SlideShare a Scribd company logo
1
Equations
Continuity Equation:
(𝒂)
Which shows conservation of Mass
  0. 


V
t


2
Momentum Equation
• Which shows conservation of
Momentum
bT
Dt
VD
 
3
• These are the equations
which we use only in
𝒙 𝒚 𝒛 𝒄𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏 coordinate
system
4
5
Question
• Can we use these equations , when
we have fluid in cylindrical channel
𝒊. 𝒆. In pipe or in Veins??
6
Topic of presentation
• Derivation of Continuity equation in
𝒓, 𝜽, 𝒛 𝑪𝒚𝒍𝒊𝒏𝒅𝒓𝒊𝒄𝒂𝒍 coordinate system
• Derivation of Momentum Equation in
𝒓, 𝜽, 𝒛 𝑪𝒚𝒍𝒊𝒏𝒅𝒓𝒊𝒄𝒂𝒍 coordinate system
7
Cartesian cylindrical
8
9
Results from graph











x
y
yxr
ry
rx
1
22
tan
sin
cos



10
Direction of 𝑟 & 𝜃




ji
jir


cossin
sincos
11
Conversion of unit vectors in terms
of (r 𝜃 𝑧)






zk
rj
ri


cossin
sincos
12
velocity components in (r 𝜃 𝑧)
• As we know that velocity field in
𝒙 𝒚 𝒛 system is
• And the velocity field in cylindrical system is
13

 kwjviuV

 zrV vvv zr

Conversion of Del operator in
(r 𝜃 𝑧)
• As we know that Del operator in (𝒙 𝒚 𝒛 )
systems is
14









 k
z
j
y
i
x
Solution
• As we know that
15











x
y
yxr
ry
rx
1
22
tan
sin
cos









zk
rj
ri


cossin
sincos
• And also we have
• By taking derivatives we have
16


sin
cos






y
r
x
r
ry
ry


cos
sin
















x
y
yxr
1
22
tan
As 𝒙 = 𝒓𝒄𝒐𝒔𝜽 𝒂𝒏𝒅 𝒚 = 𝒓𝒔𝒊𝒏𝜽 so that
𝒙 = 𝒙 𝒓, 𝜽 𝒂𝒏𝒅 𝒚 = 𝒚 𝒓, 𝜽 , hence we have
17
yy
r
ry
xx
r
rx




























..
..
• Using above values we will get
18

































 






z
z
r
rr
r
rr








cossin
cos
sin
sincos
)sin(
cos
• After simplification we will get “Del
operator” in (r 𝜽 𝒛)
19









 z
zr
r
r


1
Conversion of
in(𝑟 , 𝜃, 𝑧)
20
V.
• For this we will use previous results , we have
• After simplification we will get ,
•
21
V. 












 
z
zr
r
r


1








zr vvv zr

.
V.  
zr
r
rr
vv
v z
r









11
Required continuity equation in(𝒓, 𝜽, 𝒛)
22
      0
11












vvv zr
zr
r
rrt





  V.      vvv zr zr
r
rr

  






 11
Special case
(Incompressible fluid)
23
𝜌 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
24
      0
11









vvv zr
zr
r
rr 

Derivation of Momentum
Equation for any fluid in
Cylindrical Coordinate
System
25
• As we know that momentum equation
in Cartesian coordinate system is,
• Where is material derivate is
cacuhy stress tensor and is body
force
26
bT
Dt
VD
 
DT
D
T
b
• We will use same procedure as we
did in the derivation of continuity
equation, we will transform every
term in (𝒓 , 𝜽 , 𝒛 ) form
27
Material derivative in
(𝑟, 𝜃, 𝑧) form
As we know that ,
28
VV
t
V
Dt
VD



 .
As we know from previous results that,
29
V. 












 
z
zr
r
r


1








zr vvv zr

.
• After simplification we will get
30
z
zz
z
z
z
rz
r
z
rrrr
r
r
zr
r
r
r
rrV
vvv
vvvvv
vvv
zr
zrr
zr

























































111
.
• Now
31
VV. .







