SlideShare a Scribd company logo
CURRENT MODE
&

VOLTAGE MODE
CIRCUITS
INTRODUCTION
Voltage-Mode:Information is represented by voltage at the nodes of the circuit.
Current-Mode:Information is represented by current flowing in the branches of the circuit.

However, none of the definitions used in the literature are precise. For
example, some authors write that signals are represented by currents in currentmode circuits and by voltages in voltage-mode circuits. This is not a precise
definition, because every circuit node has an associated voltage and every branch an
associated current. Therefore, current-mode and voltage-mode do not actually
divide circuits into two categories, they are just alternate ways of looking at a
circuit.
EXAMPLES
EXAMPLES (CURRENT MODE)

Bipolar Junction Transistor
Current Mirror
INTERCONNECTS IN VLSI DESIGN
Depending on the signal carriers of data links, wire channels can be classified as
voltage mode or current mode signalling.
In voltage mode signalling, receiver provides high input impedance (ideally infinity).
The information is conveyed in the form of voltage. The output voltage is a function of input
signal and is varied according to supply voltage. Fig 1 shows the theoretical model of
conventional voltage mode interconnect implementation. The output is terminated by an
open circuit.
This high input impedance of the receiver gives

rise to high input capacitance which leads to high charging
and discharging time for RC interconnect chain. Hence
voltage mode signalling has large delay. Due to high input
impedance at the receiver, the charge accumulated at the

input of the receiver does not get effective discharge path
to ground as a result this may cause electrostatic
induced gate oxide break down.
INTERCONNECTS IN VLSI DESIGN
DIFFERENCES
In integrated circuits, current-mode offers some advantages over voltage-mode :
o Performances improvement





low power consumption at high frequency
less affected by voltage fluctuations
low cross-talk & switching noise
high speed

o Structural advantages
 controlled gain without feedback components
 current summing without components
 schematic simplicity

o Specific features
 well suited for low voltage, low power applications
 pseudo conductance networks
 current switching technique
WHY WE SWITCH TO THE CURRENT MODE
CIRCUITS?
#1: Easy Compensation
• With voltage-mode, the sharp phase drop after the filter resonant frequency requires a
type three compensator to stabilize the system.

• Current-mode control looks like a single-pole system at low frequencies, since the
inductor has been controlled by the current loop.
• This improves the phase margin, and makes the converter much easier to control.
• A type two compensator is adequate, which greatly simplifies the design process.
WHY WE SWITCH TO THE CURRENT MODE
CIRCUITS?
#2: RHP Zero Converters
• Contrary to some papers on the topic, current-mode control does NOT eliminate the right-half
plane (RHP) zero of boost, flyback, and other converters.
• It does make compensation of such converters easier, though.
• With voltage-mode control, crossover has to be well above the resonant frequency, or the
filter will ring.
• In a converter where the crossover frequency is restricted by the presence of an RHP zero, this
could be impossible.
• It's not a problem with current-mode control to have a control loop crossover at or below the
filter resonant frequency.
WHY WE SWITCH TO THE CURRENT MODE
CIRCUITS?

#3: CCM and DCM Operation

• When moving from continuous-conduction
mode (CCM) to discontinuous-conduction
mode (DCM), the characteristics with voltagemode control are drastically different as shown
in Fig 4.

• It is not possible to design a compensator with
voltage-mode that can provide good
performance in both regions. With currentmode, crossing the boundary between the two
types of operation is not a problem. The
characteristics are almost constant in the region
of crossover, as shown in Figure 5.
• Having optimal response in both modes is a
major advantage, allowing the power stage to
operate much more efficiently. Keeping a
converter in DCM for all changes of load, line,
temperature, transients, and other parameter
variations can lead to severe component
stresses.
WHY WE SWITCH TO THE CURRENT MODE
CIRCUITS?
#4: Line Rejection
• Closing the current loop gives a lot of attenuation of input noise. For the buck, it
can even be nulled under some special conditions, with the proper compensating
saw-tooth ramp.

