Statistical Process Control 
Managing for Quality 
DR. WAQARUDDIN SIDDIQUI 
FMSR, DBA 
ALIGARH MUSLIM UNIVERSITY
Goal of Control Charts 
 collect and present data visually 
 allow us to see when trend appears 
 see when “out of control” point occurs
Process Control Charts 
 Graph of sample data plotted over time 
60 
50 
40 
30 
20 
10 
0 
UCL 
LCL 
1 2 3 4 5 6 7 8 9 10 11 12 
Process 
Average 
± 3 
Time 
X
Process Control Charts 
 Graph of sample data plotted over time 
60 
50 
40 
30 
20 
10 
0 
1 2 3 4 5 6 7 8 9 10 11 12 
Assignable 
Cause 
Variation 
Natural 
Variation 
UCL 
LCL 
Time 
X
Definitions of Out of Control 
1. No points outside control limits 
2. Same number above & below center line 
3. Points seem to fall randomly above and 
below center line 
4. Most are near the center line, only a few are 
close to control limits 
1. 8 Consecutive pts on one side of centerline 
2. 2 of 3 points in outer third 
3. 4 of 5 in outer two-thirds region
Attributes vs. Variables 
Attributes: 
 Good / bad, works / doesn’t 
 count % bad (P chart) 
 count # defects / item (C chart) 
Variables: 
 measure length, weight, temperature (x-bar 
chart) 
 measure variability in length (R chart)
Attribute Control Charts 
 Tell us whether points in tolerance or not 
 p chart: percentage with given characteristic 
(usually whether defective or not) 
 np chart: number of units with characteristic 
 c chart: count # of occurrences in a fixed area of 
opportunity (defects per car) 
 u chart: # of events in a changeable area of 
opportunity (sq. yards of paper drawn from a 
machine)
p Chart Control Limits 
# Defective 
Items in 
Sample i 
Sample i 
Size 
UCLp  p  z  
p  1 p 
n 
p  
Xi 
k 
 
i1 
ni 
k 
 
i1
p Chart Control Limits 
z = 2 for 
95.5% limits; 
z = 3 for 
99.7% limits 
# Defective 
Items in 
Sample i 
Sample i 
Size 
# Samples 
  
n 
p p 
UCL p z p 
  
   
1 
p  
Xi 
k 
 
i1 
ni 
k 
 
i1 
n  
ni 
k 
 
i1 
k
p Chart Control Limits 
z = 2 for 
95.5% limits; 
z = 3 for 
99.7% limits 
# Defective 
Items in 
Sample i 
# Samples 
Sample i 
Size 
  
n 
p p 
UCL p z p 
  
   
1 
  
n 
p p 
LCL p z p 
  
   
1 
n  
ni 
k 
 
i1 
k 
p  
Xi 
k 
 
i1 
ni 
k 
 
i1
p Chart Example 
You’re manager of a 500- 
room hotel. You want to 
achieve the highest level 
of service. For 7 days, 
you collect data on the 
readiness of 200 rooms. Is 
the process in control (use 
z = 3)? 
© 1995 Corel Corp.
p Chart Hotel Data 
No. No. Not 
Day Rooms Ready Proportion 
1 200 16 16/200 = .080 
2 200 7 .035 
3 200 21 .105 
4 200 17 .085 
5 200 25 .125 
6 200 19 .095 
7 200 16 .080
p Chart Control Limits 
n  
ni 
k 
 
i1 
k 
 
1400 
7 
 200
p Chart Control Limits 
16 + 7 +...+ 16 
 
p  
Xi 
k 
 
i1 
ni 
k 
 
i1 
 
121 
1400 
 0.0864 
n  
ni 
k 
 
i1 
k 
 
1400 
7 
 200
p Chart Solution 
16 + 7 +...+ 16 
 
p  
Xi 
k 
 
i1 
ni 
k 
 
i1 
 
121 
1400 
 0.0864 
n  
ni 
k 
 
i1 
k 
 
1400 
7 
 200 
p  z  
p  1 p  
n 
 0.0864  3 
0.0864  1 0.0864  
200
p Chart Solution 
16 + 7 +...+ 16 
k 
 
