Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
Uploaded by
Deep Learning JP
777 views
[DL輪読会]Variational Autoencoder with Arbitrary Conditioning
2019/04/12 Deep Learning JP: http://deeplearning.jp/seminar-2/
Technology
◦
Related topics:
Deep Learning
•
Read more
0
Save
Share
Embed
Embed presentation
Download
Download to read offline
1
/ 17
2
/ 17
3
/ 17
4
/ 17
5
/ 17
6
/ 17
7
/ 17
8
/ 17
9
/ 17
10
/ 17
11
/ 17
12
/ 17
13
/ 17
14
/ 17
15
/ 17
16
/ 17
17
/ 17
More Related Content
PDF
深層生成モデルと世界モデル(2020/11/20版)
by
Masahiro Suzuki
PDF
[DL輪読会]Temporal Abstraction in NeurIPS2019
by
Deep Learning JP
PDF
cvpaper.challenge 研究効率化 Tips
by
cvpaper. challenge
PPTX
[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
by
Deep Learning JP
PDF
「世界モデル」と関連研究について
by
Masahiro Suzuki
PDF
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
by
Deep Learning JP
PPTX
[DL輪読会]Learning Latent Dynamics for Planning from Pixels
by
Deep Learning JP
PDF
[DL輪読会]Progressive Growing of GANs for Improved Quality, Stability, and Varia...
by
Deep Learning JP
深層生成モデルと世界モデル(2020/11/20版)
by
Masahiro Suzuki
[DL輪読会]Temporal Abstraction in NeurIPS2019
by
Deep Learning JP
cvpaper.challenge 研究効率化 Tips
by
cvpaper. challenge
[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
by
Deep Learning JP
「世界モデル」と関連研究について
by
Masahiro Suzuki
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
by
Deep Learning JP
[DL輪読会]Learning Latent Dynamics for Planning from Pixels
by
Deep Learning JP
[DL輪読会]Progressive Growing of GANs for Improved Quality, Stability, and Varia...
by
Deep Learning JP
What's hot
PPTX
【DL輪読会】Transformers are Sample Efficient World Models
by
Deep Learning JP
PPTX
[DL輪読会]“SimPLe”,“Improved Dynamics Model”,“PlaNet” 近年のVAEベース系列モデルの進展とそのモデルベース...
by
Deep Learning JP
PPTX
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
by
Deep Learning JP
PDF
[DL輪読会] Spectral Norm Regularization for Improving the Generalizability of De...
by
Deep Learning JP
PPTX
[DL輪読会]Neural Ordinary Differential Equations
by
Deep Learning JP
PDF
TensorFlowで逆強化学習
by
Mitsuhisa Ohta
PPTX
【DL輪読会】Emergence of maps in the memories of blind navigation agents
by
Deep Learning JP
PDF
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
by
Deep Learning JP
PDF
プレゼン・ポスターで自分の研究を「伝える」 (How to do technical oral/poster presentation)
by
Toshihiko Yamasaki
PPTX
【DL輪読会】Hopfield network 関連研究について
by
Deep Learning JP
PDF
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
by
Deep Learning JP
PDF
強化学習と逆強化学習を組み合わせた模倣学習
by
Eiji Uchibe
PPTX
【DL輪読会】Scaling Laws for Neural Language Models
by
Deep Learning JP
PDF
POMDP下での強化学習の基礎と応用
by
Yasunori Ozaki
PPT
大学3年生の僕に伝えたいことをつらつらと
by
Toshinori Sato
PDF
[DL輪読会]`強化学習のための状態表現学習 -より良い「世界モデル」の獲得に向けて-
by
Deep Learning JP
PPTX
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning 画像×言語の大規模基盤モ...
by
Deep Learning JP
PPTX
[DL輪読会]V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete...
