backfitting again: Iteratively sample each (Tj , Mj ) given (y, σ) and other (Tj , Mj )’s Each (T0, M0) → (T1, M1) update is sampled as follows: Denote move as (T0, M0 Common, M0 Old ) → (T1, M0 Common, M1 New ) Propose T∗ via birth, death, etc. If M-H with π(T, M | y) accepts (T∗, M0 Common) Set (T1 , M1 Common) = (T∗ , M0 Common) Sample M1 New from π(MNew | T1 , M1 Common, y) Only M0 Old → M1 New needs to be updated. Works for both BART and mBART. 20 / 45
  • 21. Example: Product of two x’s Let’s consider a very simple simulated monotone example: Y = x1 x2 + , xi ∼ Uniform(0, 1). Here is the plot of the true function f (x1, x2) = x1 x2 0.2 0.4 0.6 0.8 1.0 0.20.40.60.81.0 x1 x2 x1 x2 f(x) 21 / 45
  • 22. First we try a single (just one tree), unconstrained tree model. Here is the graph of the fit. 0.2 0.4 0.6 0.8 0.20.40.60.8 x1 x2 x1 x2 f(x) The fit is not terrible, but there are some aspects of the fit which violate monotonicity. 22 / 45
  • 23. Here is the graph of the fit with the monotone constraint: 0.2 0.4 0.6 0.8 0.20.40.60.8 x1 x2 x1 x2 f(x) We see that our fit is monotonic, and more representative of the true f . 23 / 45
  • 24. Here is the unconstrained BART fit: 0.2 0.4 0.6 0.8 0.20.40.60.8 x1 x2 x1 x2 f(x) Much better (of course) but not monotone! 24 / 45
  • 25. And, finally, the constrained BART fit: 0.2 0.4 0.6 0.8 0.20.40.60.8 x1 x2 x1 x2 f(x) Not Bad! Same method works with any number of x’s! 25 / 45
  • 26. Example: MSE Reduction by Monotone Regularization Y = x1 x2 2 + x3 x3 4 + x5 + , ∼ N(0, σ2 ), xi ∼ Uniform(0, 1). For various values of σ, we simulated 5,000 observations. 26 / 45
  • 27. RMSE improvement over unconstrained BART qqq q q q q qq q qq q qq q q bart−1 mbart−1 bart−2 mbart−2 bart−3 mbart−3 bart−4 mbart−4 0.100.150.200.250.300.35 σ = 0.2, 0.5, 0.7, 1.0 27 / 45
  • 28. Part III. Discovering Monotonicity with mBART Suppose we don’t know if f (x) is monotone up, monotone down or even monotone at all. Of course, a simple strategy would be simply compare the fits from BART and mBART. Good news, we can do much better than this! As we’ll now see, mBART can be deployed to simultaneously estimate all the monotone components of f . With this strategy, monotonicity can be discovered rather than imposed! 28 / 45
  • 29. The Monotone Decomposition of a Function To begin simply, suppose x is one-dimensional and f is of bounded variation. Any such f can be uniquely written (up to an additive constant) as the sum of a monotone up function and a monotone down function f (x) = fup(x) + fdown(x) where when f (x) is increasing, fup(x) increases at the same rate and is flat otherwise, when f (x) is decreasing, fdown(x) decreases at the same rate and is flat otherwise. 29 / 45
  • 30. More precisely, when f is differentiable, fup(x) = f (x) when f (x) > 0 0 when f (x) ≤ 0 and fdown(x) = f (x) when f (x) < 0 0 when f (x) ≥ 0 Notice the orthogonal decomposition of f f (x) = fup(x) + fdown(x) 30 / 45
  • 31. The Discovery Strategy with mBART Key Idea: To discover the monotone decomposition of f , we embed f (x) as a two-dimensional function in R2, f (x) = f ∗ (x, x) = fup(x) + fdown(x). Letting x1 = x2 = x be duplicate copies of x, we apply mBART to estimate f ∗(x1, x2) constrained to be monotone up in the x1 direction, and constrained to be monotone down in the x2 direction. We are effectively estimating the monotone projections of f ∗(x1, x2) onto the x1 and x2 axes P[x1]f ∗(x1, x2) = fup(x1) P[x2]f ∗(x1, x2) = fdown(x2) 31 / 45