p  z  
p  1 p  
n 
p  
k 
 
i1 
k 
 
 0.0864  3 
Xi 
ni 
i1 
 
121 
1400 
 0.0864 
0.0864  1 0.0864  
200 
 
 0.0864  3*0.01984  0.0864  0.01984 
 0.1460, and 0.0268 
n  
ni 
i1 
k 
 
1400 
7 
 200
0.15 
0.10 
0.05 
0.00 
P 
1 2 3 4 5 6 7 
Day 
p Chart 
UCL 
LCL
R Chart 
 Type of variables control chart 
 Interval or ratio scaled numerical data 
 Shows sample ranges over time 
 Difference between smallest & largest values 
in inspection sample 
 Monitors variability in process 
 Example: Weigh samples of coffee & 
compute ranges of samples; Plot
Hotel Example 
You’re manager of a 500- 
room hotel. You want to 
analyze the time it takes to 
deliver luggage to the room. 
For 7 days, you collect data 
on 5 deliveries per day. Is 
the process in control?
Hotel Data 
Day Delivery Time 
1 7.30 4.20 6.10 3.45 5.55 
2 4.60 8.70 7.60 4.43 7.62 
3 5.98 2.92 6.20 4.20 5.10 
4 7.20 5.10 5.19 6.80 4.21 
5 4.00 4.50 5.50 1.89 4.46 
6 10.10 8.10 6.50 5.06 6.94 
7 6.77 5.08 5.90 6.90 9.30
R &X Chart Hotel Data 
Sample 
Day Delivery Time Mean Range 
1 7.30 4.20 6.10 3.45 5.55 5.32 
7.30 + 4.20 + 6.10 + 3.45 + 5.55 
5 
Sample Mean =
R &X Chart Hotel Data 
Sample 
Day Delivery Time Mean Range 
1 7.30 4.20 6.10 3.45 5.55 5.32 3.85 
Largest Smallest 
Sample Range = 7.30 - 3.45
R &X Chart Hotel Data 
Sample 
Day Delivery Time Mean Range 
1 7.30 4.20 6.10 3.45 5.55 5.32 3.85 
2 4.60 8.70 7.60 4.43 7.62 6.59 4.27 
3 5.98 2.92 6.20 4.20 5.10 4.88 3.28 
4 7.20 5.10 5.19 6.80 4.21 5.70 2.99 
5 4.00 4.50 5.50 1.89 4.46 4.07 3.61 
6 10.10 8.10 6.50 5.06 6.94 7.34 5.04 
7 6.77 5.08 5.90 6.90 9.30 6.79 4.22
R Chart Control Limits 
UCL D R 
LCL D R 
R 
R 
 
k 
R 
R 
i 
i 
k 
  
  
  
4 
3 
1 
From Exhibit 6.13 
Sample Range 
at Time i 
# Samples
Control Chart Limits 
n A2 D3 D4 
2 1.88 0 3.278 
3 1.02 0 2.57 
4 0.73 0 2.28 
5 0.58 0 2.11 
6 0.48 0 2.00 
7 0.42 0.08 1.92
R Chart Control Limits 
R 
R 
1  3 85 4 27 4 22 
  
k 
i 
i 
k 
  
   
7 
3 894 
. . . 
. 

R Chart Solution 
From 6.13 
(n = 5) 
R 
R 
  
1 
  
k 
i 
i 
k 
. . . 
UCL D R 
R 
4 
LCL D R 
R 
   
 
    
    
3 
3 85 4 27 4 22 
7 
3 894 
(2.11) (3.894) 8 232 
(0)(3.894) 0 
. 
. 

R Chart Solution 
R, Minutes 
8 
6 
4 
2 
0 
1 2 3 4 5 6 7 
Day 
UCL
X Chart Control Limits 
k 
R 
R 
UCL  X  A  
R 
X 
k 
X 
k 
i 
i 
k 
i 
i 
X 
2 
  
  1  
 1 
Sample 
Mean at 
Time i 
Sample 
Range 
at Time i 
# Samples
X Chart Control Limits 
UCL X A R 
2 
LCL X A R 
X 
2 
 X 
 
1 1 
k 
R 
R 
k 
X 
X 
i 
i 
k 
i 
i 
k 
   
   
    
