SlideShare a Scribd company logo
International Journal of Modern Engineering Research (IJMER)
                www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645

                         On The Zeros of Certain Class of Polynomials
                                                            B.A. Zargar
                                     Post-Graduate Department of Mathematics, U.K, Srinagar.

Abstract: Let P(z) be a polynomial of degree n with real or complex coefficients . The aim
of this paper is to obtain a ring shaped region containing all the zeros of P(z). Our results not only generalize some known
results but also a variety of interesting results can be deduced from them.

                                          I.   Introduction and Statement of Results
The following beautiful result which is well-known in the theory of distribution of zeros of polynomials is due to Enestrom
and Kakeya [9].
         Theorem A.         If P(z) =βˆ‘ 𝑗𝑛=0 aj zj is a polynomial of degree n such that
(1)                             an β‰₯ an-1 β‰₯…..β‰₯ a1 β‰₯ a0 β‰₯ 0,
then all the zeros of P(z) lie in 𝑧 ≀ 1.
          In the literature ([2] ,[5] –[6], [8]-[11]) there exists some extensions and generalizations of this famous result. Aziz
and Mohammad [1] provided the following generalization of Theorem A.
          Theorem B.             Let P(z) =βˆ‘ 𝑗𝑛=0 aj zj is a polynomial of degree n with real positive coefficients. If t1 β‰₯ 𝑑2 β‰₯ 0 can
be found such that
(2)        π‘Ž 𝐽 t1 t 2+ ajβˆ’1 t1 βˆ’ t 2 a jβˆ’2 β‰₯ 0, j=1, 2, … ;n+1, π‘Žβˆ’1 = π‘Ž 𝑛 +1 = 0 ,
then all the zeros of P(z) lie in 𝑧 ≀ 𝑑1 .
For 𝑑1 = 1, 𝑑2 = 0, this reduces to Enestrom-Kakeya Theorem (Theorem A).
          Recently Aziz and Shah [3] have proved the following more general result which includes Theorem A as a special
case.
                                           ------------------------------------------------------------------------------
Mathematics, subject, classification (2002). 30C10,30C15,
 Keywords and Phrases , Enestrom-Kakeya Theorem, Zeros ,bounds.

       Theorem C. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n. If for some t > 0.
(3)   π‘€π‘Žπ‘₯ 𝑧 =𝑅 π‘‘π‘Ž0 𝑧 𝑛 + π‘‘π‘Ž1 βˆ’ π‘Ž0 𝑧 𝑛 βˆ’1 + β‹― + π‘‘π‘Ž 𝑛 βˆ’ π‘Ž π‘›βˆ’1 ≀ 𝑀3
Where R is any positive real number, then all the zeros of P(z) lie in
                                                    𝑀   1
(4)                                 𝑧 ≀ π‘€π‘Žπ‘₯ π‘Ž 3 , 𝑅
                                                        𝑛
          The aim of this paper is to apply Schwarz Lemma to prove a more general result which includes Theorems A, B
and C as special cases and yields a number of other interesting results for various choices of parameters 𝛼, π‘Ÿ, 𝑑1 π‘Žπ‘›π‘‘ 𝑑2 . In
fact we start by proving the following result.
          Theorem 1. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, If for some real numbers 𝑑1 , 𝑑2 with 𝒕 𝟏 β‰  𝟎, 𝒕 𝟏 >
 π’•πŸ β‰₯ 𝟎
(5)        π‘€π‘Žπ‘₯ 𝑧 =𝑅
   π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž π‘›βˆ’1 + βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’                                                      π‘Žπ‘— βˆ’2 𝑧 π‘›βˆ’π‘— +1 ≀ 𝑀1


(6)
 𝑀𝑖𝑛 𝑧 =𝑅 π‘Ž0 𝑑1 βˆ’ 𝑑2 + π‘Ž1 𝑑1 𝑑2 + 𝛽 +
 βˆ‘ 𝑗𝑛+2 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’
     =2                                                                                         (π‘Ž 𝑗 βˆ’2 𝑧 𝑗 ≀ 𝑀2

 Where R is a positive real number, then all the zeros of P(z) lie in the ring shaped region.


                       𝑑1 𝑑2 π‘Ž0                              𝑀1 +    𝛼       1
(7)       𝑀𝑖𝑛   𝑧 =R    𝛽 +𝑀2     , 𝑅 ≀    𝑧 ≀ π‘€π‘Žπ‘₯   𝑧 =R       π‘Žπ‘›
                                                                         ,   𝑅


Taking t2 =0, we get the following generalization and refinement of Theorem C.

   Corollary 1. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n. If for some t > 0.
         π‘€π‘Žπ‘₯ 𝑧 =𝑅     a n t + Ξ± βˆ’ a nβˆ’1 + βˆ‘n   j=0 a jβˆ’1 t βˆ’ a jβˆ’2 z
                                                                     nβˆ’j+2
                                                                           ≀ M1
                                     n+2                   j
       𝑀𝑖𝑛 𝑧 =𝑅 a 0 t + Ξ² + βˆ‘j=0 a jβˆ’1 t βˆ’ a jβˆ’2 z ≀ M2
Where R is a real positive number then all the zeros of P(z) lie in

                                                     www.ijmer.com                                                        4363 | Page
International Journal of Modern Engineering Research (IJMER)
                  www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645


                                                               𝑀1 +      𝛼       1
                                     z ≀ π‘€π‘Žπ‘₯           𝑧 =𝑅         π‘Žπ‘›
                                                                             ,   𝑅


          In case we take t=1=R in corollary 1, we get the following interesting result.

Corollary 2. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n,
          π‘€π‘Žπ‘₯ 𝑧 =𝑅     π‘Ž 𝑛 + 𝛼 βˆ’ π‘Ž π‘›βˆ’1 +
  π‘Ž 𝑛 βˆ’1 βˆ’ π‘Ž 𝑛 βˆ’2 𝑧 + β‹― + π‘Ž1 βˆ’ π‘Ž0 𝑧 π‘›βˆ’1 +                                                                                   π‘Žπ‘œ 𝑧 𝑛       ≀ M,

                                                                                 M+ Ξ±
then all the zeros of P(z) lie in the circle z ≀ Max                                 an
                                                                                          ,1

If for some Ξ± > 0, 𝛼 + π‘Ž 𝑛 β‰₯ π‘Ž 𝑛 βˆ’1 β‰₯ β‹― β‰₯ π‘Ž1 β‰₯ π‘Ž0 β‰₯ 0, then ,

           𝑀 ≀ π‘Ž 𝑛 + 𝛼 + π‘Ž 𝑛 βˆ’1 + π‘Ž 𝑛 βˆ’1 βˆ’ π‘Ž π‘›βˆ’2 + β‹― + π‘Ž1 βˆ’ π‘Ž0 + π‘Ž0

          = π‘Ž 𝑛 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 + π‘Ž π‘›βˆ’1 βˆ’ π‘Ž π‘›βˆ’2 + β‹― + π‘Ž1 βˆ’ π‘Ž0 + π‘Ž0

          = π‘Žπ‘› + 𝛼

Using this observation in Corollary 2, we get the following generalization of Enestrom-Kakeya Theorem.

          Corollary 3. If, P(z)= π‘Ž 𝑛 𝑧 𝑛 + π‘Ž 𝑛 βˆ’1 + 𝑧 𝑛 βˆ’1 + β‹― + π‘Ž1 𝑧 + π‘Ž0 , is a polynomial of degree n, such that for some
𝛼 β‰₯ 0,
                                         𝛼 + π‘Ž 𝑛 β‰₯ π‘Žβˆ’1 β‰₯ β‹― . β‰₯ π‘Ž0 β‰₯ 0,
then all the zeros of P(z) lie in the circle
                                                                                                2𝛼
                                                                                      𝑧 ≀ 1+         ,
                                                                                                π‘Žπ‘›


For 𝛼 = 0, π‘‘β„Žπ‘–π‘  π‘Ÿπ‘’π‘‘π‘’π‘π‘’π‘  π‘‘π‘œ π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š 𝐴. 𝐼𝑓 𝑀𝑒 π‘‘π‘Žπ‘˜π‘’ 𝛼 = π‘Ž π‘›βˆ’1 βˆ’ π‘Ž 𝑛 β‰₯ 0, then we get Corollary 2, of ([4] Aziz and
Zarger).
           Next we present the following interesting result which includes Theorem A as a special case.
           Theorem 2. Let                  P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, If for some real numbers with 𝒕 𝟏 β‰ 
 𝟎, 𝒕 𝟏 > 𝒕 𝟐 β‰₯ 𝟎
                          𝒏
(πŸ–)           𝑴𝒂𝒙 𝒛 =𝑹 βˆ‘ 𝒋=𝟎 𝒂 𝒋 𝒕 𝟏 𝒕 𝟐 + 𝒂 π’‹βˆ’πŸ 𝒕 𝟏 βˆ’ 𝒕 𝟐 βˆ’ 𝒂 π’‹βˆ’πŸ 𝒛 π’βˆ’π’‹ ≀ 𝑴3
then all the zeros of P(z) lie in the region
(9)                                                  𝑧 ≀ π‘Ÿ1,

Where ,
                                                 2𝑀3
(10)       π‘Ÿ1 =
                   π‘Ž 𝑛 𝑑 1 βˆ’π‘‘ 2   π‘Ž 𝑛 βˆ’1 2 +4 π‘Ž 𝑛 𝑀3     1/2 βˆ’ π‘Ž
                                                                 𝑛 𝑑 1 βˆ’π‘‘ 2 βˆ’ π‘Ž 𝑛 βˆ’1


Taking 𝑑2 = 0, we get the following result

          Corollary 4. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, If for some 𝑑 > 0,

                                                                                𝒏
                                                                             βˆ‘ 𝒋=𝟎 𝒂 π’‹βˆ’πŸ 𝒕 βˆ’ 𝒂 π’‹βˆ’πŸ 𝒛 π’βˆ’π’‹ ≀ 𝑴3,
                                                              𝑴𝒂𝒙    𝒛 =𝑹


then all the zeros of P(z) lie in the region

                                                                                          𝑧 ≀ π‘Ÿ1,

 Where ,
                                                                                          2𝑀3
                                                              r=      π‘Ž 𝑛 π‘‘βˆ’ π‘Ž 𝑛 βˆ’1 2 +4 π‘Ž 𝑛 𝑀3          1/2 βˆ’ π‘Ž π‘‘βˆ’π‘Ž
                                                                                                                𝑛    𝑛 βˆ’1


          Remark.          Suppose polynomial P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 , satisfies the conditions of

                                                                     www.ijmer.com                                                   4364 | Page
International Journal of Modern Engineering Research (IJMER)
                      www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
   Theorem A, then it can be easily verified that from Corollary 4.
                                                           M3 =an-1 ,
  then all the zeros of P(z) lie in

                                                                                                 2π‘Ž 𝑛 βˆ’1
                                                           𝑧 ≀
                                                                        π‘Ž 𝑛 βˆ’ π‘Ž 𝑛 βˆ’1       2   + 4π‘Ž 𝑛 π‘Ž π‘›βˆ’1 βˆ’ π‘Ž 𝑛 βˆ’ π‘Ž 𝑛 βˆ’1

                                             2π‘Ž
                                          = 2π‘Ž 𝑛 βˆ’1 = 1,
                                                  𝑛 βˆ’1


 which is the conclusion of Enestrom-Kekaya Theorem.

          Finally , we prove the following generalization of Theorem 1 of ([2], Aziz and Shah).

