This document discusses data preprocessing techniques for machine learning. It covers common preprocessing steps like normalization, encoding categorical features, and handling outliers. Normalization techniques like StandardScaler, MinMaxScaler and RobustScaler are described. Label encoding and one-hot encoding are covered for processing categorical variables. The document also discusses polynomial features, custom transformations, and preprocessing text and image data. The goal of preprocessing is to prepare data so it can be better consumed by machine learning algorithms.