From 
Table 6-13
X Chart Control Limits 
UCL X A R 
2 
LCL X A R 
X 
2 
 X 
 
1 1 
k 
R 
R 
k 
X 
X 
i 
i 
k 
i 
i 
k 
   
   
    
From 6.13 
Sample 
Mean at 
Time i 
Sample 
Range 
at Time i 
# Samples
Exhibit 6.13 Limits 
n A2 D3 D4 
2 1.88 0 3.278 
3 1.02 0 2.57 
4 0.73 0 2.28 
5 0.58 0 2.11 
6 0.48 0 2.00 
7 0.42 0.08 1.92
R &X Chart Hotel Data 
Sample 
Day Delivery Time Mean Range 
1 7.30 4.20 6.10 3.45 5.55 5.32 3.85 
2 4.60 8.70 7.60 4.43 7.62 6.59 4.27 
3 5.98 2.92 6.20 4.20 5.10 4.88 3.28 
4 7.20 5.10 5.19 6.80 4.21 5.70 2.99 
5 4.00 4.50 5.50 1.89 4.46 4.07 3.61 
6 10.10 8.10 6.50 5.06 6.94 7.34 5.04 
7 6.77 5.08 5.90 6.90 9.30 6.79 4.22
X Chart Control Limits 
X 
X 
 
  
k 
R 
R 
 
k 
i 
i 
k 
i 
i 
k 
   
 
  
   
 
 
 
1 
1 
5 32 6 59 6 79 
7 
5 813 
3 85 4 27 4 22 
7 
3 894 
. . . 
. 
. . . 
. 
 

X Chart Control Limits 
From 6.13 
(n = 5) 
X 
X 
 
  
k 
R 
R 
 
k 
i 
i 
k 
i 
i 
k 
 
5 . 32 6 . 59 6 . 
79 
 
. . . 
UCL X A R 
X 
   
 
  
   
 
. 
. 
      
 
 
1 
1 
2 
7 
5 813 
3 85 4 27 4 22 
7 
3 894 
5 . 813 0 . 58 * 3 . 894 8 . 
060
X Chart Solution 
From 6.13 
(n = 5) 
X 
X 
 
  
k 
R 
R 
 
k 
i 
i 
k 
i 
i 
k 
 
5 . 32 6 . 59 6 . 
79 
 
. . . 
UCL X A R 
X 
LCL X A R 
X 
   
 
  
   
 
. . 
     
     
 
 
1 
1 
2 
2 
7 
5 813 
3 85 4 27 4 22 
7 
. 
3 894 
5 813 (0 58) 
. 
5 . 813 (0 . 
58)(3.894) = 3.566 
(3.894) = 8.060
X Chart Solution* 
X, Minutes 
8 
6 
4 
2 
0 
1 2 3 4 5 6 7 
Day 
UCL 
LCL
Thinking Challenge 
You’re manager of a 500- 
room hotel. The hotel owner 
tells you that it takes too 
long to deliver luggage to the 
room (even if the process 
may be in control). What do 
you do? 
© 1995 Corel Corp. 
N
Solution 
 Redesign the luggage delivery process 
 Use TQM tools 
 Cause & effect diagrams 
 Process flow charts 
 Pareto charts 
Method People 
Material Equipment 
Too 
Long