          Theorem 3. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, If𝛼, 𝛽 are complex numbers and with 𝑑1 β‰ 
 0, 𝑑2 π‘Žπ‘Ÿπ‘’ π‘Ÿπ‘’π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘€π‘–π‘‘β„Ž 𝑑1 β‰₯ 𝑑2 β‰₯ 0 and
 (11) π‘€π‘Žπ‘₯ 𝑧 =𝑅 π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 + βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’π‘‘2 βˆ’ π‘Žπ‘— βˆ’2 𝑧 𝑛 βˆ’π‘— βˆ’2 ≀ 𝑀4

 and,

 (12) π‘€π‘Žπ‘₯      𝑧 =𝑅        π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛽 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 + βˆ‘ 𝑗𝑛+2 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’π‘‘2 βˆ’ π‘Žπ‘— βˆ’2 𝑧 𝑗 ≀ 𝑀5
                                                            =2


 Where π‘Žβˆ’2= π‘Žβˆ’1 = 0 = π‘Ž 𝑛+1 = π‘Ž 𝑛+2 and R is any positive real number, then all the zeros of P(z) lie in the ring shaped
 region.
                                                                                       1
 (13)                                      Min (r2 , R) ≀ 𝑧 ≀ max π‘Ÿ1 ,
                                                                                       𝑅

 Where

                                                                                   2[ π‘Ž 𝑅 2 π‘Ž 𝑛 𝑑 1βˆ’ 𝑑 2 βˆ’π‘Ž 𝑛 βˆ’1 +𝛼 +𝑀4 ] 2
 (14)                             π‘Ÿ1 =                                                                                                   2
                                           𝛼 𝑅 2 𝑀4 +𝑅 2    𝑀4 βˆ’ π‘Ž 𝑛    π‘Ž 𝑛 𝑑 1βˆ’ 𝑑 2 +π›Όβˆ’π‘Ž 𝑛 βˆ’1    2 +4 𝛼 𝑅 2 π‘Ž
                                                                                                                  𝑛 𝑑 1βˆ’ 𝑑 2 +π›Όβˆ’π‘Ž 𝑛 βˆ’1 +𝑀4   π‘Ž 𝑛 𝑅 2 𝑀4   1/2 βˆ’



                                                                       𝛼 𝑅2 𝑀4 + 𝑅2 𝑀4 βˆ’ π‘Ž 𝑛                      π‘Ž 𝑛 𝑑1βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1

 and

          1                  2[𝑅 2 𝛽                                      2
                                           π‘Ž 1 𝑑 1 𝑑 2 +π‘Ž 0 𝑑 1βˆ’ 𝑑 2 +𝛽 βˆ’π‘€5 ]
 (15)          =
          π‘Ÿ2       𝑅2      π‘Ž 1 𝑑 1 𝑑 2 +π‘Ž 0 𝑑 1βˆ’ 𝑑 2 +𝛽 ( π‘Ž 0 𝑑 1 𝑑 2 βˆ’π‘€5 )βˆ’ 𝛽 𝑀5 +


                             𝑅4          π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1βˆ’ 𝑑2 + 𝛽               π‘Ž0 𝑑1 𝑑2 βˆ’ 𝑀5             2


                                                                                            2
                           +4       π‘Ž0        𝑀5 𝑑1 𝑑2 (𝑅 2 𝛽 π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1βˆ’ 𝑑2 ) + 𝛽 + 𝑀5                                    1/2


 Taking 𝛼 = 0, 𝛽 = 0, in Theorem 3, we get the following.

          Corollary 5. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, If ,𝑑1 β‰  0 π‘Žπ‘›π‘‘ 𝑑2 are real numbers with 𝑑1 β‰₯ 𝑑2 β‰₯
 0,
                             π‘€π‘Žπ‘₯    𝑧 =𝑅    βˆ‘ 𝑗𝑛+1 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1βˆ’ 𝑑2 βˆ’ π‘Žπ‘— βˆ’2 𝑧 π‘›βˆ’π‘— +2 ≀ 𝑀4 ,
                                                =1


                                               𝐧+𝟐
                                            βˆ‘ 𝐣=𝟏 𝐚 𝐣 𝐭 𝟏 𝐭 𝟐 + 𝐚 π£βˆ’πŸ 𝐭 πŸβˆ’ 𝐭 𝟐 βˆ’ 𝐚 π£βˆ’πŸ 𝐳 𝐣 ≀ 𝐌 πŸ“ ,
                             𝐌𝐚𝐱    𝐳 =𝐑


Where R is any positive real number . then all the zeros of P(z) lie in the ring shaped region
                                                                                                                       1
                                                                       min (r2,R) ≀ 𝑧 ≀ max π‘Ÿ1 ,
                                                                                                                       𝑅

 Where
                                                                        2𝑀42
           π‘Ÿ1 =                                                                 3
                      𝑅4    𝑑 1βˆ’ 𝑑 2 ) π‘Ž 𝑛 βˆ’π‘Ž 𝑛 βˆ’1 2 𝑀4 βˆ’ π‘Ž 𝑛     2 +4 π‘Ž
                                                                         𝑛 𝑅 2 𝑀4 1/2 βˆ’        𝑑 1 βˆ’π‘‘ 2 )π‘Ž 𝑛 βˆ’π‘Ž 𝑛 βˆ’1       𝑀4 βˆ’ π‘Ž 𝑛    𝑅2


 π‘Ÿ2 =


                                                                         www.ijmer.com                                                                            4365 | Page
International Journal of Modern Engineering Research (IJMER)
                www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
                                                                                                   1
           1                                                                      3
            2
          2𝑀5
                𝑅4 π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1 βˆ’ 𝑑2          2
                                                          𝑀5 βˆ’ π‘Ž0 𝑑1 𝑑2   2
                                                                              + 4𝑀5 𝑅 2 π‘Ž0 𝑑1 𝑑2   2   βˆ’
                                                  𝑅 2 𝑀5 βˆ’ π‘Ž0 𝑑1 𝑑2       π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1 βˆ’ 𝑑2

The result was also proved by Shah and Liman [12].



                                                               II.        LEMMAS
       For the proof of these Theorems, we need the following Lemmas. The first Lemma is due to Govil, Rahman and
Schmesser [7].
LEMMA. 1.       If 𝑓(z) is analytic in 𝑧 ≀ 1, 𝑓 π‘œ = π‘Ž π‘€β„Žπ‘’π‘Ÿπ‘’ π‘Ž < 1, 𝑓′ π‘œ = 𝑏, 𝑓(𝑧) ≀ 1, π‘œπ‘› 𝑧 = 1, π‘‘β„Žπ‘’π‘› π‘“π‘œπ‘Ÿ 𝑧 ≀
1.
                              1βˆ’ π‘Ž     𝑧 2 + 𝑏 𝑧 + π‘Ž 1βˆ’ π‘Ž
                    𝑓(𝑧) ≀     π‘Ž 1βˆ’ π‘Ž        𝑧 2 + 𝑏 𝑧 + 1βˆ’ π‘Ž

The example
                                            𝑏
                                        π‘Ž+     π‘§βˆ’π‘§ 2
                                         1+π‘Ž
                             𝑓 (z)=       𝑏
                                      1βˆ’      π‘§βˆ’π‘Žπ‘§ 2
                                        1+π‘Ž


          Shows that the estimate is sharp.

form Lemma 1, one can easily deduce the following:

LEMMA. 2.          If 𝑓 (z) is analytic in 𝑧 ≀ 𝑅, 𝑓 0 = 0, 𝑓 β€²                 0
                                                                                   = 𝑏 π‘Žπ‘›π‘‘ 𝑓(𝑧) ≀ 𝑀,

                   π‘“π‘œπ‘Ÿ 𝑧 = 𝑅, π‘‘β„Žπ‘’π‘›
                              𝑀 𝑧    𝑀 𝑧 +𝑅 2 𝑏
                    𝑓(𝑧) ≀                         for 𝑧 ≀ 𝑅
                               𝑅2     𝑀+ 𝑏 𝑧




                                         III.             PROOFS OF THE THEOREMS.
Proof of Theorem . 1         Consider
(16)                                     F(z) = 𝑑2 + 𝑧            𝑑1 βˆ’ 𝑧 𝑃(𝑧)

                                         = βˆ’π‘Ž 𝑛 𝑧 𝑛+2 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 𝑧 𝑛+1

                                         + π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž 𝑛 βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’2               𝑧𝑛

                                         +….+ π‘Ž 𝑛 𝑑1 𝑑2+ π‘Ž0 𝑑1 βˆ’ 𝑑2                𝑧 + π‘Ž0 𝑑1 𝑑2

Let
                                                   1
                             G(z) + 𝑧 𝑛+2 𝐹
                                                      𝑧

= βˆ’π‘Ž 𝑛 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 𝑧 + π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž 𝑛 βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’2 𝑧 2 + β‹―

                             …+ π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1 βˆ’ 𝑑2 𝑧 𝑛 +1 + π‘Ž0 𝑑1 𝑑2 𝑧 𝑛+2

                             = βˆ’π‘Ž 𝑛 βˆ’ 𝛼𝑧 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž π‘›βˆ’1 𝑧

                             + π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž π‘›βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’2 𝑧 2 + β‹―

                             … + (π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1 βˆ’ 𝑑2 𝑧 𝑛+1 + π‘Ž0 𝑑1 𝑑2 ) 𝑧 𝑛+2

                             = βˆ’ π‘Ž 𝑛 + 𝛼𝑧 + 𝐻(𝑧)

          Where,

H(z)= 𝑧     π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 + βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Žπ‘— βˆ’2 𝑧 π‘›βˆ’π‘—

                                                             www.ijmer.com                                 4366 | Page
International Journal of Modern Engineering Research (IJMER)
                 www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
Clearly H(o)=0 and π‘€π‘Žπ‘₯          𝑧 =𝑅    𝐻(𝑧) ≀ 𝑅𝑀1,

           We first assume that π‘Ž 𝑛 ≀ 𝑅 𝑀1 + 𝛼

Now for 𝑧 ≀ 𝑅, by using Schwarz Lemma, we have

(17)    G(z) = βˆ’ a n + Ξ±z + H(z)

                    β‰₯ a n βˆ’ 𝛼 𝑧 βˆ’ 𝐻(𝑧)

                    β‰₯ a n βˆ’ 𝛼 𝑧 βˆ’ |𝑀1 𝑧|

                    = an βˆ’             𝑀1 + 𝛼     𝑧|

                    > π‘œ, 𝑖𝑓
                                π‘Žπ‘›
                      𝑧 <   𝑀1 + 𝛼
                                         ≀ 𝑅

                                                                                        π‘Žπ‘›
           This shows that all the zeros of G(z) lie in 𝑧 β‰₯
                                                                                      𝑀1 + 𝛼

                            1                                                 1
           Replacing z by 𝑧 and noting that F(z) = 𝑧 𝑛+2 𝐺                        𝑧
                                                                                       , it follows that all the zeros of F(z) lie in

                            𝑀1 + 𝛼
                      𝑧 ≀       π‘Žπ‘›
                                        if , π‘Ž 𝑛 ≀ 𝑅 (𝑀1 + 𝛼 )

           Since all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in
                                                                        π‘Žπ‘›
(18)                                                          𝑧 ≀
                                                                      𝑀1 + 𝛼


           Now assume π‘Ž 𝑛 > 𝑅 (𝑀1 + 𝛼 ), then for 𝑧 ≀ 𝑅, we have from (17).