by
Deep Learning JP
PPTX
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
by
Shota Imai
PPTX
強化学習アルゴリズムPPOの解説と実験
by
克海 納谷
【DL輪読会】Transformers are Sample Efficient World Models
by
Deep Learning JP
[DL輪読会]“SimPLe”,“Improved Dynamics Model”,“PlaNet” 近年のVAEベース系列モデルの進展とそのモデルベース...
by
Deep Learning JP
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
by
Deep Learning JP
[DL輪読会] Spectral Norm Regularization for Improving the Generalizability of De...
by
Deep Learning JP
[DL輪読会]Neural Ordinary Differential Equations
by
Deep Learning JP
TensorFlowで逆強化学習
by
Mitsuhisa Ohta
【DL輪読会】Emergence of maps in the memories of blind navigation agents
by
Deep Learning JP
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
by
Deep Learning JP
プレゼン・ポスターで自分の研究を「伝える」 (How to do technical oral/poster presentation)
by
Toshihiko Yamasaki
【DL輪読会】Hopfield network 関連研究について
by
Deep Learning JP
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
by
Deep Learning JP
強化学習と逆強化学習を組み合わせた模倣学習
by
Eiji Uchibe
【DL輪読会】Scaling Laws for Neural Language Models
by
Deep Learning JP
POMDP下での強化学習の基礎と応用
by
Yasunori Ozaki
大学3年生の僕に伝えたいことをつらつらと
by
Toshinori Sato
[DL輪読会]`強化学習のための状態表現学習 -より良い「世界モデル」の獲得に向けて-
by
Deep Learning JP
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning 画像×言語の大規模基盤モ...
by
Deep Learning JP
[DL輪読会]V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete...
by
Deep Learning JP
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
by
Shota Imai
強化学習アルゴリズムPPOの解説と実験
by
克海 納谷
Similar to [DL輪読会]Variational Autoencoder with Arbitrary Conditioning
PDF
Deeplearning lt.pdf
by
Deep Learning JP
PPTX
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
by
Deep Learning JP
PPTX
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
by
Deep Learning JP
PDF
PRML学習者から入る深層生成モデル入門
by
tmtm otm
PPTX
猫でも分かるVariational AutoEncoder
by
Sho Tatsuno
PDF
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
by
Preferred Networks
PPTX
Variational Template Machine for Data-to-Text Generation
by
harmonylab
PDF
[DL Hacks] Deterministic Variational Inference for RobustBayesian Neural Netw...
by
Deep Learning JP
PDF
実装レベルで学ぶVQVAE
by
ぱんいち すみもと
PPTX
[DL輪読会] Learning Finite State Representations of Recurrent Policy Networks (I...
by
Deep Learning JP
PDF
Deep Learningの基礎と応用
by
Seiya Tokui
PDF
Vision and Language(メタサーベイ )
by
cvpaper. challenge
PPTX
Variational autoencoder
by
Mikio Shiga
PDF
Generating Diverse High-Fidelity Images with VQ-VAE-2
by
harmonylab
PPTX
Cvim saisentan-6-4-tomoaki
by
tomoaki0705
PDF
Deep Learning技術の今
by
Seiya Tokui
PPTX
[DL輪読会]GQNと関連研究,世界モデルとの関係について
by
Deep Learning JP
PDF
IIBMP2016 深層生成モデルによる表現学習
by
Preferred Networks
PDF
Active Learning の基礎と最近の研究
by
Fumihiko Takahashi
PPTX
[DL輪読会]相互情報量最大化による表現学習
by
Deep Learning JP
Deeplearning lt.pdf
by
Deep Learning JP
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
by
Deep Learning JP
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
by
Deep Learning JP
PRML学習者から入る深層生成モデル入門
by
tmtm otm
猫でも分かるVariational AutoEncoder
by
Sho Tatsuno
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
by
Preferred Networks
Variational Template Machine for Data-to-Text Generation
by
harmonylab
[DL Hacks] Deterministic Variational Inference for RobustBayesian Neural Netw...