Control charts

  • 1.
    Statistical Process Control Managing for Quality DR. WAQARUDDIN SIDDIQUI FMSR, DBA ALIGARH MUSLIM UNIVERSITY
  • 2.
    Goal of ControlCharts  collect and present data visually  allow us to see when trend appears  see when “out of control” point occurs
  • 3.
    Process Control Charts  Graph of sample data plotted over time 60 50 40 30 20 10 0 UCL LCL 1 2 3 4 5 6 7 8 9 10 11 12 Process Average ± 3 Time X
  • 4.
    Process Control Charts  Graph of sample data plotted over time 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 Assignable Cause Variation Natural Variation UCL LCL Time X
  • 5.
    Definitions of Outof Control 1. No points outside control limits 2. Same number above & below center line 3. Points seem to fall randomly above and below center line 4. Most are near the center line, only a few are close to control limits 1. 8 Consecutive pts on one side of centerline 2. 2 of 3 points in outer third 3. 4 of 5 in outer two-thirds region
  • 6.
    Attributes vs. Variables Attributes:  Good / bad, works / doesn’t  count % bad (P chart)  count # defects / item (C chart) Variables:  measure length, weight, temperature (x-bar chart)  measure variability in length (R chart)
  • 7.
    Attribute Control Charts  Tell us whether points in tolerance or not  p chart: percentage with given characteristic (usually whether defective or not)  np chart: number of units with characteristic  c chart: count # of occurrences in a fixed area of opportunity (defects per car)  u chart: # of events in a changeable area of opportunity (sq. yards of paper drawn from a machine)
  • 8.
    p Chart ControlLimits # Defective Items in Sample i Sample i Size UCLp  p  z  p  1 p n p  Xi k  i1 ni k  i1
  • 9.
    p Chart ControlLimits z = 2 for 95.5% limits; z = 3 for 99.7% limits # Defective Items in Sample i Sample i Size # Samples   n p p UCL p z p      1 p  Xi k  i1 ni k  i1 n  ni k  i1 k
  • 10.
    p Chart ControlLimits z = 2 for 95.5% limits; z = 3 for 99.7% limits # Defective Items in Sample i # Samples Sample i Size   n p p UCL p z p      1   n p p LCL p z p      1 n  ni k  i1 k p  Xi k  i1 ni k  i1
  • 11.
    p Chart Example You’re manager of a 500- room hotel. You want to achieve the highest level of service. For 7 days, you collect data on the readiness of 200 rooms. Is the process in control (use z = 3)? © 1995 Corel Corp.
  • 12.
    p Chart HotelData No. No. Not Day Rooms Ready Proportion 1 200 16 16/200 = .080 2 200 7 .035 3 200 21 .105 4 200 17 .085 5 200 25 .125 6 200 19 .095 7 200 16 .080
  • 13.
    p Chart ControlLimits n  ni k  i1 k  1400 7  200
  • 14.
    p Chart ControlLimits 16 + 7 +...+ 16  p  Xi k  i1 ni k  i1  121 1400  0.0864 n  ni k  i1 k  1400 7  200
  • 15.
    p Chart Solution 16 + 7 +...+ 16  p  Xi k  i1 ni k  i1  121 1400  0.0864 n  ni k  i1 k  1400 7  200 p  z  p  1 p  n  0.0864  3 0.0864  1 0.0864  200
  • 16.
    p Chart Solution 16 + 7 +...+ 16 k  p  z  p  1 p  n p  k  i1 k   0.0864  3 Xi ni i1  121 1400  0.0864 0.0864  1 0.0864  200   0.0864  3*0.01984  0.0864  0.01984  0.1460, and 0.0268 n  ni i1 k  1400 7  200
  • 17.
    0.15 0.10 0.05 0.00 P 1 2 3 4 5 6 7 Day p Chart UCL LCL
  • 18.
    R Chart Type of variables control chart  Interval or ratio scaled numerical data  Shows sample ranges over time  Difference between smallest & largest values in inspection sample  Monitors variability in process  Example: Weigh samples of coffee & compute ranges of samples; Plot
  • 19.