           G z β‰₯ a n βˆ’ 𝛼 𝑧 βˆ’ 𝐻(𝑍)

                   β‰₯ π‘Ž 𝑛 βˆ’ 𝛼 𝑅 βˆ’ 𝑀1 𝑅

                     = π‘Žπ‘› βˆ’             𝛼 + 𝑀 𝑅 > 0,

           Thus G(z) β‰  0 π‘“π‘œπ‘Ÿ 𝑧 < 𝑅, π‘“π‘Ÿπ‘œπ‘š π‘€β„Žπ‘–π‘β„Ž it follows as before that all the zeros of F(z) and hence all the zeros of P(z) lie
                  1,
           in 𝑧 ≀ 𝑅 Combining this with (18), we infer that all the zeros of P(z) lie in

                                                                 𝐚𝐧          𝟏,
19.                                             𝐳 ≀ 𝐦𝐚𝐱        𝐌 𝟏+ 𝛂
                                                                         ,   𝐑

           Now to prove the second part of the Theorem, from (16) we can write F(z) as

                     F(z)= t 2 + z t1 βˆ’ z P(z)

                            =

            a 0 t1 t 2 + a1 t1 t 2 + a 0 t1 βˆ’ t 2 z + β‹― + a n t1 βˆ’ t 2 βˆ’ a nβˆ’1 z n+1 βˆ’ a n z n+2

=a 0 t1 t2 βˆ’ Ξ²z + a1 t1 t 2 + a 0 t1 βˆ’ t 2 + Ξ² z + β‹― + a n t1 βˆ’ t 2 βˆ’ a nβˆ’1 z n+1 βˆ’ a n z n+2

                  = a 0 t1 t 2 βˆ’ Ξ²z + T(z)

Where

T(z) = z    π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1 βˆ’π‘‘2 + 𝛽 + βˆ‘n+2 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’π‘‘2 π‘Žπ‘— βˆ’2 𝑧 𝑗 βˆ’1
                                        j=2


           Clearly T(o)=0, and                  π‘€π‘Žπ‘₯    𝑧 =𝑅   𝑇(𝑧) ≀ 𝑅𝑀2

           We first assume that π‘Ž0 𝑑1 𝑑2 ≀ Ξ² + M2

                                                              www.ijmer.com                                                             4367 | Page
International Journal of Modern Engineering Research (IJMER)
             www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
       Now for z ≀ R, by using Schwasr lemma, we have

        F(z) β‰₯ π‘Ž0 𝑑1 𝑑2 βˆ’ Ξ² z βˆ’ T(z)

                           β‰₯ π‘Ž0 𝑑1 𝑑2 βˆ’ Ξ² z βˆ’ M2 Z

                             >0, if,
                        π‘Ž0 𝑑1 𝑑2
                 z <                                                       ≀R
                        Ξ² +M 2

                                                           π‘Ž0 𝑑1 𝑑2
       This shows that F(z) β‰ 0, for z <                                 , hence all the zeros of F(z) lie in
                                                           Ξ² +M 2

                                       π‘Ž0 𝑑1 𝑑2
                             z β‰₯       Ξ² +M 2


       But all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in


                                                      π‘Ž0 𝑑1 𝑑2
20.                                       z β‰₯         Ξ² +M 2


       Now we assume π‘Ž0 𝑑1 𝑑2 > Ξ² + M2 , then for z ≀ R, we have

       `         F(z) β‰₯ π‘Ž0 𝑑1 𝑑2 βˆ’ Ξ² z βˆ’ T(z)

                           β‰₯ π‘Ž0 𝑑1 𝑑2 βˆ’ Ξ² R βˆ’ M2 R

                           > 𝑑1 𝑑2 π‘Ž0 βˆ’              Ξ² + M2 R

                             >0,

       This shows that all the zeros of F(z) and hence that of P(z) lie in

                             z β‰₯R

       Combining this with (20) , it follows that all the zeros of P(z) lie in
                                                                π‘Ž0 𝑑1 𝑑2
21                                        z β‰₯ min               Ξ² +M 2
                                                                           ,R

       Combining (19) and (20), the desired result follows.

Proof of Theorem 2:-       Consider

22.                                      F(z) = 𝑑2 + 𝑧                𝑑1 βˆ’ 𝑧 𝑃(𝑧)

                           = 𝑑2 + 𝑧               𝑑1 βˆ’ 𝑧        π‘Ž 𝑛 𝑧 𝑛 + π‘Ž π‘›βˆ’1 𝑧 π‘›βˆ’1 + β‹― + π‘Ž1 𝑧 + π‘Ž0

                           = βˆ’π‘Ž 𝑛 𝑧 𝑛+2 +             π‘Žπ‘›       𝑑1βˆ’ 𝑑2      βˆ’ π‘Ž π‘›βˆ’1   𝑧 𝑛 +1 + β‹― + π‘Ž0 𝑑1 𝑑2

Let
                                                                                1
23.                                                     G(z) = 𝑧 𝑛+2 𝐹( 𝑧 )

                           = βˆ’π‘Ž 𝑛 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 𝑧 +

                             π‘Ž 𝑛 𝑑1 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 𝑑1 βˆ’ 𝑑2 π‘Ž 𝑛 βˆ’2 𝑧 2 + 𝐻(𝑧)

       Where

                H(z) = 𝑧 2         π‘Ž 𝑛 𝑑1 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’2 + β‹― + π‘Ž0 𝑑1 𝑑2 𝑧 𝑛



       Clearly H(o)=0 = H(o), since H(z) ≀ M3 R2 for z = R
                                                               www.ijmer.com                                   4368 | Page
International Journal of Modern Engineering Research (IJMER)
                   www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
          We first assume,



24            a n ≀ MR2 + R π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1

          Then by using Lemma 2. To H(z), it follows that
                                 M3 z M3 z
                       𝐻z ≀       R2       M3
                                                  π‘€π‘Žπ‘₯        𝑧 =𝑅   H(z)

          Hence from(23) we have
                                                                                   z 2M3
                       G(z) β‰₯ a n βˆ’ π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 z βˆ’                                 𝑅2
                                                                                     R2

                       >0, if


                                            2
                                 M3 z           + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 z βˆ’ a n < 0

That is if,
                                                                1/2
                                π‘Ž 𝑛 𝑑 1 βˆ’π‘‘ 2 βˆ’π‘Ž 𝑛 βˆ’1 2 +4 a n M     βˆ’ π‘Ž 𝑛 𝑑 1 βˆ’π‘‘ 2 βˆ’π‘Ž 𝑛 βˆ’1
25.                    z <                                2M 3

                        1
                       =r ≀ R

If
                                       2                                                              2
              π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1         + 4 a n M3 ≀ 2M3 R + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1

Which implies

                       a n ≀ M3 R2 + R π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1

          Which is true by (24)..Hence all the zeros of G(z) lie in Z β‰₯ r. since

                                                                           F z = z n+2 G z ,

          It follows that all the zeros of F(z) and hence that of P(z) lie in z ≀ r. We now assume.

26.                             a n ≀ M3 R2 + R π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 ,

then for z ≀ R, from (23) it follows that

              G(z) β‰₯ a n βˆ’        π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 z βˆ’ H(z)

                       β‰₯ π‘Ž 𝑛 βˆ’ 𝑅 π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 βˆ’ R2 M3

                       >0, by (26).
                                                                                                                                          1
                       This shows that all the zeros of G(z) lie in Z > 𝑅, and hence all the zeros of F(z) = z n+2 G(z ) lie in
                   1
              z ≀ , but all the zeros of P(z) are also the zeros of                   F(z) , therefore it follows that all the zeros of P(z) lie in
                   R

                                                         1
                                                 Z ≀R

27.    From (25) amd (27) , we conclude that all the zeros of P(z) lie in
                                                     1
                                  Z ≀ max(π‘Ÿ, )
                                                     R

          Which completes the proof of Theorem 2.

28. PROOF OF THEOREM 3. Consider the polynomial
                                                                    www.ijmer.com                                                             4369 | Page
International Journal of Modern Engineering Research (IJMER)
               www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
                   F(z) = 𝑑2 + 𝑧            𝑑1 βˆ’ 𝑧 𝑃(𝑧)

          = 𝑑1 𝑑2 +    𝑑1 βˆ’ 𝑑2 𝑧 βˆ’ 𝑧 2 )         π‘Ž 𝑛 𝑧 𝑛 + π‘Ž π‘›βˆ’1 𝑧 𝑛 βˆ’1 + β‹― + π‘Ž1 𝑧 + π‘Ž0

          = βˆ’π‘Ž 𝑛 𝑧 𝑛+2 +      π‘Žπ‘›    𝑑1βˆ’ 𝑑2    βˆ’ π‘Ž π‘›βˆ’1       𝑧 𝑛 +1 + β‹― +       π‘Ž 𝑛 𝑑1 𝑑2

                   + π‘Ž π‘›βˆ’1         𝑑1βˆ’ 𝑑2    βˆ’ π‘Ž 𝑛 βˆ’1     𝑧 𝑛+1 + β‹― +


           a 2 t1 t 2 + a1 𝑑1βˆ’ 𝑑2 βˆ’ π‘Ž0 z 2 + a1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 𝑧 +                                                    π‘Ž0 t1 t 2
         We have,
                                   1
                   G(z) = 𝑧 𝑛+2 𝐹( )
                                    𝑧
                       = π‘Ÿπ‘Ž 𝑛 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 + π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž 𝑛 βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’2 𝑧 2
                               +…+ π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1βˆ’ 𝑑2       𝑧 𝑛 +1 + π‘Ž0 𝑑1 𝑑2 𝑧 𝑛+2
                               = βˆ’π‘Ž 𝑛 βˆ’ 𝛼𝑧 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 +
                                 π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž 𝑛 βˆ’1 𝑑1βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’2 z 2 +. . +
                                 π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1βˆ’ 𝑑2 z n+1 + π‘Ž0 𝑑1 𝑑2 𝑧 𝑛+2
     29.                              = βˆ’π‘Ž 𝑛 βˆ’ 𝛼𝑧 + 𝐻 𝑧
     Where
                       H(z) = π‘Ž 𝑛 𝑑1 βˆ’π‘‘2 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 + β‹― + π‘Ž0 𝑑1 𝑑2 𝑧 𝑛+2
     We first assume that
     30. a n β‰₯ Ξ± R + M4
         Then for z < 𝑅, we have
     31. G(z) β‰₯ a n βˆ’ Ξ± z βˆ’ H(z)
         Since
          H(z) ≀ M4 π‘“π‘œπ‘Ÿ z ≀ R
Therefore for 𝑧 <R, from (31) with the help of (30), we have
  𝐺(𝑧) > π‘Ž 𝑛 βˆ’ ∝ 𝑅 βˆ’ 𝑀4
                                                                                      1
therefore , all the zeros of G(z) lie in z β‰₯ R, in this case. Since F(z) = 𝑧 𝑛 +2 G 𝑧 therefore all the zeros of G(z) lie in
      1
Z ≀ R . As all the zeros of P(z) are the zeros of F(z), it follows that all the zeros of P(z) lie in
                                                    1
    32.                                z ≀R
                     Now we assume a n < Ξ± R + M4 , clearly H(o) = 0 and                                H(o) = (π‘Ž 𝑛   𝑑1 βˆ’π‘‘2 βˆ’
           𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 , Since by (11), H(z) ≀ M4 , for z = R,
          therefore it follows by Lemma2. that
                     M4 z M4 z + R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼
           H(z) ≀
                       R2      M4 + a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 z
          for z ≀ R
          Using this in (31), we get,
                                     M4 z M4 z + R2 a n       𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž π‘›βˆ’1 + 𝛼
           G(z) β‰₯ π‘Ž 𝑛 βˆ’ 𝛼 𝑧 βˆ’           2
                                       R     M4 + a n    𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 z
          >0, if

                     π‘Ž 𝑛 R2 M4 + a n   𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 z βˆ’ z Ξ± R2
                    M4 + a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 z + M4 M4 z + R2
                                               a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼      > 0,
          this implies,
            Ξ± R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž π‘›βˆ’1 + 𝛼 + M4 z 2 + Ξ± R2 M4 +
                                                2
             2                                2
            R M4 a n t1 βˆ’ t 2 βˆ’ a nβˆ’1 +∝ … R M4 an 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 }
                                                      z βˆ’ a n R2 M4 < 0,
          This gives,
                             G(z) > 0, 𝑖𝑓
           z < [ Ξ± R2 M4 + R2 M4 βˆ’ a n a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 2 +..
                   ….4 Ξ± R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 + M4 2        π‘Ž 𝑛 R2 M4 ]