by
Deep Learning JP
実装レベルで学ぶVQVAE
by
ぱんいち すみもと
[DL輪読会] Learning Finite State Representations of Recurrent Policy Networks (I...
by
Deep Learning JP
Deep Learningの基礎と応用
by
Seiya Tokui
Vision and Language(メタサーベイ )
by
cvpaper. challenge
Variational autoencoder
by
Mikio Shiga
Generating Diverse High-Fidelity Images with VQ-VAE-2
by
harmonylab
Cvim saisentan-6-4-tomoaki
by
tomoaki0705
Deep Learning技術の今
by
Seiya Tokui
[DL輪読会]GQNと関連研究,世界モデルとの関係について
by
Deep Learning JP
IIBMP2016 深層生成モデルによる表現学習
by
Preferred Networks
Active Learning の基礎と最近の研究
by
Fumihiko Takahashi
[DL輪読会]相互情報量最大化による表現学習
by
Deep Learning JP
More from Deep Learning JP
PPTX
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
by
Deep Learning JP
PPTX
【DL輪読会】事前学習用データセットについて
by
Deep Learning JP
PPTX
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
by
Deep Learning JP
PPTX
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
by
Deep Learning JP
PPTX
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
by
Deep Learning JP
PPTX
【DL輪読会】マルチモーダル LLM
by
Deep Learning JP
PDF
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
by
Deep Learning JP
PPTX
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
by
Deep Learning JP
PDF
【DL輪読会】Can Neural Network Memorization Be Localized?
by
Deep Learning JP
PPTX
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
by
Deep Learning JP
PDF
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
by
Deep Learning JP
PDF
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
by
Deep Learning JP
PPTX
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
by
Deep Learning JP
PPTX
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
by
Deep Learning JP
PDF
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
by
Deep Learning JP
PPTX
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
by
Deep Learning JP
PDF
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
by
Deep Learning JP
PPTX
【DL輪読会】VIP: Towards Universal Visual Reward and Representation via Value-Impl...
by
Deep Learning JP
PDF
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
by
Deep Learning JP
PPTX
【DL輪読会】マルチモーダル 基盤モデル
by
Deep Learning JP
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
by
Deep Learning JP
【DL輪読会】事前学習用データセットについて
by
Deep Learning JP
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
by
Deep Learning JP
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
by
Deep Learning JP
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
by
Deep Learning JP
【DL輪読会】マルチモーダル LLM
by
Deep Learning JP
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
by
Deep Learning JP
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
by
Deep Learning JP
【DL輪読会】Can Neural Network Memorization Be Localized?
by
Deep Learning JP
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
by
Deep Learning JP
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
by
Deep Learning JP
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
by
Deep Learning JP
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
by
Deep Learning JP
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
by
Deep Learning JP
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
by
Deep Learning JP
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
by
Deep Learning JP
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
by
Deep Learning JP
【DL輪読会】VIP: Towards Universal Visual Reward and Representation via Value-Impl...
by
Deep Learning JP
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
by
Deep Learning JP
【DL輪読会】マルチモーダル 基盤モデル
by
Deep Learning JP
Recently uploaded
PDF
20260119_VIoTLT_vol22_kitazaki_v1___.pdf
by
Ayachika Kitazaki
PDF
Team Topology Adaptive Organizational Design for Rapid Delivery of Valuable S...
by
akipii ogaoga
PDF
maisugimoto_曖昧さを含む仕様書の改善を目的としたアノテーション支援ツールの検討_HCI2025.pdf
by
Matsushita Laboratory
PDF
自転車ユーザ参加型路面画像センシングによる点字ブロック検出における性能向上方法の模索 (20260123 SeMI研)
by
Yuto Matsuda
PDF
ST2024_PM1_2_Case_study_of_local_newspaper_company.pdf
by
akipii ogaoga
PDF
TomokaEdakawa_職種と講義の関係推定に基づく履修支援システムの基礎検討_HCI2026
by
Matsushita Laboratory
20260119_VIoTLT_vol22_kitazaki_v1___.pdf
by
Ayachika Kitazaki
Team Topology Adaptive Organizational Design for Rapid Delivery of Valuable S...
