SlideShare a Scribd company logo
1 of 35
Irrotational Flow(Potential Flow)
• Bernoulli Equation
• Velocity Potential
• Two-Dimensional, Irrotational,
Incompressible Flow
• Elementary Plane Flows
• Superposition of Elementary Plane Flows
Irrotational Flow
Fluid elements moving in the flow field do
not undergo any rotation
0,0 =×∇=ω V

0=
∂
∂
−
∂
υ∂
=
∂
∂
−
∂
∂
=
∂
υ∂
−
∂
∂
y
u
xx
w
z
u
zy
w
0
111
=
θ∂
∂
−
∂
∂
=
∂
∂
−
∂
∂
=
∂
∂
−
θ∂
∂ θθ rzrr V
rr
rV
rr
V
z
V
z
VV
r
Rectangular coordinate
Cylindrical coordinate
Bernoulli Equation
If the flow is irrotational,
( )VVkgp

ˆ1
∇⋅=−∇
ρ
− ( ) ( ) ( )VVVVVV

×∇×−⋅∇=∇⋅
2
1
= 0
( ) ( )2
2
1
2
1ˆ1
VVVkgp ∇=⋅∇=−∇
ρ
−

[ ] rd

⋅
dzkdyjdxird ˆˆˆ ++=

z
k
y
j
x
i
∂
∂
+
∂
∂
+
∂
∂
=∇ ˆˆˆ
( )2
2
1
Vdgdz
dp
=−
ρ
− 0
2
2
=





++
ρ
gz
Vp
d
constant
2
2
=++
ρ
gz
Vp valid between any two points
in an irrotational flow
0=×∇ V

Example: Flow field with tangential motion
- Forced Vortex
( )rfVVr == θand0
Forced Vortex (rigid body rotation)
( ) rrfV ω==θ
( ) 





θ∂
∂
−
∂
∂
=×∇=ω θ r
zz
V
rr
rV
r
V
11
2
1
2
1 
( ) ω=ω=








∂
ω∂
= r
rr
r
r
2
2
11
2
1 2
a
b ra
rb
∫ ρω=∫ 





∂
∂
=− ar
br
ar
brba rdrdr
r
p
pp 2
( ) 0
2
22
2
>−
ρω
= ba rr
Example: Flow field with tangential motion
- Free Vortex
( )rfVVr == θand0
Free Vortex (irrotational vortex)
( )
r
r
r
C
rfV a ω
===θ
2
( ) 





θ∂
∂
−
∂
∂
=×∇=ω θ r
zz
V
rr
rV
r
V
11
2
1
2
1 
0
1
2
1
=





∂
∂
=
r
C
r
a
b ra
rb
( )22
2
abba VVpp −
ρ
=−








−
ρ
=
22
2 11
2 ab rr
C
thenIf 2ω= arC ( ) 0
2
222
2
>−
ρω
=− babba rrrpp
Velocity Potential
If the flow is irrotational, a potential function, φ,
can be formulated to represent the velocity field.
From the vector identity, 0=φ∇×∇
The velocity field of an irrotational
flow can be defined by a potential
function so that
φ−∇≡V

z
w
yx
u
∂
φ∂
−=
∂
φ∂
−=υ
∂
φ∂
−=
z
V
r
V
r
V zr
∂
φ∂
−=
θ∂
φ∂
−=
∂
φ∂
−= θ
1
Stream Function and Velocity Potential
For a two-dimensional, incompressible, irrotational
flow, the velocity field can be expressed in terms of
both ψ and φ.
xy
u
∂
ψ∂
−=υ
∂
ψ∂
=
yx
u
∂
φ∂
−=υ
∂
φ∂
−=
According to the irrotationality condition,
0=
∂
∂
−
∂
υ∂
y
u
x
02
2
2
2
=
∂
ψ∂
+
∂
ψ∂
yx
According to the continuity equation,
0=
∂
υ∂
+
∂
∂
yx
u
02
2
2
2
=
∂
φ∂
+
∂
φ∂
yx
} Laplace’s
equation
Solution of Laplace’s equation represents a possible 2-
D, incompressible, irrotational flow field.
Slope of Velocity Potential Line
Along a line of constant φ, dφ=0 and
0=
∂
φ∂
+
∂
φ∂
=φ dy
y
dx
x
d
The slope of a line of constant φ is given by υ
−=
∂φ∂
∂φ∂
−=