• Even with only a moderate gain in the voltage feedback loop, the attenuation of
input ripple is usually adequate with current-mode control.
• With voltage-mode control, far more gain is needed in the main feedback loop to
achieve the same performance.
DISADVANTAGES OF CURRENT MODE
#1: Current Sensing

• Either the switch current or inductor current must be sensed accurately.
• This requires additional circuitry, and some power loss.
• In most isolated power supplies, the switch current is sensed either with a resistor or
current transformer.
• The current sensing must be very wideband to accurately reconstruct the current signal.
• A current transformer needs a bandwidth several orders of magnitude above the
switching frequency to work dependably.
DISADVANTAGES OF CURRENT MODE
#2: Sub harmonic Oscillations Instability

• Current-mode control can be unstable when the duty cycle of the converter
approaches 50%.
• This does not occur abruptly at 50%, as some data books claim, but can manifest
the problem even at lower duty cycles.
• A compensating ramp is needed to fix the problem, and this too can introduce
complications.
DISADVANTAGES OF CURRENT MODE
#3: Signal-to-Noise Ratio
• The biggest problem in almost every currentmode supply is noise on the current sense signal.
• In many power supplies there is simply not enough
signal to control the converter smoothly over
the full range of operation.

• Even with the ideal current waveform of Figure 6a,
the signal available for control is small.
• The peak of the current signal is limited by the
PWM controller, usually to less than 1 V.
• Much of the available signal range can be taken by
the DC value of the switch current. When the real
current waveform of Figure with spikes and
ringing is considered, the problem becomes even
worse.
BJT CURRENT MIRROR
If a voltage is applied to the BJT base-emitter junction as an input quantity and the collector
current is taken as an output quantity, the transistor will act as an exponential voltage-to-current
converter. By applying a negative feedback (simply joining the base and collector) the transistor can be
"reversed" and it will begin acting as the opposite logarithmic current-to-voltage converter; now it
will adjust the "output" base-emitter voltage so as to pass the applied "input" collector current.
The simplest bipolar current mirror implements this idea. It
consists of two cascaded transistor stages acting accordingly as a
reversed and direct voltage-to-current converters. Transistor Q1
is connected to ground. Its collector-base voltage is zero as
shown. Consequently, the voltage drop across Q1 is VBE, that is, this
voltage is set by the diode law and Q1 is said to be diode
connected. It is important to have Q1 in the circuit instead of a
simple diode, because Q1 sets VBE for transistor Q2. If Q1 and Q2 are
matched, that is, have substantially the same device properties,
and if the mirror output voltage is chosen so the collector-base
voltage of Q2 is also zero, then the VBE-value set by Q1 results in
an emitter current in the matched Q2 that is the same as the
emitter current in Q1. Because Q1 and Q2 are matched, their β0values also agree, making the mirror output current the same as
the collector current of Q1. The current delivered by the mirror
for arbitrary collector-base reverse bias VCB of the output
BJT CURRENT MIRROR
where IS = reverse saturation current or scale current, VT = thermal voltage and VA = Early
voltage. This current is related to the reference current IREF when the output transistor VCB = 0 V
by:
as found using Kirchhoff's current law at the collector node of Q1:
The reference current supplies the collector current to Q1 and the
base currents to both transistors — when both transistors
have zero base-collector bias, the two base currents are equal,
IB1=IB2=IB.

Parameter β0 is the transistor β-value for VCB = 0 V.
IIIrd Semester Self Study Project
by:-

Gajera Kevin, EC/066
Gautam Rathee, EC/069
Shaleen Rathode, EC/161
Nag Mani, EC/102

More Related Content

What's hot

Mosfet
MosfetMosfet
BJT- Emitter Follower Circuit
BJT- Emitter Follower CircuitBJT- Emitter Follower Circuit
BJT- Emitter Follower Circuit
Dr Piyush Charan
 
Analog Layout design
Analog Layout design Analog Layout design
Analog Layout design
slpinjare
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
Dr Naim R Kidwai
 
EC8452 Electronic Circuits II - UJT Relaxation Oscillator
EC8452 Electronic Circuits II - UJT Relaxation OscillatorEC8452 Electronic Circuits II - UJT Relaxation Oscillator
EC8452 Electronic Circuits II - UJT Relaxation Oscillator
chitrarengasamy
 
Power mosfet characteristics
Power mosfet characteristicsPower mosfet characteristics
Power mosfet characteristics
sanu singh
 
Organic Thin film transistors
Organic Thin film transistorsOrganic Thin film transistors
Organic Thin film transistors
Dr. Fiaz Hussain
 
Leakage effects in mos-fets
Leakage effects in mos-fetsLeakage effects in mos-fets
Leakage effects in mos-fets
Arya Ls
 
