Digital filters can remove unwanted noise from signals or extract useful frequency components. They operate by sampling an analog signal, processing the digital values, and converting back to analog. Finite impulse response (FIR) filters use weighted sums of past inputs for outputs and are inherently stable without feedback. Infinite impulse response (IIR) filters use feedback, with outputs and next states determined by inputs and past outputs. Common filters include moving average filters and filters that introduce gain, delay, or differences between signal values. Design involves selecting coefficients for desired frequency responses. Stability depends on pole locations within the unit circle. Digital filters find applications in communications, audio, imaging, and other areas.