φ
u
y
x
dx
dy
uuy
x
dx
dy υ
=
υ−
−=
∂ψ∂
∂ψ∂
−=


ψ
1−=
υ
×
υ
−=


×


ψφ u
u
dx
dy
dx
dy
The slope of a line of constant ψ is given by
Lines of constant ψ and constant φ are orthogonal.
Example: Determine the Velocity Potential
Line of a Flow
The flow streamline function is .2axy=ψ






∂
ψ∂
∂
∂
−





∂
ψ∂
−
∂
∂
=
∂
∂
−
∂
υ∂
=ω
yyxxy
u
x
z2 ( ) ( ) 022 =
∂
∂
−−
∂
∂
= ax
y
ay
x
ay
x
ax
y
u 22 −=
∂
ψ∂
−=υ=
∂
ψ∂
=
The flow is irrotational.
In term of velocity
potential, the velocity
components are
ay
y
ax
x
u 22 −=
∂
φ∂
−=υ=
∂
φ∂
−=
( ) ( ) 2
22
22 caxxgax
dx
dg
uxgayay
y
+−=⇒=−=⇒+=φ⇒−=
∂
φ∂
−=υ
( ) ( ) 1
22
22 cayyfay
dy
df
yfaxax
x
u +=⇒−=−=υ⇒+−=φ⇒=
∂
φ∂
−=
caxay +−=φ 22
Elementary Plane Flows
Uniform Flow
3c=ψ
2c=ψ
1c=ψ
0=ψ
1c−=ψ
2c−=ψ
3c−=ψ
=φ 3k 2k 1k 0 1k− 2k− 3k−
U
x
y
x
y
Uu =
0=υ
Uy=ψ
U
y
u =
∂
ψ∂
=
0=
∂
ψ∂
−=υ
x
Ux−=φ
U
x
u =
∂
φ∂
−=
0=
∂
φ∂
−=υ
y
Γ=0 around any closed curve
Inclined uniform flow
=φ 3k
2k
1k 0
1k−
2k− 3k−
x
yα= cosVu
α=υ sinV
( ) ( )xVyV α−α=ψ sincos
α=
∂
ψ∂
= cosV
y
u
α=
∂
ψ∂
−=υ sinV
x
( ) ( )xVyV α−α−=φ cossin
α=
∂
φ∂
−= cosV
x
u
α=
∂
φ∂
−=υ sinV
y
V
x
y
α
0
3c
2c
1c
1c−
2c−
3c−
=ψ
Γ=0 around any closed curve
Source Flow
r
q
Vr
π
=
2
0=θV
θ
π
=ψ
2
q
r
q
ln
2π
−=φ
x
y
3c=ψ
2c=ψ
1c=ψ
0=ψ4c=ψ
5c=ψ
6c=ψ
7c=ψ
1k−=φ
2k−=φ
x
y
Origin is singular point
q: volume flow rate per unit depth
Γ=0 around any closed curve
Sink Flow
r
q
Vr
π
−=
2
0=θV
θ
π
−=ψ
2
q
r
q
ln
2π
=φ
x
y
3c−=ψ
2c−=ψ
1c−=ψ
0=ψ4c−=ψ
5c−=ψ
6c−=ψ
7c−=ψ
1k=φ
2k=φ
x
y
Origin is singular point
q: volume flow rate per unit depth
Γ=0 around any closed curve
Irrotational Vortex
x
y
3c−=ψ
2c−=ψ
1c−=ψ
4c−=ψ
3k−=φ
2k−=φ
1k−=φ
0=φ4k−=φ
5k−=φ
6k−=φ
7k−=φ
x
y
r
K
V
π
=θ
2
0=rV
θ
π
−=φ
2
K
r
K
ln
2π
−=ψ
Origin is singular point
K: strength of the vortex
Γ=K around any closed curve enclosing origin
Γ=0 around any closed curve not enclosing origin
Doublet
3c−=ψ
2c−=ψ
1c−=ψ
0=ψ
1c=ψ
2c=ψ
3c=ψ
2k=φ
1k=φ 1k−=φ
2k−=φ
x
y
x
y
θ
Λ
−=θ sin2
r
Vθ
Λ
−= cos2
r
Vr
r
θΛ
−=φ
cos
r
θΛ
−=ψ
sin
Origin is singular point
Λ: strength of the doublet
Γ=0 around any closed curve
Superposition of Elementary Plane Flows
∀ φ and ψ satisfy Laplace’s equation.
• Laplace’s equation is linear and homogeneous.
• Solutions of Laplace’s equation may be added
together (superposed) to develop more complex
flow patterns.
• If ψ1 and ψ2 satisfy Laplace’s equation, so does ψ3
= ψ1 + ψ2 .
• Any streamline contour can be imagined to
represent a solid surface (there is no flow across a
streamline).
Source + Uniform Flow
θ+θ
π
=+θ
π
=ψ+ψ=ψ sin
22
flowuniformsource Ur
q
Uy
q
θ−
π
−=−
π
−=φ+φ=φ cosln
2
ln
2
flowuniformsource Urr
q
Uxr
q
x
y
U
Stagnation point
Flow past a half body
Solid surface formed
by two streamlines
Source + Sink Flow
( )2121sinksource
222
θ−θ
π
=θ
π
−θ
π
=ψ+ψ=ψ
qqq
1
2
21sinksource ln
2
ln
2
ln
2 r
rq
r
q
r
q
π
=
π
+
π
−=φ+φ=φ
Source and sink with equal
strength, origin separated 2a
apart
Source + Sink+Uniform Flow
( ) θ+θ−θ
π
=+θ
π
−θ
π
=ψ+ψ=ψ sin
222
2121flowuniformsource Ur
q
Uy
qq
θ−
π
=−
π
+
π
−=φ+φ=φ cosln
2
ln
2
ln
2 1
2
21flowuniformsource Ur
r
rq
Uxr
q
r
q
x
y
U
Stagnation point
(Flow past a Rankine body)
Solid surface formed
by two streamlines
Stagnation point
Doublet+Uniform Flow