Mosfet’s
Mosfet’sMosfet’s
Mosfet’s
Ishwar Bhoge
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
Sudhanshu Janwadkar
 
Field Effect Transistor ppt
Field Effect Transistor pptField Effect Transistor ppt
Field Effect Transistor ppt
Sameeksha Verma
 
Varactor diode
Varactor diodeVaractor diode
Varactor diode
Enock Seth Nyamador
 
FET AMPLIFIER
FET AMPLIFIERFET AMPLIFIER
FET AMPLIFIER
Jess Rangcasajo
 
MOSFET AND JFET
MOSFET AND JFETMOSFET AND JFET
MOSFET AND JFET
Sumair Hassan
 
Schottky diode working and applications
Schottky diode working and applicationsSchottky diode working and applications
Schottky diode working and applications
elprocus
 
MOSFETs
MOSFETsMOSFETs
MOSFETs
A B Shinde
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
aditiagrawal97
 
Power dissipation cmos
Power dissipation cmosPower dissipation cmos
Power dissipation cmos
Rajesh Tiwary
 

What's hot (20)

Mosfet
MosfetMosfet
Mosfet
 
BJT- Emitter Follower Circuit
BJT- Emitter Follower CircuitBJT- Emitter Follower Circuit
BJT- Emitter Follower Circuit
 
Analog Layout design
Analog Layout design Analog Layout design
Analog Layout design
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
JFET
JFETJFET
JFET
 
EC8452 Electronic Circuits II - UJT Relaxation Oscillator
EC8452 Electronic Circuits II - UJT Relaxation OscillatorEC8452 Electronic Circuits II - UJT Relaxation Oscillator
EC8452 Electronic Circuits II - UJT Relaxation Oscillator
 
Power mosfet characteristics
Power mosfet characteristicsPower mosfet characteristics
Power mosfet characteristics
 
Organic Thin film transistors
Organic Thin film transistorsOrganic Thin film transistors
Organic Thin film transistors
 
Leakage effects in mos-fets
Leakage effects in mos-fetsLeakage effects in mos-fets
Leakage effects in mos-fets
 
Mosfet’s
Mosfet’sMosfet’s
Mosfet’s
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
Field Effect Transistor ppt
Field Effect Transistor pptField Effect Transistor ppt
Field Effect Transistor ppt
 
Varactor diode
Varactor diodeVaractor diode
Varactor diode
 
FET AMPLIFIER
FET AMPLIFIERFET AMPLIFIER
FET AMPLIFIER
 
MOSFET AND JFET
MOSFET AND JFETMOSFET AND JFET
MOSFET AND JFET
 
Power amplifier
Power amplifierPower amplifier
Power amplifier
 
Schottky diode working and applications
Schottky diode working and applicationsSchottky diode working and applications
Schottky diode working and applications
 
MOSFETs
MOSFETsMOSFETs
MOSFETs
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
 
Power dissipation cmos
Power dissipation cmosPower dissipation cmos
Power dissipation cmos
 

Similar to Current mode circuits & voltage mode circuits

Review of Step down Converter with Efficient ZVS Operation
Review of Step down Converter with Efficient ZVS OperationReview of Step down Converter with Efficient ZVS Operation
Review of Step down Converter with Efficient ZVS Operation
IJRST Journal
 
ECE 505 Power electronics final paper
ECE 505 Power electronics final paperECE 505 Power electronics final paper
ECE 505 Power electronics final paperRob Garrone
 
PED drivers t5656979089897877ghvvnvgcxxn
PED drivers t5656979089897877ghvvnvgcxxnPED drivers t5656979089897877ghvvnvgcxxn
PED drivers t5656979089897877ghvvnvgcxxn
nightbot15
 
Thesis
ThesisThesis
Thesis
UtfalDebnath
 
Speed Control Of Separately Excited Dc Motor Using A High Efficiency Flyback ...
Speed Control Of Separately Excited Dc Motor Using A High Efficiency Flyback ...Speed Control Of Separately Excited Dc Motor Using A High Efficiency Flyback ...
Speed Control Of Separately Excited Dc Motor Using A High Efficiency Flyback ...
IJERA Editor
 
Averaging - 1.docx
Averaging - 1.docxAveraging - 1.docx
Averaging - 1.docx
sougataghosh1984
 
Power supplies & regulators
Power supplies & regulatorsPower supplies & regulators
Power supplies & regulators
Dr.YNM
 