by
akipii ogaoga
maisugimoto_曖昧さを含む仕様書の改善を目的としたアノテーション支援ツールの検討_HCI2025.pdf
by
Matsushita Laboratory
自転車ユーザ参加型路面画像センシングによる点字ブロック検出における性能向上方法の模索 (20260123 SeMI研)
by
Yuto Matsuda
ST2024_PM1_2_Case_study_of_local_newspaper_company.pdf
by
akipii ogaoga
TomokaEdakawa_職種と講義の関係推定に基づく履修支援システムの基礎検討_HCI2026
by
Matsushita Laboratory
[DL輪読会]Variational Autoencoder with Arbitrary Conditioning
1.
1 DEEP LEARNING JP [DL
Papers] http://deeplearning.jp/ “Variational Autoencoder with Arbitrary Conditioning (ICLR2019)” Naoki Nonaka
2.
2 目目次次 • • • • •
3.
3 書書誌誌情情報報 • ��A��������������������������� • ��A������������� �������������������������C �����������������C
4.
4 背背景景 これまでの深層生成モデル: p(x)やp(x|y)をモデル化 をモデル化 n U:
全特徴量の集合 n I : Uの任意の部分集合 応用先:特徴量の補完,画像のinpainting
5.
5 提提案案手手法法 再構成誤差 KL Divergence 欠損のない入力(元データ) と欠損させた部位の情報 欠損のある入力と 欠損させた部位の情報 潜在変数z,欠損のある入力 と欠損させた部位の情報
6.
6 提提案案手手法法 観測されていない変数の情報 観測されていない変数(求めたい変数) 観測された変数(入力として与えられる) 観測されない変数の位置についての確率分布 求めたい分布(観測値から欠損を予測) 実際に求める分布(ψおよびθでパラメータ化)
7.
7 提提案案手手法法 VAE (Kingma & Welling,
2013) CVAE (Sohn et al. 2015) VAEAC (This paper) Prior Encoder Decoder
8.
8 提提案案手手法法 再構成誤差 KL Divergence 欠損のない入力(元データ) と欠損させた部位の情報 欠損のある入力と 欠損させた部位の情報 潜在変数z,欠損のある入力 と欠損させた部位の情報
9.
9 提提案案手手法法 nΨによりパラメータ化される分布には正則化項が存在しない n学習に安定しない可能性がある(Numeric Instability) Gamma-Normal priorを事前分布のパラメータに対して置く 事前分布
10.
10 提提案案手手法法 元々データに欠損値が存在する場合 (これまでは学習に用いるデータは欠損がないという前提) n p(b)をp(b|x)に変更 n ωを元々欠損しているデータ点として,再構成誤差を以下のように変更
11.
11 実実験験 p n n p n n p
12.
12 実実験験 欠損させた値を補完した場合の精度比較 => 提案手法が最も良い結果となった
13.
13 実実験験 欠損させた値を補完したデータを用いた回帰・分類の精度 => 提案手法が最も良い
14.
14 実実験験 一つの画像から複数パターンのinpaitingが可能
15.
15 実実験験 2つの先行研究と比較 n Context Encoder(Pathak
et al., 2016) n SIIDGM(Yeh et al., 2017) (指標はPSNR; ピーク信号対雑音比,画像の劣化の指標)
16.
17 実実験験 Universal Merginalizer (UM)(Douglas
et al., 2017)との比較 (UMは一つのNNで観測されていない点の周辺分布を求める手法) n VAEACの方が学習に時間を要するが,テスト時は高速 (VAEとPixelCNNの関係に似ているとのこと) n UMで学習できないが,VAEACではできる場合が数多くある(らしい
17.
19 結結論論 n n n
Download