                           𝛼 R 2 M 4 +R 2 M 4 βˆ’ π‘Ž 𝑛  a n 𝑑 1 βˆ’π‘‘ 2 βˆ’π‘Ž 𝑛 βˆ’1 +𝛼
                   βˆ’
                               2 Ξ± R 2 a n 𝑑 1 βˆ’π‘‘ 2 βˆ’π‘Ž 𝑛 βˆ’1 +𝛼 +M 4 2
                                      1
                                =r ,
                                     1
                            So, z < 𝑅, 𝑖𝑓
                      Ξ± R2 M4 + M4 βˆ’ a n R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼                        2
                                                                                               +
                                             www.ijmer.com                                                               4370 | Page
International Journal of Modern Engineering Research (IJMER)
                 www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
                     4 Ξ± R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž π‘›βˆ’1 + 𝛼 + M4 2                               π‘Ž 𝑛 R2 M4

                     < 2 Ξ± a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 R + Ξ± R2 M4 + 2RM4 2

                     + M4 βˆ’ a n R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼                          2


           That is if,

                         a n R2 M4 ≀ R2 Ξ± 𝑅2 an 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž π‘›βˆ’1 + 𝛼 + M4 2 +

                         Ξ± R2 M4 + M4 βˆ’ a n R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 R

           Which gives

           a n M4 ≀ M4 Ξ± R + M4 βˆ’ π‘Ž 𝑛 + 𝑅 Ξ± R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 + M4 2

                                                                            Ξ± R2 + M4 βˆ’ π‘Ž 𝑛

           Which is true because π‘Ž 𝑛 < Ξ± R + M4 ,
                                                                                            1                        1
                     Consequently , all the zeros of G(z) lie in z β‰₯ r , as F(z) = z n+1 G( z ), we conclude that all the zeros of
                                                                                            1
           F(z) lie z ≀ π‘Ÿ1 , since every zero of P(z) is also a zero of F(z), it follows that all the zeros of P(z) lie in

     33.                                                 z ≀ π‘Ÿ1

           Combining this with (32) it follows that all the zeros of P(z) lie in
                                                                              1
     34.                                               z ≀ π‘šπ‘Žπ‘₯ π‘Ÿ1 ,            𝑅

           Again from (28) it follows that

           𝐹 𝑧 = π‘Ž0 t1 t 2 βˆ’ Ξ²z + a1 t1 t2               𝑑1βˆ’ 𝑑2    + 𝛽 z + β‹― + a n ( 𝑑1 βˆ’π‘‘2

           βˆ’. π‘Ž π‘›βˆ’1 )z n+2 βˆ’ a n 𝑧 𝑛+2

     35.                              β‰₯ π‘Ž0 t1 t 2 βˆ’ 𝛽 𝑧 βˆ’ 𝑇(𝑧)

     Where,

                    T(z) = a n 𝑧 𝑛+2 + a n 𝑑1 βˆ’π‘‘2 βˆ’. π‘Ž 𝑛 βˆ’1 𝑧 𝑛 +1 +. . +
                                                π‘Ž0 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 z
           Clearly T(o)=0, and T(o) π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽
           Since by (12) , T(z) ≀ M5 for z = R
           using Lemma 2. To T(z), we have

                                              M5 z
           F(z) β‰₯ π‘Ž0 t1 t 2 βˆ’ Ξ² z βˆ’             R2
                                                       M5 z + R2 π‘Ž1 t1 t 2 + a 0                    𝑑1βˆ’ 𝑑2   + 𝛽 z

                     = - R2 Ξ² π‘Ž1 t1 t 2 + a 0             𝑑1βˆ’ 𝑑2     + 𝛽 + 𝑀5 2 z 2 +

                            π‘Ž1 t1 t 2 + a 0     𝑑1βˆ’ 𝑑2      + 𝛽 R2 π‘Ž0 t1 t 2 βˆ’ R2 M5 βˆ’ Ξ² R2 M5 z + M5 R2 π‘Ž1 t1 t2

             R2 M5 + π‘Ž1 t1 t 2 + a 0          𝑑1βˆ’ 𝑑2     + 𝛽 z

>0, if,

                                 R2 Ξ² π‘Ž1 t1 t 2 + a 0              𝑑1βˆ’ 𝑑2     + 𝛽 + 𝑀5 2 z 2 βˆ’                π‘Ž1 t1 t 2 + a 0   𝑑1βˆ’ 𝑑2   + 𝛽

            R2 π‘Ž0 t1 t2 βˆ’ R2 M5 βˆ’ Ξ² R2 M5 z βˆ’ R2 M5 π‘Ž0 t1 t 2 < 0,

Thus, F(z) > 0, 𝑖𝑓

  z < βˆ’R2       π‘Ž1 t1 t2 + a 0    𝑑1βˆ’ 𝑑2      + 𝛽         π‘Ž0 t1 t 2 βˆ’ M5           Ξ² M5

                                                                  www.ijmer.com                                                                4371 | Page
International Journal of Modern Engineering Research (IJMER)
                  www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
 βˆ’ R4       π‘Ž1 t1 t 2 + a 0   𝑑1βˆ’ 𝑑2   + 𝛽     π‘Ž0 t1 t 2 βˆ’ M5   Ξ² M5   2


                                       +4 R2 Ξ² π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 + M5 2 R2 M5 π‘Ž0 t1 t2      1/2
                                                                                                           π‘Ÿπ‘§
                                               2 R2 Ξ² π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 + M5 2

            Thus it follows by the same reasoning as in Theorem 1, that all the zeros of F(z) and hence that of P(z) lie in

      36.                                    z β‰₯ min(r2, R)

            Combining (34) and (36) , the desired result follows.



                                                                  REFERENCES
[1]  A. Aziz and Q.G Mohammad, On thr zeros of certain class of polynomials and related analytic functions, J. Math.
     Anal Appl. 75(1980), 495-502
[2] A.Aziz and W.M Shah, On the location of zeros of polynomials and related analytic functions, Non-linear studies,
     6(1999),97-104
[3] A.Aziz and W.M Shah, On the zeros of polynomials and related analytic functions, Glasnik, Matematicke, 33 (1998),
     173-184;
[4] A.Aziz and B.A. Zarger, Some extensions of Enestrem-Kakeya Theorem, Glasnik, Matematicke, 31 (1996), 239-244
[5] K.K.Dewan and M. Biakham,, On the Enestrom –Kakeya Theorem, J.Math.Anal.Appl.180 (1993), 29-36
[6] N.K, Govil and Q.I. Rahman, On the Enestrem-Kakeya Theorem, Tohoku Math.J. 20 (1968), 126-136.
[7] N.K, Govil , Q.I. Rahman and G. Schmeisser, on the derivative of polynomials, Illinois Math. Jour. 23 (1979), 319-
     329
[8] P.V. Krishnalah, On Kakeya Theorem , J.London. Math. Soc. 20 (1955), 314-319
[9] M. Marden, Geometry of polynomials, Mathematicial surveys No.3. Amer. Math. Soc. Providance , R.I. 1966
[10] G.V. Milovanovic, D.S. Mitrinovic, Th.M. Rassias Topics in polynomials, Extremal problems Inequalitics,
     Zeros(Singapore, World Scientific)1994.
[11] Q.I. Rahman and G.Schmessier, Analytic Theory of polynomials, (2002), Clarantone, Press Oxford.
[12] W.M. Shah and A. Liman, On the zeros of a class of polynomials, Mathematical inequalioties and Applications,
     10(2007), 793-799




                                                        www.ijmer.com                                                  4372 | Page

More Related Content

What's hot

IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesIIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
SOURAV DAS
Β 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
Rai University
Β 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
VjekoslavKovac1
Β 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
iosrjce
Β 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
Rai University
Β 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
VjekoslavKovac1
Β 
Complex integration
Complex integrationComplex integration
Complex integration
Santhanam Krishnan
Β 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
VjekoslavKovac1
Β 
Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)
KINGSHUKMUKHERJEE11
Β 
-contraction and some fixed point results via modified !-distance mappings in t...
-contraction and some fixed point results via modified !-distance mappings in t...-contraction and some fixed point results via modified !-distance mappings in t...
-contraction and some fixed point results via modified !-distance mappings in t...
IJECEIAES
Β 
A SzemerΓ©di-type theorem for subsets of the unit cube
A SzemerΓ©di-type theorem for subsets of the unit cubeA SzemerΓ©di-type theorem for subsets of the unit cube
A SzemerΓ©di-type theorem for subsets of the unit cube
VjekoslavKovac1
Β 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
Rai University
Β 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
Rai University
Β 
Lectures4 8
Lectures4 8Lectures4 8
Lectures4 8
KINGSHUKMUKHERJEE11
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Rai University
Β 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
VjekoslavKovac1
Β 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
Cemal Ardil
Β 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Rai University
Β 
9 pd es
9 pd es9 pd es
9 pd es
Sachin Ghalme
Β 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
VjekoslavKovac1
Β 

What's hot (20)

IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesIIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
Β 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
Β 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
Β 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
Β 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
Β 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
Β 
Complex integration
Complex integrationComplex integration
Complex integration
Β 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
Β 
Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)
Β 
-contraction and some fixed point results via modified !-distance mappings in t...
-contraction and some fixed point results via modified !-distance mappings in t...-contraction and some fixed point results via modified !-distance mappings in t...
-contraction and some fixed point results via modified !-distance mappings in t...
Β 
A SzemerΓ©di-type theorem for subsets of the unit cube
A SzemerΓ©di-type theorem for subsets of the unit cubeA SzemerΓ©di-type theorem for subsets of the unit cube
A SzemerΓ©di-type theorem for subsets of the unit cube
Β 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
Β 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
Β 
Lectures4 8
Lectures4 8Lectures4 8
Lectures4 8
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Β 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
Β 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
Β 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Β 
9 pd es
9 pd es9 pd es
9 pd es
Β 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
Β 

Viewers also liked

Pacific Trails MICE Presentation 2013
Pacific Trails MICE Presentation 2013 Pacific Trails MICE Presentation 2013
Pacific Trails MICE Presentation 2013
RakeshKhetrapal
Β 
La metodologΓ­a de taguchi tambiΓ©n llamada
La metodologΓ­a de taguchi tambiΓ©n llamadaLa metodologΓ­a de taguchi tambiΓ©n llamada
La metodologΓ­a de taguchi tambiΓ©n llamada
Drk Gonzalez
Β 
Genechi taguchi
Genechi taguchiGenechi taguchi
Genechi taguchi
Griz Quirino JimΓ©nez
Β 
Dr
DrDr
Dr taguchi
Dr taguchiDr taguchi
Taguchi
TaguchiTaguchi
1Βͺ practica mecanizado y afilado broca
1Βͺ practica mecanizado y afilado broca1Βͺ practica mecanizado y afilado broca
1Βͺ practica mecanizado y afilado broca
vidalcamarero
Β 
Sga gurus, taguchi
Sga  gurus, taguchiSga  gurus, taguchi
Sga gurus, taguchi
Carlos Medellin
Β 
Practica De Taguchi
Practica De TaguchiPractica De Taguchi
Practica De Taguchi
Hero Valrey
Β 
Control de peridad de taguchi
Control de peridad de taguchiControl de peridad de taguchi
Control de peridad de taguchi
diana_az0
Β 
Material Unidad I
Material Unidad IMaterial Unidad I
Material Unidad I
ilsegarciac
Β 
MΓ©todo taguchi y funciΓ³n perdida de la calidad
MΓ©todo taguchi y funciΓ³n perdida de la calidadMΓ©todo taguchi y funciΓ³n perdida de la calidad
MΓ©todo taguchi y funciΓ³n perdida de la calidad
Sergio Paez Hernandez
Β 
Macario funcion de perdida
Macario funcion de perdidaMacario funcion de perdida
Macario funcion de perdida
Chayito Coronel
Β 
MΓ©todo taguchi
MΓ©todo taguchiMΓ©todo taguchi
MΓ©todo taguchi
Rafael Pozzobon
Β 
IngenierΓ­a de calidad avanzada
IngenierΓ­a de calidad avanzadaIngenierΓ­a de calidad avanzada
IngenierΓ­a de calidad avanzada
Ade ChΓ‘vez
Β 
3 gurus de calidad tello
3 gurus de calidad tello3 gurus de calidad tello
3 gurus de calidad tello
rtellos
Β 
Ingenieria de calidad
Ingenieria de calidadIngenieria de calidad
Ingenieria de calidad
Leticia De la Torre
Β 
Genichi Taguchi Padre de la CALIDAD
Genichi Taguchi Padre de la CALIDADGenichi Taguchi Padre de la CALIDAD
Genichi Taguchi Padre de la CALIDAD
Warwick Fabrics (Australia) Pty. Ltd.
Β 
Marketing a small business
Marketing a small businessMarketing a small business
Marketing a small business
denise2228
Β 
Bi31199203
Bi31199203Bi31199203
Bi31199203
IJMER
Β 