zr vvv zr


































































z
zz
z
z
z
rz
r
z
rrrr
r
r
zr
r
r
r
rr
vvv
vvvvv
vvv
zr
zrr
zr











111
• After simplification we will get
• 𝒓 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆
• 𝜽 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆
• 𝒛 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆
32
𝒓 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆
𝜽 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆
𝒛 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆
33
zrrrt
v
v
vvvv
v
v r
z
rr
r
r










 2


zrr
v
rt
v
v
vvvv
v
v
z
r
r










 

zr
v
rt
v
v
vv
v
v z
z
zz
r
z












Stress Tensor
34
 V
By putting previous results we will get
After simplification we will get stress
tensor in (𝒓, 𝜽, 𝒛) we have
35
  V
35













 
z
zr
r
r


1

























 
zrz
zr
r
r vvv zr

 
1
.
• 𝒓 − 𝒔𝒕𝒓𝒆𝒔𝒔 𝑻𝒆𝒏𝒔𝒐𝒓 𝒊𝒏 "𝒓" 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏
• 𝜽 − 𝒔𝒕𝒓𝒆𝒔𝒔 𝑻𝒆𝒏𝒔𝒐𝒓 𝒊𝒏 "𝜽" 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏
• 𝒛 − 𝒔𝒕𝒓𝒆𝒔𝒔 𝑻𝒆𝒏𝒔𝒐𝒓 𝒊𝒏 "𝒛" 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏
36
  2
2
22
2
2
211
z
v
rrr
r
rrr
vv
v rr
r




















  2
2
22
2
2
211
z
v
rr
r
rrr
vv
v r

















 


2
2
2
2
2
11
zrr
r
rr
vvv zzz


















• Put these values in Momentum Equation we
will get in Momentum Equation in
𝒓, 𝜽, 𝒛 𝒇𝒐𝒓𝒎
• We have
37
• 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝑴𝒐𝒎𝒆𝒏𝒕𝒖𝒎 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝒓 𝒅𝒊𝒓𝒆𝒄𝒊𝒐𝒏
• Component of 𝒎𝒐𝒎𝒆𝒏𝒕𝒖𝒎 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝜽 direction
38



















zrrrt
v
v
vvvv
v
v r
z
rr
r
r
2



  b
vv
v r
rr
r
z
v
rrr
r
rrr






















 2
2
22
2
2
211



















zrr
v
rt
v
v
vvvv
v
v
z
r
r



  b
vv
v z
v
rr
r
rrr
r
























 2
2
22
2
2
211
• Component of 𝑴𝒐𝒎𝒆𝒏𝒕𝒖𝒎 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 z 𝒅𝒊𝒓𝒆𝒄𝒊𝒐𝒏
39



















zr
v
rt
v
v
vv
v
v z
z
zz
r
z


b
vvv
z
zzz
zrr
r
rr




















 2
2
2
2
2
11
Navier Stock Equation
• As we know that N.S equation in 𝒙 , 𝒚 , 𝒛
40
  bTP
Dt
VD
 
• By using previous results we will get
• 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝑵𝒂𝒗𝒊𝒆𝒓 𝑺𝒕𝒐𝒄𝒌 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝒓 𝒅𝒊𝒓𝒆𝒄𝒊𝒐𝒏
41



















zrrrt
v
v
vvvv
v
v r
z
rr
r
r
2



  b
vv
v r
rr
rr
z
v
rrr
r
rrr
P 

 



























 2
2
22
2
2
211
• Component of Navier stock 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝜽 direction
42



















zrr
v
rt
v
v
vvvv
v
v
z
r
r



  b
vv
v z
v
rr
r
rrr
P r


 

 


























 2
2
22
2
2
211
• Component of Navier stock 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 z 𝒅𝒊𝒓𝒆𝒄𝒊𝒐𝒏
43



















zr
v
rt
v
v
vv
v
v z
z
zz
r
z


b
vvv
z
zzz
zrr
r
rr
P 

 

























 2
2
2
2
2
11
Applications
• Blood flow in veins
• Fluid flow through cylindrical pipe
(house pipe)
44
Any Question
45

More Related Content

What's hot

Fluid mechanics applications
Fluid mechanics applicationsFluid mechanics applications
Fluid mechanics applications
Nofal Umair
 
Tensor 1
Tensor  1Tensor  1
Tensor 1
BAIJU V
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanics
abrish shewa
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
muhammadabullah
 