  • 32. Example: Suppose Y = x3 + . q q q q qq q q q q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q qq q q q qq qq q q q q q q q qq q q q q q q q qq q q q q q qq q q q q q q q q q qqqq qq q q q q q q q q q q q q q q qq qq q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q qq q q q qq q q qq q q q q q q q −1.0 −0.5 0.0 0.5 1.0 −1.0−0.50.00.5 x y BART and mBART BART mBART q q q q qq q q q q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q qq q q q qq qq q q q q q q q qq q q q q q q q qq q q q q q qq q q q q q q q q q qqqq qq q q q q q q q q q q q q q q qq qq q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q qq q q q qq q q qq q q q q q q q −1.0 −0.5 0.0 0.5 1.0 −1.0−0.50.00.5 x y mBARTD, fup, fdown mBART: fup mBART: fdown mBARTD: overall fit Note that ˆfdown ≈ 0 (the red in the right plot), as we would expect when f is monotone up. 32 / 45
  • 33. As the sample size is increased from 200 to 1,000, ˆfdown gets even flatter. q q q qq q q q q q q qq qq q q q q q q q q q q q q q q q q qq q q q qq q q q q q q q qq q q qq q q qq qq q q q q q q q q q q qqq q q q q q qq q q q qqq q q q qq q q q q q qq qq q q q q qq q q q q qq qq q q q q q q q q qqq q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q qq q q q qq q qq q qqq qq q q q q q qq q qq q q q q qq q q q q q q q q q q q q qq q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq qq q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q qq q q q q q q q q q qq q q q q q q q qq q q q q q q q qq qq qq q q qq q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q qq q qq q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q qq q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qqqqq q q q q q qq q q qq q q q qq q q q qq q q qq q q q q q qq qq qq q q q q qq q q q q q q q q q qq qq q q q q q q q q q qq q q q q q q qqq q q q q q q q q q q q q q q q q q qqq qq q q qq q q q q q q qq q q q q q q q q q q q qq q q q q q qq q qq q q q q q q q q q qq q q qqq q q q q q q qqqq q q q qq q q q q q qq q q q qqq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q qq q q q q q q q q q qq q q q q q q qq q q q q q qqq q q q q q q q q q q q q q q q q q q q q q q q q qq qq q q q q qqq q qq q q q q q q q q qq q qqq qq q q q qq q q qq q qq q q q q q q qq q q q q q q qq q q qqq q qq q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q qqq qq q q q qq q q q qq q q q q q q q q q q q qqq q q q q q q q q q qq q q q q qqq q q q q q q q q q q q q qq q q q q q q q q qq q qq q q q q q q q q q qq q q q qq q q q q q q q q q qq q q q q q q q q q q q qqq q q q q q q q q q q q q q qq qq q qq q q q q qq q q −1.0 −0.5 0.0 0.5 1.0 −1.0−0.50.00.51.0 x y BART and mBART BART mBART q q q qq q q q q q q qq qq q q q q q q q q q q q q q q q q qq q q q qq q q q q q q q qq q q qq q q qq qq q q q q q q q q q q qqq q q q q q qq q q q qqq q q q qq q q q q q qq qq q q q q qq q q q q qq qq q q q q q q q q qqq q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q qq q q q qq q qq q qqq qq q q q q q qq q qq q q q q qq q q q q q q q q q q q q qq q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq qq q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q qq q q q q q q q q q qq q q q q q q q qq q q q q q q q qq qq qq q q qq q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q qq q qq q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q qq q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qqqqq q q q q q qq q q qq q q q qq q q q qq q q qq q q q q q qq qq qq q q q q qq q q q q q q q q q qq qq q q q q q q q q q qq q q q q q q qqq q q q q q q q q q q q q q q q q q qqq qq q q qq q q q q q q qq q q q q q q q q q q q qq q q q q q qq q qq q q q q q q q q q qq q q qqq q q q q q q qqqq q q q qq q q q q q qq q q q qqq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q