Viewers also liked (20)

Pacific Trails MICE Presentation 2013
Pacific Trails MICE Presentation 2013 Pacific Trails MICE Presentation 2013
Pacific Trails MICE Presentation 2013
Β 
La metodologΓ­a de taguchi tambiΓ©n llamada
La metodologΓ­a de taguchi tambiΓ©n llamadaLa metodologΓ­a de taguchi tambiΓ©n llamada
La metodologΓ­a de taguchi tambiΓ©n llamada
Β 
Genechi taguchi
Genechi taguchiGenechi taguchi
Genechi taguchi
Β 
Dr
DrDr
Dr
Β 
Dr taguchi
Dr taguchiDr taguchi
Dr taguchi
Β 
Taguchi
TaguchiTaguchi
Taguchi
Β 
1Βͺ practica mecanizado y afilado broca
1Βͺ practica mecanizado y afilado broca1Βͺ practica mecanizado y afilado broca
1Βͺ practica mecanizado y afilado broca
Β 
Sga gurus, taguchi
Sga  gurus, taguchiSga  gurus, taguchi
Sga gurus, taguchi
Β 
Practica De Taguchi
Practica De TaguchiPractica De Taguchi
Practica De Taguchi
Β 
Control de peridad de taguchi
Control de peridad de taguchiControl de peridad de taguchi
Control de peridad de taguchi
Β 
Material Unidad I
Material Unidad IMaterial Unidad I
Material Unidad I
Β 
MΓ©todo taguchi y funciΓ³n perdida de la calidad
MΓ©todo taguchi y funciΓ³n perdida de la calidadMΓ©todo taguchi y funciΓ³n perdida de la calidad
MΓ©todo taguchi y funciΓ³n perdida de la calidad
Β 
Macario funcion de perdida
Macario funcion de perdidaMacario funcion de perdida
Macario funcion de perdida
Β 
MΓ©todo taguchi
MΓ©todo taguchiMΓ©todo taguchi
MΓ©todo taguchi
Β 
IngenierΓ­a de calidad avanzada
IngenierΓ­a de calidad avanzadaIngenierΓ­a de calidad avanzada
IngenierΓ­a de calidad avanzada
Β 
3 gurus de calidad tello
3 gurus de calidad tello3 gurus de calidad tello
3 gurus de calidad tello
Β 
Ingenieria de calidad
Ingenieria de calidadIngenieria de calidad
Ingenieria de calidad
Β 
Genichi Taguchi Padre de la CALIDAD
Genichi Taguchi Padre de la CALIDADGenichi Taguchi Padre de la CALIDAD
Genichi Taguchi Padre de la CALIDAD
Β 
Marketing a small business
Marketing a small businessMarketing a small business
Marketing a small business
Β 
Bi31199203
Bi31199203Bi31199203
Bi31199203
Β 

Similar to On The Zeros of Certain Class of Polynomials

Solvable models on noncommutative spaces with minimal length uncertainty rela...
Solvable models on noncommutative spaces with minimal length uncertainty rela...Solvable models on noncommutative spaces with minimal length uncertainty rela...
Solvable models on noncommutative spaces with minimal length uncertainty rela...
Sanjib Dey
Β 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
SEENET-MTP
Β 
Orthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth processOrthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth process
gidc engineering college
Β 
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares MethodNonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Tasuku Soma
Β 
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
vrajes
Β 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
VjekoslavKovac1
Β 
stochastic processes assignment help
stochastic processes assignment helpstochastic processes assignment help
stochastic processes assignment help
Statistics Homework Helper
Β 
legendre.pptx
legendre.pptxlegendre.pptx
legendre.pptx
DiwakarChauhan12
Β 
CPP.pptx
CPP.pptxCPP.pptx
CPP.pptx
ZHDCADHOCTEACHERS
Β 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like forms
ijtsrd
Β 
FΓ­sica Integrales_Katherine Jaya
FΓ­sica Integrales_Katherine JayaFΓ­sica Integrales_Katherine Jaya
FΓ­sica Integrales_Katherine Jaya
XimeJaya
Β 
Las funciones L en teorΓ­a de nΓΊmeros
Las funciones L en teorΓ­a de nΓΊmerosLas funciones L en teorΓ­a de nΓΊmeros
Las funciones L en teorΓ­a de nΓΊmeros
mmasdeu
Β 
Double Robustness: Theory and Applications with Missing Data
Double Robustness: Theory and Applications with Missing DataDouble Robustness: Theory and Applications with Missing Data
Double Robustness: Theory and Applications with Missing Data
Lu Mao
Β 
Explicit upper bound for the function of sum of divisors
Explicit upper bound for the function of sum of divisorsExplicit upper bound for the function of sum of divisors
Explicit upper bound for the function of sum of divisors
Alexander Decker
Β 
planes and distances
planes and distancesplanes and distances
planes and distances
Elias Dinsa
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Santhanam Krishnan
Β 
balakrishnan2004
balakrishnan2004balakrishnan2004
Lecture5
Lecture5Lecture5
Lecture5
Atner Yegorov
Β 
cmftJYeZhuanTalk.pdf
cmftJYeZhuanTalk.pdfcmftJYeZhuanTalk.pdf
cmftJYeZhuanTalk.pdf
jyjyzr69t7
Β 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
Β 

Similar to On The Zeros of Certain Class of Polynomials (20)

Solvable models on noncommutative spaces with minimal length uncertainty rela...
Solvable models on noncommutative spaces with minimal length uncertainty rela...Solvable models on noncommutative spaces with minimal length uncertainty rela...
Solvable models on noncommutative spaces with minimal length uncertainty rela...
Β 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
Β 
Orthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth processOrthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth process
Β 
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares MethodNonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Β 
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Β 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
Β 
stochastic processes assignment help
stochastic processes assignment helpstochastic processes assignment help
stochastic processes assignment help
Β 
legendre.pptx
legendre.pptxlegendre.pptx
legendre.pptx
Β 
CPP.pptx
CPP.pptxCPP.pptx
CPP.pptx
Β 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like forms
Β 
FΓ­sica Integrales_Katherine Jaya
FΓ­sica Integrales_Katherine JayaFΓ­sica Integrales_Katherine Jaya
FΓ­sica Integrales_Katherine Jaya
Β 
Las funciones L en teorΓ­a de nΓΊmeros
Las funciones L en teorΓ­a de nΓΊmerosLas funciones L en teorΓ­a de nΓΊmeros
Las funciones L en teorΓ­a de nΓΊmeros
Β 
Double Robustness: Theory and Applications with Missing Data
Double Robustness: Theory and Applications with Missing DataDouble Robustness: Theory and Applications with Missing Data
Double Robustness: Theory and Applications with Missing Data
Β 
Explicit upper bound for the function of sum of divisors
Explicit upper bound for the function of sum of divisorsExplicit upper bound for the function of sum of divisors
Explicit upper bound for the function of sum of divisors
Β 
planes and distances
planes and distancesplanes and distances
planes and distances
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Β 
balakrishnan2004
balakrishnan2004balakrishnan2004
balakrishnan2004
Β 
Lecture5
Lecture5Lecture5
Lecture5
Β 
cmftJYeZhuanTalk.pdf
cmftJYeZhuanTalk.pdfcmftJYeZhuanTalk.pdf
cmftJYeZhuanTalk.pdf
Β 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
Β 

More from IJMER

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
IJMER
Β 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
IJMER
Β 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
IJMER
Β 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
IJMER
Β 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
IJMER
Β 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
IJMER
Β 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
IJMER
Β 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
IJMER
Β 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
IJMER
Β 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
IJMER
Β 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
IJMER
Β 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
IJMER
Β 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
IJMER
Β 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
IJMER
Β 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
IJMER
Β 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
IJMER
Β 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
IJMER
Β 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
IJMER
Β 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
IJMER
Β 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
IJMER
Β 

More from IJMER (20)

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
Β 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
Β 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Β 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Β 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Β 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Β 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Β 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Β 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Β 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
Β 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
Β 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
Β 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
Β 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
Β 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
Β 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Β 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Β 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
Β 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
Β 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
Β 