 Λ
−θ=θ+
θΛ
−=+
θΛ
−=ψ+ψ=ψ 2flowuniformdoublet 1sinsin
sinsin
r
U
UrUr
r
Uy
r





 Λ
+θ−=θ−
θΛ
−=−
θΛ
−=φ+φ=φ 2flowuniformdoublet 1coscos
coscos
r
U
UrUr
r
Ux
r
U
Stagnation point
Flow past a cylinder
Solid surface formed
by two streamlines
Stagnation point
a
U
a
Λ
=
Doublet+Vortex+Uniform Flow
r
K
r
a
UrUrr
K
r
ln
2
1sinsinln
2
sin
2
2
flowuniformvortexdoublet
π
+





−θ=θ+
π
+
θΛ
−=ψ+ψ+ψ=ψ
θ
π
+





+θ−=θ−θ
π
+
θΛ
−=φ+φ+φ=φ
2
1coscos
2
cos
2
2
flowuniformvortexdoublet
K
r
a
UrUr
K
r
a
U
a
Λ
=
Flow past a cylinder
with circulation
UaUK Λπ=π< 44
Sink+Vortex
r
Kq
ln
22
vortexsink
π
+θ
π
−=ψ+ψ=ψ
θ
π
−
π
−=φ+φ=φ
2
ln
2
vortexsink
K
r
q
Vortex Pair
1
2
21vortex2vortex1 ln
2
ln
2
ln
2 r
rK
r
K
r
K
π
=
π
+
π
−=ψ+ψ=ψ
( )1221vortex2vortex1
222
θ−θ
π
=θ
π
+θ
π
−=φ+φ=φ
KKK
Example: Flow past a cylinder