qq q q q q q q q q q qq q q q q q q qq q q q q q qqq q q q q q q q q q q q q q q q q q q q q q q q q qq qq q q q q qqq q qq q q q q q q q q qq q qqq qq q q q qq q q qq q qq q q q q q q qq q q q q q q qq q q qqq q qq q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q qqq qq q q q qq q q q qq q q q q q q q q q q q qqq q q q q q q q q q qq q q q q qqq q q q q q q q q q q q q qq q q q q q q q q qq q qq q q q q q q q q q qq q q q qq q q q q q q q q q qq q q q q q q q q q q q qqq q q q q q q q q q q q q q qq qq q qq q q q q qq q q −1.0 −0.5 0.0 0.5 1.0 −1.0−0.50.00.51.0 x y mBARTD, fup, fdown mBART: fup mBART: fdown mBARTD: overall fit Suggests consistent estimation of the monotone components!! 33 / 45
  • 34. Example: Suppose Y = x2 + . q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q qq q q q qq q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q qq q q q qq q q qq q q q q q q q −1.0 −0.5 0.0 0.5 1.0 0.00.20.40.60.81.0 x y BART and mBART BART mBART q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q qq q q q qq q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q qq q q q qq q q qq q q q q q q q −1.0 −0.5 0.0 0.5 1.0 0.00.20.40.60.81.0 x y mBARTD, fup, fdown mBART: fup mBART: fdown mBARTD: overall fit On the left, BART is good, but simple mBART is not. On the right, ˆfup and ˆfdown are spot on. And mBARTD = ˆfup + ˆfdown seems just as good as BART! 34 / 45
  • 35. Example: Suppose Y = sin(x) + . qq qqqq qqqq qqqq q q qq q q q q qq qqq qq qqq qq q q qq q qq q q q qqq q q q q q q qqqqqq qq q qqq qq q q q q q q qq q qqqqqqqqq q qqqqq q q qqqq qqqqq q q q q qqqq qq qqqq q qqq q q q qqq qq qq q q q qqq q q q q qqq q q q qq q q qqqqqqqqqq qq q q q qq qqq q q qqq q q q q q q qq q q q q q qqqq q qqq qq q q qq qqq q qqq qq q qqq qq q q q qq q q q qq qq qqqq q qqqqq q qq q q q qq q q q q q qqq q q q qq q q qqqqq q q qq q qq q qqq qqq q qqqqqq q qq q qqqq q qqqq qqqq qq q qqq qq q qqq q qq qqqqq qqqq q qq q q q q q qqqq qqq qq qq q q q qqq q q q qq qq q qq qq q q qq qqq qqqqq qqqq qq q q qqq q qqq q q q q q q qqqq q q qqqqqqq q q q q qq q qqq q qq q qqq qq q qqqq qqq qqqqq q q q q q q q qq qqqqq q q qqq qqqqqqqq q q qq qq q q qqqq q qqq qqqq q qq q q q q qq −10 −5 0 5 10 −3−2−10123 x y BART and mBART BART mBART qq qqqq qqqq qqqq q q qq q q q q qq qqq qq qqq qq q q qq q qq q q q qqq q q q q q q qqqqqq qq q qqq qq q q q q q q qq q qqqqqqqqq q qqqqq q q qqqq qqqqq q q q q qqqq qq qqqq q qqq q q q qqq qq qq q q q qqq q q q q qqq q q q qq q q qqqqqqqqqq qq q q q qq qqq q q qqq q q q q q q qq q q q q q qqqq q qqq qq q q qq qqq q qqq qq q qqq qq q q q qq q q q qq qq qqqq q qqqqq q qq q q q qq q q q q q qqq q q q qq q q qqqqq q q qq q qq q qqq qqq q qqqqqq q qq q qqqq q qqqq qqqq qq q qqq qq q qqq q qq qqqqq qqqq q qq q q q q q qqqq qqq qq qq q q q qqq q q q qq qq q qq qq q q qq qqq qqqqq qqqq qq q q qqq q qqq q q q q q q qqqq q q qqqqqqq q q q q qq q qqq q qq q qqq qq q qqqq qqq qqqqq q q q q q q q qq qqqqq q q qqq qqqqqqqq q q qq qq q q qqqq q qqq qqqq q qq q q q q qq −10 −5 0 5 10 −3−2−10123 x y mBARTD, fup, fdown mBART: fup mBART: fdown mBARTD: overall fit BART is great, but simple mBART reveals nothing. ˆfup and ˆfdown have discovered the monotone decomposition. And mBARTD = ˆfup + ˆfdown is great too. To extend this approach to multidimensional x, we simply duplicate each and every component of x !!! 35 / 45
