The document discusses partial differential equations (PDEs) and numerical methods for solving them. It begins by defining PDEs as equations involving derivatives of an unknown function with respect to two or more independent variables. PDEs describe many physical phenomena involving variations across space and time, such as fluid flow, heat transfer, electromagnetism, and weather prediction. The document then focuses on solving elliptic, parabolic, and hyperbolic PDEs numerically using finite difference and finite element methods. It provides examples of discretizing and solving the Laplace, heat, and wave equations to estimate unknown functions.