This lecture discusses ensemble methods in machine learning. It introduces bagging, which trains multiple models on random subsets of the training data and averages their predictions, in order to reduce variance and prevent overfitting. Bagging is effective because it decreases the correlation between predictions. Random forests apply bagging to decision trees while also introducing more randomness by selecting a random subset of features to consider at each node. The next lecture will cover boosting, which aims to reduce bias by training models sequentially to focus on examples previously misclassified.