  • 36. Example: House Price Data Let’s look at a simple real example where y = house price, and x = three characteristics of each house. > head(x) nbhd size brick [1,] 2 1.79 0 [2,] 2 2.03 0 [3,] 2 1.74 0 [4,] 2 1.98 0 [5,] 2 2.13 0 [6,] 1 1.78 0 > dim(x) [1] 128 3 > summary(x) nbhd size brick Min. :1.000 Min. :1.450 Min. :0.0000 1st Qu.:1.000 1st Qu.:1.880 1st Qu.:0.0000 Median :2.000 Median :2.000 Median :0.0000 Mean :1.961 Mean :2.001 Mean :0.3281 3rd Qu.:3.000 3rd Qu.:2.140 3rd Qu.:1.0000 Max. :3.000 Max. :2.590 Max. :1.0000 > summary(y) Min. 1st Qu. Median Mean 3rd Qu. Max. 69.1 111.3 126.0 130.4 148.2 211.2 y: dollars (thousands). x: nbhd (categorial), size (sq ft thousands), brick (indicator). 36 / 45
  • 37. Call: lm(formula = price ~ nbhd + size + brick, data = hdat) Residuals: Min 1Q Median 3Q Max -30.049 -8.519 0.137 7.640 36.912 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 18.725 10.766 1.739 0.0845 . nbhd2 5.556 2.779 1.999 0.0478 * nbhd3 36.770 2.958 12.430 < 2e-16 *** size 46.109 5.527 8.342 1.25e-13 *** brickYes 19.152 2.438 7.855 1.69e-12 *** --- Residual standard error: 12.5 on 123 degrees of freedom Multiple R-squared: 0.7903,Adjusted R-squared: 0.7834 F-statistic: 115.9 on 4 and 123 DF, p-value: < 2.2e-16 If the linear model is correct, we are monotone up in all three variables. Remark: For the linear model we have to dummy up nbhd, but for BART and mBART we can simply leave it as an ordered numerical categorical variable. 37 / 45
  • 38. Just using x = size, y = price appears to be marginally increasing in size. (ˆfdown ≈ 0). q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q qq q q q q q q q q q q q 1.6 1.8 2.0 2.2 2.4 2.6 80100120140160180200 x y BART, mBART, and mBARTD BART mBART mBARTD linear q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q qq q q q q q q q q q q q 1.6 1.8 2.0 2.2 2.4 2.6 80100120140160180200 x y mBARTD: y on (x up, x down) mBARTD: monotone up fit mBARTD: monotone down fit mBARTD linear mBART and mBARTD seem much better than BART. 38 / 45
  • 39. Using x = (nbhd, size, brick), here are the relationships between the fitted values from various models. y 100 120 140 160 180 q qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q q q q q q q q qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q q q q q q qq q q q q q q q 100 120 140 160 180 q qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q q q q q q qq q q q q q q q q qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q q q q q q qq q q q q q q q 85 90 95 80120160200 qq q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qqq q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q q q qq q q q q q q q 100140180 q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q bart q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q qq q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q qq q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q qq q q q q qq qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q mbart q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q qq q q q q qq qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q qq q q q q qq qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q 100140180 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q 100120140160180 q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q qq q q q q qq q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q qq q q q q qq q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q mbartD q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q qq q q q q qq q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q qq q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q qq q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q qq q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q qq q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q fup 100140180 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q qq q q q q q q qq q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q 80 120 160 200 859095 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q 100 120 140 160 180 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q 100 120 140 160 180 200 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q fdown Note the high correlation between mBART, mBARTD and ˆfup. 39 / 45