Applications of Differential Equations in Petroleum Engineering
Applications of Differential Equations in Petroleum EngineeringApplications of Differential Equations in Petroleum Engineering
Applications of Differential Equations in Petroleum Engineering
Raboon Redar
 
Dimensionless analysis & Similarities
Dimensionless analysis & Similarities Dimensionless analysis & Similarities
Dimensionless analysis & Similarities
sajan gohel
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
Tarun Gehlot
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
University of Education
 
Chapter 8: Transformation of Stress and Strain; Yield and Fracture Criteria
Chapter 8: Transformation of Stress and Strain; Yield and Fracture CriteriaChapter 8: Transformation of Stress and Strain; Yield and Fracture Criteria
Chapter 8: Transformation of Stress and Strain; Yield and Fracture Criteria
Monark Sutariya
 
FluidDynamics.ppt
FluidDynamics.pptFluidDynamics.ppt
FluidDynamics.ppt
MuddassirMudassar
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
Hamilton application
Hamilton applicationHamilton application
Hamilton application
Samad Akbar
 
Differential equations
Differential equationsDifferential equations
Differential equations
Muhammad Ali Bhalli Zada
 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
preet yadav
 
Lec 3 desgin via root locus
Lec 3 desgin via root locusLec 3 desgin via root locus
Lec 3 desgin via root locus
Behzad Farzanegan
 
An introduction to turbulence modeling
An introduction to turbulence modelingAn introduction to turbulence modeling
An introduction to turbulence modeling
DaryooshBorzuei
 
Fluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentumFluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentum
Mohsin Siddique
 
Method of weighted residuals
Method of weighted residualsMethod of weighted residuals
Method of weighted residuals
Jasim Almuhandis
 
6 7 irrotational flow
6 7 irrotational flow6 7 irrotational flow
6 7 irrotational flownavala
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
Solo Hermelin
 

What's hot (20)

Fluid mechanics applications
Fluid mechanics applicationsFluid mechanics applications
Fluid mechanics applications
 
Tensor 1
Tensor  1Tensor  1
Tensor 1
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanics
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Applications of Differential Equations in Petroleum Engineering
Applications of Differential Equations in Petroleum EngineeringApplications of Differential Equations in Petroleum Engineering
Applications of Differential Equations in Petroleum Engineering
 
Dimensionless analysis & Similarities
Dimensionless analysis & Similarities Dimensionless analysis & Similarities
Dimensionless analysis & Similarities
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 
Chapter 8: Transformation of Stress and Strain; Yield and Fracture Criteria
Chapter 8: Transformation of Stress and Strain; Yield and Fracture CriteriaChapter 8: Transformation of Stress and Strain; Yield and Fracture Criteria
Chapter 8: Transformation of Stress and Strain; Yield and Fracture Criteria
 
FluidDynamics.ppt
FluidDynamics.pptFluidDynamics.ppt
FluidDynamics.ppt
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
Hamilton application
Hamilton applicationHamilton application
Hamilton application
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
 
Lec 3 desgin via root locus
Lec 3 desgin via root locusLec 3 desgin via root locus
Lec 3 desgin via root locus
 
An introduction to turbulence modeling
An introduction to turbulence modelingAn introduction to turbulence modeling
An introduction to turbulence modeling
 
Fluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentumFluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentum
 
Method of weighted residuals
Method of weighted residualsMethod of weighted residuals
Method of weighted residuals
 
6 7 irrotational flow
6 7 irrotational flow6 7 irrotational flow
6 7 irrotational flow
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 

Similar to Continuity and momentum in polar plane

Ejercicio 4. Ecuación diferencial
Ejercicio 4. Ecuación diferencialEjercicio 4. Ecuación diferencial
Ejercicio 4. Ecuación diferencial
yeisyynojos
 
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
Mostafa Shokrian Zeini
 
Steady axisymetric-torsional-flows
Steady axisymetric-torsional-flowsSteady axisymetric-torsional-flows
Steady axisymetric-torsional-flows
saira alvi
 
ANALYZE THE STABILITY OF DC SERVO MOTOR USING NYQUIST PLOT
ANALYZE THE STABILITY OF DC SERVO MOTOR USING NYQUIST PLOTANALYZE THE STABILITY OF DC SERVO MOTOR USING NYQUIST PLOT
ANALYZE THE STABILITY OF DC SERVO MOTOR USING NYQUIST PLOT
sanjay kumar pediredla
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
SWATI MISHRA
 