On The Zeros of Certain Class of Polynomials

  • 1. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 On The Zeros of Certain Class of Polynomials B.A. Zargar Post-Graduate Department of Mathematics, U.K, Srinagar. Abstract: Let P(z) be a polynomial of degree n with real or complex coefficients . The aim of this paper is to obtain a ring shaped region containing all the zeros of P(z). Our results not only generalize some known results but also a variety of interesting results can be deduced from them. I. Introduction and Statement of Results The following beautiful result which is well-known in the theory of distribution of zeros of polynomials is due to Enestrom and Kakeya [9]. Theorem A. If P(z) =βˆ‘ 𝑗𝑛=0 aj zj is a polynomial of degree n such that (1) an β‰₯ an-1 β‰₯…..β‰₯ a1 β‰₯ a0 β‰₯ 0, then all the zeros of P(z) lie in 𝑧 ≀ 1. In the literature ([2] ,[5] –[6], [8]-[11]) there exists some extensions and generalizations of this famous result. Aziz and Mohammad [1] provided the following generalization of Theorem A. Theorem B. Let P(z) =βˆ‘ 𝑗𝑛=0 aj zj is a polynomial of degree n with real positive coefficients. If t1 β‰₯ 𝑑2 β‰₯ 0 can be found such that (2) π‘Ž 𝐽 t1 t 2+ ajβˆ’1 t1 βˆ’ t 2 a jβˆ’2 β‰₯ 0, j=1, 2, … ;n+1, π‘Žβˆ’1 = π‘Ž 𝑛 +1 = 0 , then all the zeros of P(z) lie in 𝑧 ≀ 𝑑1 . For 𝑑1 = 1, 𝑑2 = 0, this reduces to Enestrom-Kakeya Theorem (Theorem A). Recently Aziz and Shah [3] have proved the following more general result which includes Theorem A as a special case. ------------------------------------------------------------------------------ Mathematics, subject, classification (2002). 30C10,30C15, Keywords and Phrases , Enestrom-Kakeya Theorem, Zeros ,bounds. Theorem C. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n. If for some t > 0. (3) π‘€π‘Žπ‘₯ 𝑧 =𝑅 π‘‘π‘Ž0 𝑧 𝑛 + π‘‘π‘Ž1 βˆ’ π‘Ž0 𝑧 𝑛 βˆ’1 + β‹― + π‘‘π‘Ž 𝑛 βˆ’ π‘Ž π‘›βˆ’1 ≀ 𝑀3 Where R is any positive real number, then all the zeros of P(z) lie in 𝑀 1 (4) 𝑧 ≀ π‘€π‘Žπ‘₯ π‘Ž 3 , 𝑅 𝑛 The aim of this paper is to apply Schwarz Lemma to prove a more general result which includes Theorems A, B and C as special cases and yields a number of other interesting results for various choices of parameters 𝛼, π‘Ÿ, 𝑑1 π‘Žπ‘›π‘‘ 𝑑2 . In fact we start by proving the following result. Theorem 1. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, If for some real numbers 𝑑1 , 𝑑2 with 𝒕 𝟏 β‰  𝟎, 𝒕 𝟏 > π’•πŸ β‰₯ 𝟎 (5) π‘€π‘Žπ‘₯ 𝑧 =𝑅 π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž π‘›βˆ’1 + βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Žπ‘— βˆ’2 𝑧 π‘›βˆ’π‘— +1 ≀ 𝑀1 (6) 𝑀𝑖𝑛 𝑧 =𝑅 π‘Ž0 𝑑1 βˆ’ 𝑑2 + π‘Ž1 𝑑1 𝑑2 + 𝛽 + βˆ‘ 𝑗𝑛+2 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ =2 (π‘Ž 𝑗 βˆ’2 𝑧 𝑗 ≀ 𝑀2 Where R is a positive real number, then all the zeros of P(z) lie in the ring shaped region. 𝑑1 𝑑2 π‘Ž0 𝑀1 + 𝛼 1 (7) 𝑀𝑖𝑛 𝑧 =R 𝛽 +𝑀2 , 𝑅 ≀ 𝑧 ≀ π‘€π‘Žπ‘₯ 𝑧 =R π‘Žπ‘› , 𝑅 Taking t2 =0, we get the following generalization and refinement of Theorem C. Corollary 1. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n. If for some t > 0. π‘€π‘Žπ‘₯ 𝑧 =𝑅 a n t + Ξ± βˆ’ a nβˆ’1 + βˆ‘n j=0 a jβˆ’1 t βˆ’ a jβˆ’2 z nβˆ’j+2 ≀ M1 n+2 j 𝑀𝑖𝑛 𝑧 =𝑅 a 0 t + Ξ² + βˆ‘j=0 a jβˆ’1 t βˆ’ a jβˆ’2 z ≀ M2 Where R is a real positive number then all the zeros of P(z) lie in www.ijmer.com 4363 | Page
  • 2. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 𝑀1 + 𝛼 1 z ≀ π‘€π‘Žπ‘₯ 𝑧 =𝑅 π‘Žπ‘› , 𝑅 In case we take t=1=R in corollary 1, we get the following interesting result. Corollary 2. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, π‘€π‘Žπ‘₯ 𝑧 =𝑅 π‘Ž 𝑛 + 𝛼 βˆ’ π‘Ž π‘›βˆ’1 + π‘Ž 𝑛 βˆ’1 βˆ’ π‘Ž 𝑛 βˆ’2 𝑧 + β‹― + π‘Ž1 βˆ’ π‘Ž0 𝑧 π‘›βˆ’1 + π‘Žπ‘œ 𝑧 𝑛 ≀ M, M+ Ξ± then all the zeros of P(z) lie in the circle z ≀ Max an ,1 If for some Ξ± > 0, 𝛼 + π‘Ž 𝑛 β‰₯ π‘Ž 𝑛 βˆ’1 β‰₯ β‹― β‰₯ π‘Ž1 β‰₯ π‘Ž0 β‰₯ 0, then , 𝑀 ≀ π‘Ž 𝑛 + 𝛼 + π‘Ž 𝑛 βˆ’1 + π‘Ž 𝑛 βˆ’1 βˆ’ π‘Ž π‘›βˆ’2 + β‹― + π‘Ž1 βˆ’ π‘Ž0 + π‘Ž0 = π‘Ž 𝑛 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 + π‘Ž π‘›βˆ’1 βˆ’ π‘Ž π‘›βˆ’2 + β‹― + π‘Ž1 βˆ’ π‘Ž0 + π‘Ž0 = π‘Žπ‘› + 𝛼 Using this observation in Corollary 2, we get the following generalization of Enestrom-Kakeya Theorem. Corollary 3. If, P(z)= π‘Ž 𝑛 𝑧 𝑛 + π‘Ž 𝑛 βˆ’1 + 𝑧 𝑛 βˆ’1 + β‹― + π‘Ž1 𝑧 + π‘Ž0 , is a polynomial of degree n, such that for some 𝛼 β‰₯ 0, 𝛼 + π‘Ž 𝑛 β‰₯ π‘Žβˆ’1 β‰₯ β‹― . β‰₯ π‘Ž0 β‰₯ 0, then all the zeros of P(z) lie in the circle 2𝛼 𝑧 ≀ 1+ , π‘Žπ‘› For 𝛼 = 0, π‘‘β„Žπ‘–π‘  π‘Ÿπ‘’π‘‘π‘’π‘π‘’π‘  π‘‘π‘œ π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š 𝐴. 𝐼𝑓 𝑀𝑒 π‘‘π‘Žπ‘˜π‘’ 𝛼 = π‘Ž π‘›βˆ’1 βˆ’ π‘Ž 𝑛 β‰₯ 0, then we get Corollary 2, of ([4] Aziz and Zarger). Next we present the following interesting result which includes Theorem A as a special case. Theorem 2. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, If for some real numbers with 𝒕 𝟏 β‰  𝟎, 𝒕 𝟏 > 𝒕 𝟐 β‰₯ 𝟎 𝒏 (πŸ–) 𝑴𝒂𝒙 𝒛 =𝑹 βˆ‘ 𝒋=𝟎 𝒂 𝒋 𝒕 𝟏 𝒕 𝟐 + 𝒂 π’‹βˆ’πŸ 𝒕 𝟏 βˆ’ 𝒕 𝟐 βˆ’ 𝒂 π’‹βˆ’πŸ 𝒛 π’βˆ’π’‹ ≀ 𝑴3 then all the zeros of P(z) lie in the region (9) 𝑧 ≀ π‘Ÿ1, Where , 2𝑀3 (10) π‘Ÿ1 = π‘Ž 𝑛 𝑑 1 βˆ’π‘‘ 2 π‘Ž 𝑛 βˆ’1 2 +4 π‘Ž 𝑛 𝑀3 1/2 βˆ’ π‘Ž 𝑛 𝑑 1 βˆ’π‘‘ 2 βˆ’ π‘Ž 𝑛 βˆ’1 Taking 𝑑2 = 0, we get the following result Corollary 4. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, If for some 𝑑 > 0, 𝒏 βˆ‘ 𝒋=𝟎 𝒂 π’‹βˆ’πŸ 𝒕 βˆ’ 𝒂 π’‹βˆ’πŸ 𝒛 π’βˆ’π’‹ ≀ 𝑴3, 𝑴𝒂𝒙 𝒛 =𝑹 then all the zeros of P(z) lie in the region 𝑧 ≀ π‘Ÿ1, Where , 2𝑀3 r= π‘Ž 𝑛 π‘‘βˆ’ π‘Ž 𝑛 βˆ’1 2 +4 π‘Ž 𝑛 𝑀3 1/2 βˆ’ π‘Ž π‘‘βˆ’π‘Ž 𝑛 𝑛 βˆ’1 Remark. Suppose polynomial P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 , satisfies the conditions of www.ijmer.com 4364 | Page
  • 3. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 Theorem A, then it can be easily verified that from Corollary 4. M3 =an-1 , then all the zeros of P(z) lie in 2π‘Ž 𝑛 βˆ’1 𝑧 ≀ π‘Ž 𝑛 βˆ’ π‘Ž 𝑛 βˆ’1 2 + 4π‘Ž 𝑛 π‘Ž π‘›βˆ’1 βˆ’ π‘Ž 𝑛 βˆ’ π‘Ž 𝑛 βˆ’1 2π‘Ž = 2π‘Ž 𝑛 βˆ’1 = 1, 𝑛 βˆ’1 which is the conclusion of Enestrom-Kekaya Theorem. Finally , we prove the following generalization of Theorem 1 of ([2], Aziz and Shah). Theorem 3. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, If𝛼, 𝛽 are complex numbers and with 𝑑1 β‰  0, 𝑑2 π‘Žπ‘Ÿπ‘’ π‘Ÿπ‘’π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘€π‘–π‘‘β„Ž 𝑑1 β‰₯ 𝑑2 β‰₯ 0 and (11) π‘€π‘Žπ‘₯ 𝑧 =𝑅 π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 + βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’π‘‘2 βˆ’ π‘Žπ‘— βˆ’2 𝑧 𝑛 βˆ’π‘— βˆ’2 ≀ 𝑀4 and, (12) π‘€π‘Žπ‘₯ 𝑧 =𝑅 π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛽 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 + βˆ‘ 𝑗𝑛+2 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’π‘‘2 βˆ’ π‘Žπ‘— βˆ’2 𝑧 𝑗 ≀ 𝑀5 =2 Where π‘Žβˆ’2= π‘Žβˆ’1 = 0 = π‘Ž 𝑛+1 = π‘Ž 𝑛+2 and R is any positive real number, then all the zeros of P(z) lie in the ring shaped region. 1 (13) Min (r2 , R) ≀ 𝑧 ≀ max π‘Ÿ1 , 𝑅 Where 2[ π‘Ž 𝑅 2 π‘Ž 𝑛 𝑑 1βˆ’ 𝑑 2 βˆ’π‘Ž 𝑛 βˆ’1 +𝛼 +𝑀4 ] 2 (14) π‘Ÿ1 = 2 𝛼 𝑅 2 𝑀4 +𝑅 2 𝑀4 βˆ’ π‘Ž 𝑛 π‘Ž 𝑛 𝑑 1βˆ’ 𝑑 2 +π›Όβˆ’π‘Ž 𝑛 βˆ’1 2 +4 𝛼 𝑅 2 π‘Ž 𝑛 𝑑 1βˆ’ 𝑑 2 +π›Όβˆ’π‘Ž 𝑛 βˆ’1 +𝑀4 π‘Ž 𝑛 𝑅 2 𝑀4 1/2 βˆ’ 𝛼 𝑅2 𝑀4 + 𝑅2 𝑀4 βˆ’ π‘Ž 𝑛 π‘Ž 𝑛 𝑑1βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 and 1 2[𝑅 2 𝛽 2 π‘Ž 1 𝑑 1 𝑑 2 +π‘Ž 0 𝑑 1βˆ’ 𝑑 2 +𝛽 βˆ’π‘€5 ] (15) = π‘Ÿ2 𝑅2 π‘Ž 1 𝑑 1 𝑑 2 +π‘Ž 0 𝑑 1βˆ’ 𝑑 2 +𝛽 ( π‘Ž 0 𝑑 1 𝑑 2 βˆ’π‘€5 )βˆ’ 𝛽 𝑀5 + 𝑅4 π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1βˆ’ 𝑑2 + 𝛽 π‘Ž0 𝑑1 𝑑2 βˆ’ 𝑀5 2 2 +4 π‘Ž0 𝑀5 𝑑1 𝑑2 (𝑅 2 𝛽 π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1βˆ’ 𝑑2 ) + 𝛽 + 𝑀5 1/2 Taking 𝛼 = 0, 𝛽 = 0, in Theorem 3, we get the following. Corollary 5. Let P(z) = βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑧 𝑗 be a polynomial of degree n, If ,𝑑1 β‰  0 π‘Žπ‘›π‘‘ 𝑑2 are real numbers with 𝑑1 β‰₯ 𝑑2 β‰₯ 0, π‘€π‘Žπ‘₯ 𝑧 =𝑅 βˆ‘ 𝑗𝑛+1 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1βˆ’ 𝑑2 βˆ’ π‘Žπ‘— βˆ’2 𝑧 π‘›βˆ’π‘— +2 ≀ 𝑀4 , =1 𝐧+𝟐 βˆ‘ 𝐣=𝟏 𝐚 𝐣 𝐭 𝟏 𝐭 𝟐 + 𝐚 π£βˆ’πŸ 𝐭 πŸβˆ’ 𝐭 𝟐 βˆ’ 𝐚 π£βˆ’πŸ 𝐳 𝐣 ≀ 𝐌 πŸ“ , 𝐌𝐚𝐱 𝐳 =𝐑 Where R is any positive real number . then all the zeros of P(z) lie in the ring shaped region 1 min (r2,R) ≀ 𝑧 ≀ max π‘Ÿ1 , 𝑅 Where 2𝑀42 π‘Ÿ1 = 3 𝑅4 𝑑 1βˆ’ 𝑑 2 ) π‘Ž 𝑛 βˆ’π‘Ž 𝑛 βˆ’1 2 𝑀4 βˆ’ π‘Ž 𝑛 2 +4 π‘Ž 𝑛 𝑅 2 𝑀4 1/2 βˆ’ 𝑑 1 βˆ’π‘‘ 2 )π‘Ž 𝑛 βˆ’π‘Ž 𝑛 βˆ’1 𝑀4 βˆ’ π‘Ž 𝑛 𝑅2 π‘Ÿ2 = www.ijmer.com 4365 | Page