  • 40. x axis: mBARTD = ˆfup + ˆfdown. y axis: red: ˆfup, green: ˆfdown. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q 80 100 120 140 160 180 200 80100120140160180200 yhat−mbartd fupandfdown q fup fdown mBARTD ≈ ˆfup suggests f is multivariate monotonic !!! 40 / 45
  • 41. Let’s now look at the effect of size conditionally on the six possible values of (nbdh, brick) 1.7 1.8 1.9 2.0 2.1 2.2 2.3 100120140160180 size price N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B BART: conditional effect of size NBHD1 NBHD2 NBHD3 1.7 1.8 1.9 2.0 2.1 2.2 2.3 100120140160180 size price N N N N N N N N N N N N N N N N N N N N N N N N N N N N N NN N N N N N N N N N N N N N N B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B mBART: conditional effect of size 1.7 1.8 1.9 2.0 2.1 2.2 2.3 100120140160180 size price N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B mBARTD: conditional effect of size The conditionally monotone effect of size is becoming clearer! 41 / 45
  • 42. And finally, the effect of size conditionally on the six possible values of (nbdh, brick) via ˆfup and ˆfdown 1.7 1.8 1.9 2.0 2.1 2.2 2.3 80100120140160180200 size price N N N N N N N N N N N N N N N N N N N N N N N N N N N N N NN N N N N N N N N N N N N N N B B B B B B B B B B B B B B B B B B B B B B B B B B B B B BB B B B B B B B B B B B B B B mBART, fup: conditional effect of size 1.7 1.8 1.9 2.0 2.1 2.2 2.3 80100120140160180200 size price N N N N N N N N N N N N N N NN N N N N N N N N N N N N N NN N N N N N N N N N N N N N NB B B B B B B B B B B B B B BB B B B B B B B B B B B B B BB B B B B B B B B B B B B B B mBARTD, fdown: conditional effect of size Price is clearly conditionally monotone up in all three variables! By simultaneously estimating ˆfup + ˆfdown, we have discovered monotonicity without any imposed assumptions!!! 42 / 45
  • 43. Concluding Remarks mBARTD = ˆfup + ˆfdown provides a monotone assumption free approach for the discovery of the monotone components of f in multidimensional settings. Discovering such regions of monotonicity may of scientific interest in real applications. We have used informal variable selection to identify the monotone components here. More formal variable selection can be used in higher dimensional settings. As a doubly adaptive shape-constrained regularization approach, mBARTD will adapt to mBART when monotonicity is present, mBARTD will adapt to BART when monotonicity absent, mBARTD seems at least as good and maybe better, than the best of mBART and BART in general. 43 / 45
  • 44. Concluding Remarks The fully Bayesian nature of BART greatly facilitates extensions such as mBART, mBARTD and many others. Despite its many compelling successes in practice, theoretical frequentist support for BART only now beginning to appear. For example, Rockova and van der Pas (2017) Posterior Concentration for Bayesian Regression Trees and Their Ensembles recently laid out a framework for the first theoretical results for Bayesian CART and BART, showing near-minimax posterior concentration when p > n for classes of Holder continuous functions. Monotone BART paper is available on Arxiv. Software for mBART is available at https://bitbucket.org/remcc/mbart. 44 / 45