 Λ
−θ=ψ+ψ=ψ 2flowuniformdoublet 1sin
r
U
Ur 




 Λ
+θ−=φ+φ=φ 2flowuniformdoublet 1cos
r
U
Ur
U
Stagnation point (a,π)
Stagnation point (a,0)
a U
a
Λ
=






−θ=











+θ
∂
∂
=
∂
φ∂
−= 2
2
2
2
1cos1cos
r
a
U
r
a
Ur
rr
Vr






+θ−=











+θ
θ∂
∂
−=
θ∂
φ∂
−=θ 2
2
2
2
1sin1cos
11
r
a
U
r
a
Ur
rr
V
Example: Flow past a cylinder-
pressure distribution on the surface
U
a
U
a
Λ
=






−θ= 2
2
1cos
r
a
UVr






+θ−=θ 2
2
1sin
r
a
UV
∞p
gz
V
pgz
U
p ++=++∞
22
22
] ] θ=+= =θ=
22222
sin4UVVV arrar
= 0
( ) ( ) ( )θ−ρ=θ−ρ=−ρ=− ∞
2222222
sin41
2
1
sin4
2
1
2
1
UUUVUpp
θ−=
ρ
− ∞ 2
2
sin41
2
1
U
pp
Pressure distribution on the surface
of the cylinder
2
2
1
U
pp
ρ
− ∞
θ
θ−=
ρ
− ∞ 2
2
sin41
2
1
U
pp
Pressure drag force acting on the cylinder
U
∞p
ApdFd

=
a






−
ρ
+= ∞ 2
22
1
2 U
VU
pp
] ( )∫
π
∞ θθ





θ−ρ+−=
2
0
22
pressure cossin41
2
1
dabUpF Drag

]
ππ
π
∞ 


θρ+


θρ−θ−=
2
0
32
2
0
22
0
sin
3
4
2
1
sin
2
1
sin abUabUabp
0=
θ
] ( ) ∫∫
π
θθ−=θ−=
2
0
pressure coscos dpabpdAF
ADrag

Lift force acting on the cylinder
U
∞p
ApdFd

=
a
] ( ) ∫∫
π
θθ−=θ−=
2
0
pressure sinsin dpabpdAF
ALift

] ( )∫
π
∞ θθ





θ−ρ+−=
2
0
22
pressure sinsin41
2
1
dabUpF Drag

]
ππ
π
∞ 








θ−
θ
ρ+


θρ+θ=
2
0
3
2
2
0
22
0
cos4
3
cos4
2
1
cos
2
1
cos abUabUabp
0=
θ
Example: Flow past a cylinder with circulation
r
K
r
a
Ur ln
2
1sin 2
2
flowuniformvortexdoublet
π
+





−θ=ψ+ψ+ψ=ψ
θ
π
+





+θ−=φ+φ+φ=φ
2
1cos 2
2
flowuniformvortexdoublet
K
r
a
Ur
a
U
a
Λ
= UaUK Λπ=π< 44






−θ−=
∂
φ∂
−= 2
2
1cos
r
a
U
r
Vr
r
K
r
a
U
r
V
π
−





+θ−=
θ∂
φ∂
−=θ
2
1sin
1
2
2
Stagnation points
]
a
K
UV ar
π
−θ−==θ
2
sin2
4
sinandat0 1-






π
=θ==θ
Ua
K
arV
Flow past a cylinder with circulation
- Surface pressure distribution
a
U
a
Λ
= UaUK Λπ=π< 44
]
a
K
UV ar
π
−θ−==θ
2
sin2
] ( )]
2
222
2
sin2 