  • 4. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 1 1 3 2 2𝑀5 𝑅4 π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1 βˆ’ 𝑑2 2 𝑀5 βˆ’ π‘Ž0 𝑑1 𝑑2 2 + 4𝑀5 𝑅 2 π‘Ž0 𝑑1 𝑑2 2 βˆ’ 𝑅 2 𝑀5 βˆ’ π‘Ž0 𝑑1 𝑑2 π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1 βˆ’ 𝑑2 The result was also proved by Shah and Liman [12]. II. LEMMAS For the proof of these Theorems, we need the following Lemmas. The first Lemma is due to Govil, Rahman and Schmesser [7]. LEMMA. 1. If 𝑓(z) is analytic in 𝑧 ≀ 1, 𝑓 π‘œ = π‘Ž π‘€β„Žπ‘’π‘Ÿπ‘’ π‘Ž < 1, 𝑓′ π‘œ = 𝑏, 𝑓(𝑧) ≀ 1, π‘œπ‘› 𝑧 = 1, π‘‘β„Žπ‘’π‘› π‘“π‘œπ‘Ÿ 𝑧 ≀ 1. 1βˆ’ π‘Ž 𝑧 2 + 𝑏 𝑧 + π‘Ž 1βˆ’ π‘Ž 𝑓(𝑧) ≀ π‘Ž 1βˆ’ π‘Ž 𝑧 2 + 𝑏 𝑧 + 1βˆ’ π‘Ž The example 𝑏 π‘Ž+ π‘§βˆ’π‘§ 2 1+π‘Ž 𝑓 (z)= 𝑏 1βˆ’ π‘§βˆ’π‘Žπ‘§ 2 1+π‘Ž Shows that the estimate is sharp. form Lemma 1, one can easily deduce the following: LEMMA. 2. If 𝑓 (z) is analytic in 𝑧 ≀ 𝑅, 𝑓 0 = 0, 𝑓 β€² 0 = 𝑏 π‘Žπ‘›π‘‘ 𝑓(𝑧) ≀ 𝑀, π‘“π‘œπ‘Ÿ 𝑧 = 𝑅, π‘‘β„Žπ‘’π‘› 𝑀 𝑧 𝑀 𝑧 +𝑅 2 𝑏 𝑓(𝑧) ≀ for 𝑧 ≀ 𝑅 𝑅2 𝑀+ 𝑏 𝑧 III. PROOFS OF THE THEOREMS. Proof of Theorem . 1 Consider (16) F(z) = 𝑑2 + 𝑧 𝑑1 βˆ’ 𝑧 𝑃(𝑧) = βˆ’π‘Ž 𝑛 𝑧 𝑛+2 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 𝑧 𝑛+1 + π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž 𝑛 βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’2 𝑧𝑛 +….+ π‘Ž 𝑛 𝑑1 𝑑2+ π‘Ž0 𝑑1 βˆ’ 𝑑2 𝑧 + π‘Ž0 𝑑1 𝑑2 Let 1 G(z) + 𝑧 𝑛+2 𝐹 𝑧 = βˆ’π‘Ž 𝑛 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 𝑧 + π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž 𝑛 βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’2 𝑧 2 + β‹― …+ π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1 βˆ’ 𝑑2 𝑧 𝑛 +1 + π‘Ž0 𝑑1 𝑑2 𝑧 𝑛+2 = βˆ’π‘Ž 𝑛 βˆ’ 𝛼𝑧 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž π‘›βˆ’1 𝑧 + π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž π‘›βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’2 𝑧 2 + β‹― … + (π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1 βˆ’ 𝑑2 𝑧 𝑛+1 + π‘Ž0 𝑑1 𝑑2 ) 𝑧 𝑛+2 = βˆ’ π‘Ž 𝑛 + 𝛼𝑧 + 𝐻(𝑧) Where, H(z)= 𝑧 π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 + βˆ‘ 𝑗𝑛=0 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Žπ‘— βˆ’2 𝑧 π‘›βˆ’π‘— www.ijmer.com 4366 | Page
  • 5. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 Clearly H(o)=0 and π‘€π‘Žπ‘₯ 𝑧 =𝑅 𝐻(𝑧) ≀ 𝑅𝑀1, We first assume that π‘Ž 𝑛 ≀ 𝑅 𝑀1 + 𝛼 Now for 𝑧 ≀ 𝑅, by using Schwarz Lemma, we have (17) G(z) = βˆ’ a n + Ξ±z + H(z) β‰₯ a n βˆ’ 𝛼 𝑧 βˆ’ 𝐻(𝑧) β‰₯ a n βˆ’ 𝛼 𝑧 βˆ’ |𝑀1 𝑧| = an βˆ’ 𝑀1 + 𝛼 𝑧| > π‘œ, 𝑖𝑓 π‘Žπ‘› 𝑧 < 𝑀1 + 𝛼 ≀ 𝑅 π‘Žπ‘› This shows that all the zeros of G(z) lie in 𝑧 β‰₯ 𝑀1 + 𝛼 1 1 Replacing z by 𝑧 and noting that F(z) = 𝑧 𝑛+2 𝐺 𝑧 , it follows that all the zeros of F(z) lie in 𝑀1 + 𝛼 𝑧 ≀ π‘Žπ‘› if , π‘Ž 𝑛 ≀ 𝑅 (𝑀1 + 𝛼 ) Since all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in π‘Žπ‘› (18) 𝑧 ≀ 𝑀1 + 𝛼 Now assume π‘Ž 𝑛 > 𝑅 (𝑀1 + 𝛼 ), then for 𝑧 ≀ 𝑅, we have from (17). G z β‰₯ a n βˆ’ 𝛼 𝑧 βˆ’ 𝐻(𝑍) β‰₯ π‘Ž 𝑛 βˆ’ 𝛼 𝑅 βˆ’ 𝑀1 𝑅 = π‘Žπ‘› βˆ’ 𝛼 + 𝑀 𝑅 > 0, Thus G(z) β‰  0 π‘“π‘œπ‘Ÿ 𝑧 < 𝑅, π‘“π‘Ÿπ‘œπ‘š π‘€β„Žπ‘–π‘β„Ž it follows as before that all the zeros of F(z) and hence all the zeros of P(z) lie 1, in 𝑧 ≀ 𝑅 Combining this with (18), we infer that all the zeros of P(z) lie in 𝐚𝐧 𝟏, 19. 𝐳 ≀ 𝐦𝐚𝐱 𝐌 𝟏+ 𝛂 , 𝐑 Now to prove the second part of the Theorem, from (16) we can write F(z) as F(z)= t 2 + z t1 βˆ’ z P(z) = a 0 t1 t 2 + a1 t1 t 2 + a 0 t1 βˆ’ t 2 z + β‹― + a n t1 βˆ’ t 2 βˆ’ a nβˆ’1 z n+1 βˆ’ a n z n+2 =a 0 t1 t2 βˆ’ Ξ²z + a1 t1 t 2 + a 0 t1 βˆ’ t 2 + Ξ² z + β‹― + a n t1 βˆ’ t 2 βˆ’ a nβˆ’1 z n+1 βˆ’ a n z n+2 = a 0 t1 t 2 βˆ’ Ξ²z + T(z) Where T(z) = z π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1 βˆ’π‘‘2 + 𝛽 + βˆ‘n+2 π‘Žπ‘— 𝑑1 𝑑2 + π‘Žπ‘— βˆ’1 𝑑1 βˆ’π‘‘2 π‘Žπ‘— βˆ’2 𝑧 𝑗 βˆ’1 j=2 Clearly T(o)=0, and π‘€π‘Žπ‘₯ 𝑧 =𝑅 𝑇(𝑧) ≀ 𝑅𝑀2 We first assume that π‘Ž0 𝑑1 𝑑2 ≀ Ξ² + M2 www.ijmer.com 4367 | Page
  • 6. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 Now for z ≀ R, by using Schwasr lemma, we have F(z) β‰₯ π‘Ž0 𝑑1 𝑑2 βˆ’ Ξ² z βˆ’ T(z) β‰₯ π‘Ž0 𝑑1 𝑑2 βˆ’ Ξ² z βˆ’ M2 Z >0, if, π‘Ž0 𝑑1 𝑑2 z < ≀R Ξ² +M 2 π‘Ž0 𝑑1 𝑑2 This shows that F(z) β‰ 0, for z < , hence all the zeros of F(z) lie in Ξ² +M 2 π‘Ž0 𝑑1 𝑑2 z β‰₯ Ξ² +M 2 But all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in π‘Ž0 𝑑1 𝑑2 20. z β‰₯ Ξ² +M 2 Now we assume π‘Ž0 𝑑1 𝑑2 > Ξ² + M2 , then for z ≀ R, we have ` F(z) β‰₯ π‘Ž0 𝑑1 𝑑2 βˆ’ Ξ² z βˆ’ T(z) β‰₯ π‘Ž0 𝑑1 𝑑2 βˆ’ Ξ² R βˆ’ M2 R > 𝑑1 𝑑2 π‘Ž0 βˆ’ Ξ² + M2 R >0, This shows that all the zeros of F(z) and hence that of P(z) lie in z β‰₯R Combining this with (20) , it follows that all the zeros of P(z) lie in π‘Ž0 𝑑1 𝑑2 21 z β‰₯ min Ξ² +M 2 ,R Combining (19) and (20), the desired result follows. Proof of Theorem 2:- Consider 22. F(z) = 𝑑2 + 𝑧 𝑑1 βˆ’ 𝑧 𝑃(𝑧) = 𝑑2 + 𝑧 𝑑1 βˆ’ 𝑧 π‘Ž 𝑛 𝑧 𝑛 + π‘Ž π‘›βˆ’1 𝑧 π‘›βˆ’1 + β‹― + π‘Ž1 𝑧 + π‘Ž0 = βˆ’π‘Ž 𝑛 𝑧 𝑛+2 + π‘Žπ‘› 𝑑1βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 𝑧 𝑛 +1 + β‹― + π‘Ž0 𝑑1 𝑑2 Let 1 23. G(z) = 𝑧 𝑛+2 𝐹( 𝑧 ) = βˆ’π‘Ž 𝑛 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 𝑧 + π‘Ž 𝑛 𝑑1 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 𝑑1 βˆ’ 𝑑2 π‘Ž 𝑛 βˆ’2 𝑧 2 + 𝐻(𝑧) Where H(z) = 𝑧 2 π‘Ž 𝑛 𝑑1 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’2 + β‹― + π‘Ž0 𝑑1 𝑑2 𝑧 𝑛 Clearly H(o)=0 = H(o), since H(z) ≀ M3 R2 for z = R www.ijmer.com 4368 | Page
  • 7. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 We first assume, 24 a n ≀ MR2 + R π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 Then by using Lemma 2. To H(z), it follows that M3 z M3 z 𝐻z ≀ R2 M3 π‘€π‘Žπ‘₯ 𝑧 =𝑅 H(z) Hence from(23) we have z 2M3 G(z) β‰₯ a n βˆ’ π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 z βˆ’ 𝑅2 R2 >0, if 2 M3 z + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 z βˆ’ a n < 0 That is if, 1/2 π‘Ž 𝑛 𝑑 1 βˆ’π‘‘ 2 βˆ’π‘Ž 𝑛 βˆ’1 2 +4 a n M βˆ’ π‘Ž 𝑛 𝑑 1 βˆ’π‘‘ 2 βˆ’π‘Ž 𝑛 βˆ’1 25. z < 2M 3 1 =r ≀ R If 2 2 π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 + 4 a n M3 ≀ 2M3 R + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 Which implies a n ≀ M3 R2 + R π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 Which is true by (24)..Hence all the zeros of G(z) lie in Z β‰₯ r. since F z = z n+2 G z , It follows that all the zeros of F(z) and hence that of P(z) lie in z ≀ r. We now assume. 26. a n ≀ M3 R2 + R π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 , then for z ≀ R, from (23) it follows that G(z) β‰₯ a n βˆ’ π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 z βˆ’ H(z) β‰₯ π‘Ž 𝑛 βˆ’ 𝑅 π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 βˆ’ R2 M3 >0, by (26). 1 This shows that all the zeros of G(z) lie in Z > 𝑅, and hence all the zeros of F(z) = z n+2 G(z ) lie in 1 z ≀ , but all the zeros of P(z) are also the zeros of F(z) , therefore it follows that all the zeros of P(z) lie in R 1 Z ≀R 27. From (25) amd (27) , we conclude that all the zeros of P(z) lie in 1 Z ≀ max(π‘Ÿ, ) R Which completes the proof of Theorem 2. 28. PROOF OF THEOREM 3. Consider the polynomial www.ijmer.com 4369 | Page