3 modelling of physical systems
3 modelling of physical systems3 modelling of physical systems
3 modelling of physical systemsJoanna Lock
 
COORDINATE SYSTEM.pdf
COORDINATE SYSTEM.pdfCOORDINATE SYSTEM.pdf
COORDINATE SYSTEM.pdf
Manju T Kurian
 
COORDINATE SYSTEM.pdf
COORDINATE SYSTEM.pdfCOORDINATE SYSTEM.pdf
COORDINATE SYSTEM.pdf
Manju T Kurian
 
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptxChap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
Samirsinh Parmar
 
Revised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptxRevised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptx
pralayroy2
 
Geometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov ChainsGeometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov Chains
Shuchang Zhang
 
Digital control systems (dcs) lecture 18-19-20
Digital control systems (dcs) lecture 18-19-20Digital control systems (dcs) lecture 18-19-20
Digital control systems (dcs) lecture 18-19-20
Ali Rind
 
Modern control 2
Modern control 2Modern control 2
Modern control 2
cairo university
 
Polar Coordinates.pptx
Polar Coordinates.pptxPolar Coordinates.pptx
Polar Coordinates.pptx
AbdullahTanweer1
 
ECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptxECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptx
Ahmed359095
 
A Stabilized Finite Element Dynamic Overset Method for the Navier-Stokes Equa...
A Stabilized Finite Element Dynamic Overset Method for the Navier-Stokes Equa...A Stabilized Finite Element Dynamic Overset Method for the Navier-Stokes Equa...
A Stabilized Finite Element Dynamic Overset Method for the Navier-Stokes Equa...Chao Liu
 
Numerical Solution of the navier stokes equations using the finite difference...
Numerical Solution of the navier stokes equations using the finite difference...Numerical Solution of the navier stokes equations using the finite difference...
Numerical Solution of the navier stokes equations using the finite difference...
Satya Sahoo
 
ALGEBRA OF TENSOR .pptx
ALGEBRA OF TENSOR .pptxALGEBRA OF TENSOR .pptx
ALGEBRA OF TENSOR .pptx
KiruthikaRajasekaran
 
bode plot.pptx
bode plot.pptxbode plot.pptx
bode plot.pptx
SivaSankar306103
 

Similar to Continuity and momentum in polar plane (20)

Ejercicio 4. Ecuación diferencial
Ejercicio 4. Ecuación diferencialEjercicio 4. Ecuación diferencial
Ejercicio 4. Ecuación diferencial
 
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
 
Bazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-ZattiBazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-Zatti
 
Steady axisymetric-torsional-flows
Steady axisymetric-torsional-flowsSteady axisymetric-torsional-flows
Steady axisymetric-torsional-flows
 
ANALYZE THE STABILITY OF DC SERVO MOTOR USING NYQUIST PLOT
ANALYZE THE STABILITY OF DC SERVO MOTOR USING NYQUIST PLOTANALYZE THE STABILITY OF DC SERVO MOTOR USING NYQUIST PLOT
ANALYZE THE STABILITY OF DC SERVO MOTOR USING NYQUIST PLOT
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
3 modelling of physical systems
3 modelling of physical systems3 modelling of physical systems
3 modelling of physical systems
 
COORDINATE SYSTEM.pdf
COORDINATE SYSTEM.pdfCOORDINATE SYSTEM.pdf
COORDINATE SYSTEM.pdf
 
COORDINATE SYSTEM.pdf
COORDINATE SYSTEM.pdfCOORDINATE SYSTEM.pdf
COORDINATE SYSTEM.pdf
 
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptxChap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
 
Revised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptxRevised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptx
 
Geometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov ChainsGeometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov Chains
 
Digital control systems (dcs) lecture 18-19-20
Digital control systems (dcs) lecture 18-19-20Digital control systems (dcs) lecture 18-19-20
Digital control systems (dcs) lecture 18-19-20
 
Modern control 2
Modern control 2Modern control 2
Modern control 2
 
Polar Coordinates.pptx
Polar Coordinates.pptxPolar Coordinates.pptx
Polar Coordinates.pptx
 
ECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptxECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptx
 
A Stabilized Finite Element Dynamic Overset Method for the Navier-Stokes Equa...
A Stabilized Finite Element Dynamic Overset Method for the Navier-Stokes Equa...A Stabilized Finite Element Dynamic Overset Method for the Navier-Stokes Equa...
A Stabilized Finite Element Dynamic Overset Method for the Navier-Stokes Equa...
 