Analog signal Conditioning
Analog signal ConditioningAnalog signal Conditioning
Analog signal Conditioning
Ghansyam Rathod
 
Schuler Electronics Instructor CH15 regulated power supplies.ppt
Schuler Electronics Instructor CH15 regulated power supplies.pptSchuler Electronics Instructor CH15 regulated power supplies.ppt
Schuler Electronics Instructor CH15 regulated power supplies.ppt
SagarPatel532644
 
Schuler Electronics Instructor CH15 regulated power supplies.ppt
Schuler Electronics Instructor CH15 regulated power supplies.pptSchuler Electronics Instructor CH15 regulated power supplies.ppt
Schuler Electronics Instructor CH15 regulated power supplies.ppt
SreejaSujith2
 
06 current -__voltage_transformers
06 current -__voltage_transformers06 current -__voltage_transformers
06 current -__voltage_transformersKrishna Das
 
2 twofold mode series echoing dc dc converter for ample load
2 twofold mode series echoing dc dc converter for ample load2 twofold mode series echoing dc dc converter for ample load
2 twofold mode series echoing dc dc converter for ample loadchelliah paramasivan
 
Zero voltage switching resonant power conversion
Zero voltage switching resonant power conversionZero voltage switching resonant power conversion
Zero voltage switching resonant power conversion
Pham Hoang
 
Fuzzy Logic Controller Based High Frequency Link AC-AC Converter For Voltage ...
Fuzzy Logic Controller Based High Frequency Link AC-AC Converter For Voltage ...Fuzzy Logic Controller Based High Frequency Link AC-AC Converter For Voltage ...
Fuzzy Logic Controller Based High Frequency Link AC-AC Converter For Voltage ...
IJTET Journal
 
RGPV EX7102 UNITIV
RGPV EX7102 UNITIVRGPV EX7102 UNITIV
RGPV EX7102 UNITIV
Mani Deep Dutt
 
A010420117
A010420117A010420117
A010420117
IOSR Journals
 
Operation of brushless dc motor drive with zeta
Operation of brushless dc motor drive with zetaOperation of brushless dc motor drive with zeta
Operation of brushless dc motor drive with zeta
student
 
digital
digitaldigital
digital
yogendra tak
 
Voltage Regulators IC
Voltage Regulators ICVoltage Regulators IC
Voltage Regulators IC
Dr.Raja R
 

Similar to Current mode circuits & voltage mode circuits (20)

Review of Step down Converter with Efficient ZVS Operation
Review of Step down Converter with Efficient ZVS OperationReview of Step down Converter with Efficient ZVS Operation
Review of Step down Converter with Efficient ZVS Operation
 
Voltage Regulation
Voltage RegulationVoltage Regulation
Voltage Regulation
 
ECE 505 Power electronics final paper
ECE 505 Power electronics final paperECE 505 Power electronics final paper
ECE 505 Power electronics final paper
 
PED drivers t5656979089897877ghvvnvgcxxn
PED drivers t5656979089897877ghvvnvgcxxnPED drivers t5656979089897877ghvvnvgcxxn
PED drivers t5656979089897877ghvvnvgcxxn
 
Thesis
ThesisThesis
Thesis
 
Speed Control Of Separately Excited Dc Motor Using A High Efficiency Flyback ...
Speed Control Of Separately Excited Dc Motor Using A High Efficiency Flyback ...Speed Control Of Separately Excited Dc Motor Using A High Efficiency Flyback ...
Speed Control Of Separately Excited Dc Motor Using A High Efficiency Flyback ...
 
Averaging - 1.docx
Averaging - 1.docxAveraging - 1.docx
Averaging - 1.docx
 
Power supplies & regulators
Power supplies & regulatorsPower supplies & regulators
Power supplies & regulators
 
Analog signal Conditioning
Analog signal ConditioningAnalog signal Conditioning
Analog signal Conditioning
 
Schuler Electronics Instructor CH15 regulated power supplies.ppt
Schuler Electronics Instructor CH15 regulated power supplies.pptSchuler Electronics Instructor CH15 regulated power supplies.ppt
Schuler Electronics Instructor CH15 regulated power supplies.ppt
 
Schuler Electronics Instructor CH15 regulated power supplies.ppt
Schuler Electronics Instructor CH15 regulated power supplies.pptSchuler Electronics Instructor CH15 regulated power supplies.ppt
Schuler Electronics Instructor CH15 regulated power supplies.ppt
 