    Hotel Example You’remanager of a 500- room hotel. You want to analyze the time it takes to deliver luggage to the room. For 7 days, you collect data on 5 deliveries per day. Is the process in control?
  • 20.
    Hotel Data DayDelivery Time 1 7.30 4.20 6.10 3.45 5.55 2 4.60 8.70 7.60 4.43 7.62 3 5.98 2.92 6.20 4.20 5.10 4 7.20 5.10 5.19 6.80 4.21 5 4.00 4.50 5.50 1.89 4.46 6 10.10 8.10 6.50 5.06 6.94 7 6.77 5.08 5.90 6.90 9.30
  • 21.
    R &X ChartHotel Data Sample Day Delivery Time Mean Range 1 7.30 4.20 6.10 3.45 5.55 5.32 7.30 + 4.20 + 6.10 + 3.45 + 5.55 5 Sample Mean =
  • 22.
    R &X ChartHotel Data Sample Day Delivery Time Mean Range 1 7.30 4.20 6.10 3.45 5.55 5.32 3.85 Largest Smallest Sample Range = 7.30 - 3.45
  • 23.
    R &X ChartHotel Data Sample Day Delivery Time Mean Range 1 7.30 4.20 6.10 3.45 5.55 5.32 3.85 2 4.60 8.70 7.60 4.43 7.62 6.59 4.27 3 5.98 2.92 6.20 4.20 5.10 4.88 3.28 4 7.20 5.10 5.19 6.80 4.21 5.70 2.99 5 4.00 4.50 5.50 1.89 4.46 4.07 3.61 6 10.10 8.10 6.50 5.06 6.94 7.34 5.04 7 6.77 5.08 5.90 6.90 9.30 6.79 4.22
  • 24.
    R Chart ControlLimits UCL D R LCL D R R R  k R R i i k       4 3 1 From Exhibit 6.13 Sample Range at Time i # Samples
  • 25.
    Control Chart Limits n A2 D3 D4 2 1.88 0 3.278 3 1.02 0 2.57 4 0.73 0 2.28 5 0.58 0 2.11 6 0.48 0 2.00 7 0.42 0.08 1.92
  • 26.
    R Chart ControlLimits R R 1  3 85 4 27 4 22   k i i k      7 3 894 . . . . 
  • 27.
    R Chart Solution From 6.13 (n = 5) R R   1   k i i k . . . UCL D R R 4 LCL D R R             3 3 85 4 27 4 22 7 3 894 (2.11) (3.894) 8 232 (0)(3.894) 0 . . 
  • 28.
    R Chart Solution R, Minutes 8 6 4 2 0 1 2 3 4 5 6 7 Day UCL
  • 29.
    X Chart ControlLimits k R R UCL  X  A  R X k X k i i k i i X 2     1   1 Sample Mean at Time i Sample Range at Time i # Samples
  • 30.
    X Chart ControlLimits UCL X A R 2 LCL X A R X 2  X  1 1 k R R k X X i i k i i k           From Table 6-13
  • 31.
    X Chart ControlLimits UCL X A R 2 LCL X A R X 2  X  1 1 k R R k X X i i k i i k           From 6.13 Sample Mean at Time i Sample Range at Time i # Samples
  • 32.
    Exhibit 6.13 Limits n A2 D3 D4 2 1.88 0 3.278 3 1.02 0 2.57 4 0.73 0 2.28 5 0.58 0 2.11 6 0.48 0 2.00 7 0.42 0.08 1.92
  • 33.
    R &X ChartHotel Data Sample Day Delivery Time Mean Range 1 7.30 4.20 6.10 3.45 5.55 5.32 3.85 2 4.60 8.70 7.60 4.43 7.62 6.59 4.27 3 5.98 2.92 6.20 4.20 5.10 4.88 3.28 4 7.20 5.10 5.19 6.80 4.21 5.70 2.99 5 4.00 4.50 5.50 1.89 4.46 4.07 3.61 6 10.10 8.10 6.50 5.06 6.94 7.34 5.04 7 6.77 5.08 5.90 6.90 9.30 6.79 4.22
  • 34.
    X Chart ControlLimits X X    k R R  k i i k i i k             1 1 5 32 6 59 6 79 7 5 813 3 85 4 27 4 22 7 3 894 . . . . . . . .  
  • 35.
    X Chart ControlLimits From 6.13 (n = 5) X X    k R R  k i i k i i k  5 . 32 6 . 59 6 . 79  . . . UCL X A R X           . .         1 1 2 7 5 813 3 85 4 27 4 22 7 3 894 5 . 813 0 . 58 * 3 . 894 8 . 060
  • 36.
    X Chart Solution From 6.13 (n = 5) X X    k R R  k i i k i i k  5 . 32 6 . 59 6 . 79  . . . UCL X A R X LCL X A R X           . .             1 1 2 2 7 5 813 3 85 4 27 4 22 7 . 3 894 5 813 (0 58) . 5 . 813 (0 . 58)(3.894) = 3.566 (3.894) = 8.060
  • 37.
    X Chart Solution* X, Minutes 8 6 4 2 0 1 2 3 4 5 6 7 Day UCL LCL
  • 38.
    Thinking Challenge You’remanager of a 500- room hotel. The hotel owner tells you that it takes too long to deliver luggage to the room (even if the process may be in control). What do you do? © 1995 Corel Corp. N
  • 39.
    Solution  Redesignthe luggage delivery process  Use TQM tools  Cause & effect diagrams  Process flow charts  Pareto charts Method People Material Equipment Too Long