Numerical Solution of the navier stokes equations using the finite difference...
Numerical Solution of the navier stokes equations using the finite difference...Numerical Solution of the navier stokes equations using the finite difference...
Numerical Solution of the navier stokes equations using the finite difference...
 
ALGEBRA OF TENSOR .pptx
ALGEBRA OF TENSOR .pptxALGEBRA OF TENSOR .pptx
ALGEBRA OF TENSOR .pptx
 
bode plot.pptx
bode plot.pptxbode plot.pptx
bode plot.pptx
 

Recently uploaded

Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 

Recently uploaded (20)

Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 

Continuity and momentum in polar plane

  • 1. 1
  • 2. Equations Continuity Equation: (𝒂) Which shows conservation of Mass   0.    V t   2
  • 3. Momentum Equation • Which shows conservation of Momentum bT Dt VD   3
  • 4. • These are the equations which we use only in 𝒙 𝒚 𝒛 𝒄𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏 coordinate system 4
  • 5. 5
  • 6. Question • Can we use these equations , when we have fluid in cylindrical channel 𝒊. 𝒆. In pipe or in Veins?? 6
  • 7. Topic of presentation • Derivation of Continuity equation in 𝒓, 𝜽, 𝒛 𝑪𝒚𝒍𝒊𝒏𝒅𝒓𝒊𝒄𝒂𝒍 coordinate system • Derivation of Momentum Equation in 𝒓, 𝜽, 𝒛 𝑪𝒚𝒍𝒊𝒏𝒅𝒓𝒊𝒄𝒂𝒍 coordinate system 7
  • 9. 9
  • 11. Direction of 𝑟 & 𝜃     ji jir   cossin sincos 11
  • 12. Conversion of unit vectors in terms of (r 𝜃 𝑧)       zk rj ri   cossin sincos 12
  • 13. velocity components in (r 𝜃 𝑧) • As we know that velocity field in 𝒙 𝒚 𝒛 system is • And the velocity field in cylindrical system is 13   kwjviuV   zrV vvv zr 
  • 14. Conversion of Del operator in (r 𝜃 𝑧) • As we know that Del operator in (𝒙 𝒚 𝒛 ) systems is 14           k z j y i x
  • 15. Solution • As we know that 15            x y yxr ry rx 1 22 tan sin cos          zk rj ri   cossin sincos
  • 16. • And also we have • By taking derivatives we have 16   sin cos       y r x r ry ry   cos sin                 x y yxr 1 22 tan
  • 17. As 𝒙 = 𝒓𝒄𝒐𝒔𝜽 𝒂𝒏𝒅 𝒚 = 𝒓𝒔𝒊𝒏𝜽 so that 𝒙 = 𝒙 𝒓, 𝜽 𝒂𝒏𝒅 𝒚 = 𝒚 𝒓, 𝜽 , hence we have 17 yy r ry xx r rx                             .. ..
  • 18. • Using above values we will get 18                                          z z r rr r rr         cossin cos sin sincos )sin( cos
  • 19. • After simplification we will get “Del operator” in (r 𝜽 𝒛) 19           z zr r r   1
  • 20. Conversion of in(𝑟 , 𝜃, 𝑧) 20 V.
  • 21. • For this we will use previous results , we have • After simplification we will get , • 21 V.                z zr r r   1         zr vvv zr  . V.   zr r rr vv v z r          11
  • 22. Required continuity equation in(𝒓, 𝜽, 𝒛) 22       0 11             vvv zr zr r rrt        V.      vvv zr zr r rr            11
  • 24. 𝜌 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 24       0 11          vvv zr zr r rr  
  • 25. Derivation of Momentum Equation for any fluid in Cylindrical Coordinate System 25
  • 26. • As we know that momentum equation in Cartesian coordinate system is, • Where is material derivate is cacuhy stress tensor and is body force 26 bT Dt VD   DT D T b
  • 27. • We will use same procedure as we did in the derivation of continuity equation, we will transform every term in (𝒓 , 𝜽 , 𝒛 ) form 27
  • 28. Material derivative in (𝑟, 𝜃, 𝑧) form As we know that , 28 VV t V Dt VD     .