06 current -__voltage_transformers
06 current -__voltage_transformers06 current -__voltage_transformers
06 current -__voltage_transformers
 
2 twofold mode series echoing dc dc converter for ample load
2 twofold mode series echoing dc dc converter for ample load2 twofold mode series echoing dc dc converter for ample load
2 twofold mode series echoing dc dc converter for ample load
 
Zero voltage switching resonant power conversion
Zero voltage switching resonant power conversionZero voltage switching resonant power conversion
Zero voltage switching resonant power conversion
 
Fuzzy Logic Controller Based High Frequency Link AC-AC Converter For Voltage ...
Fuzzy Logic Controller Based High Frequency Link AC-AC Converter For Voltage ...Fuzzy Logic Controller Based High Frequency Link AC-AC Converter For Voltage ...
Fuzzy Logic Controller Based High Frequency Link AC-AC Converter For Voltage ...
 
RGPV EX7102 UNITIV
RGPV EX7102 UNITIVRGPV EX7102 UNITIV
RGPV EX7102 UNITIV
 
A010420117
A010420117A010420117
A010420117
 
Operation of brushless dc motor drive with zeta
Operation of brushless dc motor drive with zetaOperation of brushless dc motor drive with zeta
Operation of brushless dc motor drive with zeta
 
digital
digitaldigital
digital
 
Voltage Regulators IC
Voltage Regulators ICVoltage Regulators IC
Voltage Regulators IC
 

Recently uploaded

Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 

Recently uploaded (20)

Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 

Current mode circuits & voltage mode circuits

  • 2. INTRODUCTION Voltage-Mode:Information is represented by voltage at the nodes of the circuit. Current-Mode:Information is represented by current flowing in the branches of the circuit. However, none of the definitions used in the literature are precise. For example, some authors write that signals are represented by currents in currentmode circuits and by voltages in voltage-mode circuits. This is not a precise definition, because every circuit node has an associated voltage and every branch an associated current. Therefore, current-mode and voltage-mode do not actually divide circuits into two categories, they are just alternate ways of looking at a circuit.
  • 4. EXAMPLES (CURRENT MODE) Bipolar Junction Transistor Current Mirror
  • 5. INTERCONNECTS IN VLSI DESIGN Depending on the signal carriers of data links, wire channels can be classified as voltage mode or current mode signalling. In voltage mode signalling, receiver provides high input impedance (ideally infinity). The information is conveyed in the form of voltage. The output voltage is a function of input signal and is varied according to supply voltage. Fig 1 shows the theoretical model of conventional voltage mode interconnect implementation. The output is terminated by an open circuit. This high input impedance of the receiver gives rise to high input capacitance which leads to high charging and discharging time for RC interconnect chain. Hence voltage mode signalling has large delay. Due to high input impedance at the receiver, the charge accumulated at the input of the receiver does not get effective discharge path to ground as a result this may cause electrostatic induced gate oxide break down.
  • 7. DIFFERENCES In integrated circuits, current-mode offers some advantages over voltage-mode : o Performances improvement     low power consumption at high frequency less affected by voltage fluctuations low cross-talk & switching noise high speed o Structural advantages  controlled gain without feedback components  current summing without components  schematic simplicity o Specific features  well suited for low voltage, low power applications  pseudo conductance networks  current switching technique
  • 8. WHY WE SWITCH TO THE CURRENT MODE CIRCUITS? #1: Easy Compensation • With voltage-mode, the sharp phase drop after the filter resonant frequency requires a type three compensator to stabilize the system. • Current-mode control looks like a single-pole system at low frequencies, since the inductor has been controlled by the current loop. • This improves the phase margin, and makes the converter much easier to control. • A type two compensator is adequate, which greatly simplifies the design process.
  • 9. WHY WE SWITCH TO THE CURRENT MODE CIRCUITS? #2: RHP Zero Converters • Contrary to some papers on the topic, current-mode control does NOT eliminate the right-half plane (RHP) zero of boost, flyback, and other converters. • It does make compensation of such converters easier, though. • With voltage-mode control, crossover has to be well above the resonant frequency, or the filter will ring. • In a converter where the crossover frequency is restricted by the presence of an RHP zero, this could be impossible. • It's not a problem with current-mode control to have a control loop crossover at or below the filter resonant frequency.
  • 10. WHY WE SWITCH TO THE CURRENT MODE CIRCUITS? #3: CCM and DCM Operation • When moving from continuous-conduction mode (CCM) to discontinuous-conduction mode (DCM), the characteristics with voltagemode control are drastically different as shown in Fig 4. • It is not possible to design a compensator with voltage-mode that can provide good performance in both regions. With currentmode, crossing the boundary between the two types of operation is not a problem. The characteristics are almost constant in the region of crossover, as shown in Figure 5. • Having optimal response in both modes is a major advantage, allowing the power stage to operate much more efficiently. Keeping a converter in DCM for all changes of load, line, temperature, transients, and other parameter variations can lead to severe component stresses.
  • 11. WHY WE SWITCH TO THE CURRENT MODE CIRCUITS? #4: Line Rejection • Closing the current loop gives a lot of attenuation of input noise. For the buck, it can even be nulled under some special conditions, with the proper compensating saw-tooth ramp. • Even with only a moderate gain in the voltage feedback loop, the attenuation of input ripple is usually adequate with current-mode control. • With voltage-mode control, far more gain is needed in the main feedback loop to achieve the same performance.
  • 12. DISADVANTAGES OF CURRENT MODE #1: Current Sensing • Either the switch current or inductor current must be sensed accurately. • This requires additional circuitry, and some power loss. • In most isolated power supplies, the switch current is sensed either with a resistor or current transformer. • The current sensing must be very wideband to accurately reconstruct the current signal. • A current transformer needs a bandwidth several orders of magnitude above the switching frequency to work dependably.
  • 13. DISADVANTAGES OF CURRENT MODE #2: Sub harmonic Oscillations Instability • Current-mode control can be unstable when the duty cycle of the converter approaches 50%. • This does not occur abruptly at 50%, as some data books claim, but can manifest the problem even at lower duty cycles. • A compensating ramp is needed to fix the problem, and this too can introduce complications.
  • 14. DISADVANTAGES OF CURRENT MODE #3: Signal-to-Noise Ratio • The biggest problem in almost every currentmode supply is noise on the current sense signal. • In many power supplies there is simply not enough signal to control the converter smoothly over the full range of operation. • Even with the ideal current waveform of Figure 6a, the signal available for control is small. • The peak of the current signal is limited by the PWM controller, usually to less than 1 V. • Much of the available signal range can be taken by the DC value of the switch current. When the real current waveform of Figure with spikes and ringing is considered, the problem becomes even worse.
  • 15. BJT CURRENT MIRROR If a voltage is applied to the BJT base-emitter junction as an input quantity and the collector current is taken as an output quantity, the transistor will act as an exponential voltage-to-current converter. By applying a negative feedback (simply joining the base and collector) the transistor can be "reversed" and it will begin acting as the opposite logarithmic current-to-voltage converter; now it will adjust the "output" base-emitter voltage so as to pass the applied "input" collector current. The simplest bipolar current mirror implements this idea. It consists of two cascaded transistor stages acting accordingly as a reversed and direct voltage-to-current converters. Transistor Q1 is connected to ground. Its collector-base voltage is zero as shown. Consequently, the voltage drop across Q1 is VBE, that is, this voltage is set by the diode law and Q1 is said to be diode connected. It is important to have Q1 in the circuit instead of a simple diode, because Q1 sets VBE for transistor Q2. If Q1 and Q2 are matched, that is, have substantially the same device properties, and if the mirror output voltage is chosen so the collector-base voltage of Q2 is also zero, then the VBE-value set by Q1 results in an emitter current in the matched Q2 that is the same as the emitter current in Q1. Because Q1 and Q2 are matched, their β0values also agree, making the mirror output current the same as the collector current of Q1. The current delivered by the mirror for arbitrary collector-base reverse bias VCB of the output
  • 16. BJT CURRENT MIRROR where IS = reverse saturation current or scale current, VT = thermal voltage and VA = Early voltage. This current is related to the reference current IREF when the output transistor VCB = 0 V by: as found using Kirchhoff's current law at the collector node of Q1: The reference current supplies the collector current to Q1 and the base currents to both transistors — when both transistors have zero base-collector bias, the two base currents are equal, IB1=IB2=IB. Parameter β0 is the transistor β-value for VCB = 0 V.
  • 17. IIIrd Semester Self Study Project by:- Gajera Kevin, EC/066 Gautam Rathee, EC/069 Shaleen Rathode, EC/161 Nag Mani, EC/102