  • 8. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 F(z) = 𝑑2 + 𝑧 𝑑1 βˆ’ 𝑧 𝑃(𝑧) = 𝑑1 𝑑2 + 𝑑1 βˆ’ 𝑑2 𝑧 βˆ’ 𝑧 2 ) π‘Ž 𝑛 𝑧 𝑛 + π‘Ž π‘›βˆ’1 𝑧 𝑛 βˆ’1 + β‹― + π‘Ž1 𝑧 + π‘Ž0 = βˆ’π‘Ž 𝑛 𝑧 𝑛+2 + π‘Žπ‘› 𝑑1βˆ’ 𝑑2 βˆ’ π‘Ž π‘›βˆ’1 𝑧 𝑛 +1 + β‹― + π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž π‘›βˆ’1 𝑑1βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 𝑛+1 + β‹― + a 2 t1 t 2 + a1 𝑑1βˆ’ 𝑑2 βˆ’ π‘Ž0 z 2 + a1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 𝑧 + π‘Ž0 t1 t 2 We have, 1 G(z) = 𝑧 𝑛+2 𝐹( ) 𝑧 = π‘Ÿπ‘Ž 𝑛 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 + π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž 𝑛 βˆ’1 𝑑1 βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’2 𝑧 2 +…+ π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1βˆ’ 𝑑2 𝑧 𝑛 +1 + π‘Ž0 𝑑1 𝑑2 𝑧 𝑛+2 = βˆ’π‘Ž 𝑛 βˆ’ 𝛼𝑧 + π‘Ž 𝑛 𝑑1 βˆ’ 𝑑2 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 + π‘Ž 𝑛 𝑑1 𝑑2 + π‘Ž 𝑛 βˆ’1 𝑑1βˆ’ 𝑑2 βˆ’ π‘Ž 𝑛 βˆ’2 z 2 +. . + π‘Ž1 𝑑1 𝑑2 + π‘Ž0 𝑑1βˆ’ 𝑑2 z n+1 + π‘Ž0 𝑑1 𝑑2 𝑧 𝑛+2 29. = βˆ’π‘Ž 𝑛 βˆ’ 𝛼𝑧 + 𝐻 𝑧 Where H(z) = π‘Ž 𝑛 𝑑1 βˆ’π‘‘2 + 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 𝑧 + β‹― + π‘Ž0 𝑑1 𝑑2 𝑧 𝑛+2 We first assume that 30. a n β‰₯ Ξ± R + M4 Then for z < 𝑅, we have 31. G(z) β‰₯ a n βˆ’ Ξ± z βˆ’ H(z) Since H(z) ≀ M4 π‘“π‘œπ‘Ÿ z ≀ R Therefore for 𝑧 <R, from (31) with the help of (30), we have 𝐺(𝑧) > π‘Ž 𝑛 βˆ’ ∝ 𝑅 βˆ’ 𝑀4 1 therefore , all the zeros of G(z) lie in z β‰₯ R, in this case. Since F(z) = 𝑧 𝑛 +2 G 𝑧 therefore all the zeros of G(z) lie in 1 Z ≀ R . As all the zeros of P(z) are the zeros of F(z), it follows that all the zeros of P(z) lie in 1 32. z ≀R Now we assume a n < Ξ± R + M4 , clearly H(o) = 0 and H(o) = (π‘Ž 𝑛 𝑑1 βˆ’π‘‘2 βˆ’ 𝛼 βˆ’ π‘Ž 𝑛 βˆ’1 , Since by (11), H(z) ≀ M4 , for z = R, therefore it follows by Lemma2. that M4 z M4 z + R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 H(z) ≀ R2 M4 + a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 z for z ≀ R Using this in (31), we get, M4 z M4 z + R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž π‘›βˆ’1 + 𝛼 G(z) β‰₯ π‘Ž 𝑛 βˆ’ 𝛼 𝑧 βˆ’ 2 R M4 + a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 z >0, if π‘Ž 𝑛 R2 M4 + a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 z βˆ’ z Ξ± R2 M4 + a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 z + M4 M4 z + R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 > 0, this implies, Ξ± R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž π‘›βˆ’1 + 𝛼 + M4 z 2 + Ξ± R2 M4 + 2 2 2 R M4 a n t1 βˆ’ t 2 βˆ’ a nβˆ’1 +∝ … R M4 an 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 } z βˆ’ a n R2 M4 < 0, This gives, G(z) > 0, 𝑖𝑓 z < [ Ξ± R2 M4 + R2 M4 βˆ’ a n a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 2 +.. ….4 Ξ± R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 + M4 2 π‘Ž 𝑛 R2 M4 ] 𝛼 R 2 M 4 +R 2 M 4 βˆ’ π‘Ž 𝑛 a n 𝑑 1 βˆ’π‘‘ 2 βˆ’π‘Ž 𝑛 βˆ’1 +𝛼 βˆ’ 2 Ξ± R 2 a n 𝑑 1 βˆ’π‘‘ 2 βˆ’π‘Ž 𝑛 βˆ’1 +𝛼 +M 4 2 1 =r , 1 So, z < 𝑅, 𝑖𝑓 Ξ± R2 M4 + M4 βˆ’ a n R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 2 + www.ijmer.com 4370 | Page
  • 9. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 4 Ξ± R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž π‘›βˆ’1 + 𝛼 + M4 2 π‘Ž 𝑛 R2 M4 < 2 Ξ± a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 R + Ξ± R2 M4 + 2RM4 2 + M4 βˆ’ a n R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 2 That is if, a n R2 M4 ≀ R2 Ξ± 𝑅2 an 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž π‘›βˆ’1 + 𝛼 + M4 2 + Ξ± R2 M4 + M4 βˆ’ a n R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 R Which gives a n M4 ≀ M4 Ξ± R + M4 βˆ’ π‘Ž 𝑛 + 𝑅 Ξ± R2 a n 𝑑1 βˆ’π‘‘2 βˆ’ π‘Ž 𝑛 βˆ’1 + 𝛼 + M4 2 Ξ± R2 + M4 βˆ’ π‘Ž 𝑛 Which is true because π‘Ž 𝑛 < Ξ± R + M4 , 1 1 Consequently , all the zeros of G(z) lie in z β‰₯ r , as F(z) = z n+1 G( z ), we conclude that all the zeros of 1 F(z) lie z ≀ π‘Ÿ1 , since every zero of P(z) is also a zero of F(z), it follows that all the zeros of P(z) lie in 33. z ≀ π‘Ÿ1 Combining this with (32) it follows that all the zeros of P(z) lie in 1 34. z ≀ π‘šπ‘Žπ‘₯ π‘Ÿ1 , 𝑅 Again from (28) it follows that 𝐹 𝑧 = π‘Ž0 t1 t 2 βˆ’ Ξ²z + a1 t1 t2 𝑑1βˆ’ 𝑑2 + 𝛽 z + β‹― + a n ( 𝑑1 βˆ’π‘‘2 βˆ’. π‘Ž π‘›βˆ’1 )z n+2 βˆ’ a n 𝑧 𝑛+2 35. β‰₯ π‘Ž0 t1 t 2 βˆ’ 𝛽 𝑧 βˆ’ 𝑇(𝑧) Where, T(z) = a n 𝑧 𝑛+2 + a n 𝑑1 βˆ’π‘‘2 βˆ’. π‘Ž 𝑛 βˆ’1 𝑧 𝑛 +1 +. . + π‘Ž0 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 z Clearly T(o)=0, and T(o) π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 Since by (12) , T(z) ≀ M5 for z = R using Lemma 2. To T(z), we have M5 z F(z) β‰₯ π‘Ž0 t1 t 2 βˆ’ Ξ² z βˆ’ R2 M5 z + R2 π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 z = - R2 Ξ² π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 + 𝑀5 2 z 2 + π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 R2 π‘Ž0 t1 t 2 βˆ’ R2 M5 βˆ’ Ξ² R2 M5 z + M5 R2 π‘Ž1 t1 t2 R2 M5 + π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 z >0, if, R2 Ξ² π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 + 𝑀5 2 z 2 βˆ’ π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 R2 π‘Ž0 t1 t2 βˆ’ R2 M5 βˆ’ Ξ² R2 M5 z βˆ’ R2 M5 π‘Ž0 t1 t 2 < 0, Thus, F(z) > 0, 𝑖𝑓 z < βˆ’R2 π‘Ž1 t1 t2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 π‘Ž0 t1 t 2 βˆ’ M5 Ξ² M5 www.ijmer.com 4371 | Page
  • 10. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 βˆ’ R4 π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 π‘Ž0 t1 t 2 βˆ’ M5 Ξ² M5 2 +4 R2 Ξ² π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 + M5 2 R2 M5 π‘Ž0 t1 t2 1/2 π‘Ÿπ‘§ 2 R2 Ξ² π‘Ž1 t1 t 2 + a 0 𝑑1βˆ’ 𝑑2 + 𝛽 + M5 2 Thus it follows by the same reasoning as in Theorem 1, that all the zeros of F(z) and hence that of P(z) lie in 36. z β‰₯ min(r2, R) Combining (34) and (36) , the desired result follows. REFERENCES [1] A. Aziz and Q.G Mohammad, On thr zeros of certain class of polynomials and related analytic functions, J. Math. Anal Appl. 75(1980), 495-502 [2] A.Aziz and W.M Shah, On the location of zeros of polynomials and related analytic functions, Non-linear studies, 6(1999),97-104 [3] A.Aziz and W.M Shah, On the zeros of polynomials and related analytic functions, Glasnik, Matematicke, 33 (1998), 173-184; [4] A.Aziz and B.A. Zarger, Some extensions of Enestrem-Kakeya Theorem, Glasnik, Matematicke, 31 (1996), 239-244 [5] K.K.Dewan and M. Biakham,, On the Enestrom –Kakeya Theorem, J.Math.Anal.Appl.180 (1993), 29-36 [6] N.K, Govil and Q.I. Rahman, On the Enestrem-Kakeya Theorem, Tohoku Math.J. 20 (1968), 126-136. [7] N.K, Govil , Q.I. Rahman and G. Schmeisser, on the derivative of polynomials, Illinois Math. Jour. 23 (1979), 319- 329 [8] P.V. Krishnalah, On Kakeya Theorem , J.London. Math. Soc. 20 (1955), 314-319 [9] M. Marden, Geometry of polynomials, Mathematicial surveys No.3. Amer. Math. Soc. Providance , R.I. 1966 [10] G.V. Milovanovic, D.S. Mitrinovic, Th.M. Rassias Topics in polynomials, Extremal problems Inequalitics, Zeros(Singapore, World Scientific)1994. [11] Q.I. Rahman and G.Schmessier, Analytic Theory of polynomials, (2002), Clarantone, Press Oxford. [12] W.M. Shah and A. Liman, On the zeros of a class of polynomials, Mathematical inequalioties and Applications, 10(2007), 793-799 www.ijmer.com 4372 | Page