  • 29. As we know from previous results that, 29 V.                z zr r r   1         zr vvv zr  .
  • 30. • After simplification we will get 30 z zz z z z rz r z rrrr r r zr r r r rrV vvv vvvvv vvv zr zrr zr                                                          111 .
  • 31. • Now 31 VV. .        zr vvv zr                                                                   z zz z z z rz r z rrrr r r zr r r r rr vvv vvvvv vvv zr zrr zr            111
  • 32. • After simplification we will get • 𝒓 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆 • 𝜽 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆 • 𝒛 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆 32
  • 33. 𝒓 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆 𝜽 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆 𝒛 − 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆 33 zrrrt v v vvvv v v r z rr r r            2   zrr v rt v v vvvv v v z r r              zr v rt v v vv v v z z zz r z            
  • 35. By putting previous results we will get After simplification we will get stress tensor in (𝒓, 𝜽, 𝒛) we have 35   V 35                z zr r r   1                            zrz zr r r vvv zr    1 .
  • 36. • 𝒓 − 𝒔𝒕𝒓𝒆𝒔𝒔 𝑻𝒆𝒏𝒔𝒐𝒓 𝒊𝒏 "𝒓" 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 • 𝜽 − 𝒔𝒕𝒓𝒆𝒔𝒔 𝑻𝒆𝒏𝒔𝒐𝒓 𝒊𝒏 "𝜽" 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 • 𝒛 − 𝒔𝒕𝒓𝒆𝒔𝒔 𝑻𝒆𝒏𝒔𝒐𝒓 𝒊𝒏 "𝒛" 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 36   2 2 22 2 2 211 z v rrr r rrr vv v rr r                       2 2 22 2 2 211 z v rr r rrr vv v r                      2 2 2 2 2 11 zrr r rr vvv zzz                  
  • 37. • Put these values in Momentum Equation we will get in Momentum Equation in 𝒓, 𝜽, 𝒛 𝒇𝒐𝒓𝒎 • We have 37
  • 38. • 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝑴𝒐𝒎𝒆𝒏𝒕𝒖𝒎 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝒓 𝒅𝒊𝒓𝒆𝒄𝒊𝒐𝒏 • Component of 𝒎𝒐𝒎𝒆𝒏𝒕𝒖𝒎 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝜽 direction 38                    zrrrt v v vvvv v v r z rr r r 2      b vv v r rr r z v rrr r rrr                        2 2 22 2 2 211                    zrr v rt v v vvvv v v z r r      b vv v z v rr r rrr r                          2 2 22 2 2 211
  • 39. • Component of 𝑴𝒐𝒎𝒆𝒏𝒕𝒖𝒎 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 z 𝒅𝒊𝒓𝒆𝒄𝒊𝒐𝒏 39                    zr v rt v v vv v v z z zz r z   b vvv z zzz zrr r rr                      2 2 2 2 2 11
  • 40. Navier Stock Equation • As we know that N.S equation in 𝒙 , 𝒚 , 𝒛 40   bTP Dt VD  
  • 41. • By using previous results we will get • 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒐𝒇 𝑵𝒂𝒗𝒊𝒆𝒓 𝑺𝒕𝒐𝒄𝒌 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝒓 𝒅𝒊𝒓𝒆𝒄𝒊𝒐𝒏 41                    zrrrt v v vvvv v v r z rr r r 2      b vv v r rr rr z v rrr r rrr P                                 2 2 22 2 2 211
  • 42. • Component of Navier stock 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝜽 direction 42                    zrr v rt v v vvvv v v z r r      b vv v z v rr r rrr P r                                   2 2 22 2 2 211
  • 43. • Component of Navier stock 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 z 𝒅𝒊𝒓𝒆𝒄𝒊𝒐𝒏 43                    zr v rt v v vv v v z z zz r z   b vvv z zzz zrr r rr P                               2 2 2 2 2 11
  • 44. Applications • Blood flow in veins • Fluid flow through cylindrical pipe (house pipe) 44