π
−θ−=+= =θ=
a
K
UVVV arrar
] 01cos 2
2
=





−θ−==
a
a
UV arr






−
ρ
+= ∞ 2
22
1
2 U
VU
pp
2
2
2
2
2
sin
2
sin4 





π
+θ
π
+θ=
Ua
K
Ua
K
U
V














π
−θ
π
−θ−
ρ
+= ∞
2
2
2
2
sin
2
sin41
2 Ua
K
Ua
KU
pp
Pressure distribution on the surface
of the cylinder
2
2
1
U
pp
ρ
− ∞
θ
aUK π=
aUK π= 2
aUK π= 3














π
−θ
π
−θ−
ρ
+= ∞
2
2
2
2
sin
2
sin41
2 Ua
K
Ua
KU
pp
Pressure drag force acting on the cylinder
∞p






−
ρ
+= ∞ 2
22
1
2 U
VU
pp
] ∫
π
∞ θθ






















π
−θ
π
−θ−ρ+−=
2
0
2
22
pressure cos
2
sin
2
sin41
2
1
dab
aU
K
aU
K
UpF Drag

ApdFd

=
θ
] ( ) ∫∫
π
θθ−=θ−=
2
0
pressure coscos dpabpdAF
ADrag

a
( )∫
π
∞ θθ





θ−ρ+−=
2
0
22
cossin41
2
1
dabUp ∫
π
θθ














π
+θ
π
ρ+
2
0
2
2
cos
2
sin
2
2
1
dab
Ua
K
Ua
K
U
0=
0sin
22
sin2
2
0
22
=








θ





π
+
θ
π
=
π
ab
Ua
K
Ua
Kab
Lift force acting on the cylinder
∞p






−
ρ
+= ∞ 2
22
1
2 U
VU
pp
] ∫
π
∞ θθ






















π
−θ
π
−θ−ρ+−=
2
0
2
22
pressure sin
2
sin
2
sin41
2
1
dab
aU
K
aU
K
UpF Lift

ApdFd

=
θ
] ( ) ∫∫
π
θθ−=θ−=
2
0
pressure sinsin dpabpdAF
ALift

a
( )∫
π
∞ θθ





θ−ρ+−=
2
0
22
sinsin41
2
1
dabUp ∫
π
θθ














π
+θ
π
ρ+
2
0
2
2
sin
2
sin
2
2
1
dab
Ua
K
Ua
K
U
0=





ρ
=




 π
π
ρ
=








θ





π
+




 θ
−
θ
π
=
π
b
U
KU
b
U
KU
ab
Ua
K
Ua
Kab 2
22
2
2
cos
24
sin
2
2 22
2
0
22
Circulation around on the cylinder
∞p
( ) ∫∫∫
π
θθθ
π
θ
π
θθθ ⋅θ+⋅θ=θ⋅+=Γ
2
0
2
0
2
0
ˆˆˆˆˆˆˆ eerdVeerdVerdeVeV rrrrr
∫ ⋅≡Γ sdV

a
∫
π
θ





π
−θ−=
2
0 2
sin2 rd
Ur
K
U
0=
r
K
UV
π
−θ−=θ
2
sin2






−θ−= 2
2
1cos
r
a
UVr
] K
K
Ur −=

θ
π
−θ=
π
π
2
0
2
0
2
cos2






ρ=
U
K
U
b
FLift 2
2
1 2
Γρ−=ρ= UUK
Home work: 6.51, 6.66, 6.76, 6.93, 6.96, 6.98

More Related Content

What's hot

Energy quations and its application
Energy quations and its applicationEnergy quations and its application
Energy quations and its applicationSagar Damani
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1guest7b51c7
 
Fluid Mechanics Chapter 3. Integral relations for a control volume
Fluid Mechanics Chapter 3. Integral relations for a control volumeFluid Mechanics Chapter 3. Integral relations for a control volume
Fluid Mechanics Chapter 3. Integral relations for a control volumeAddisu Dagne Zegeye
 
TWO-DIMENSIONAL FLOW OF THE REAL FLUIDS (Lecture notes 07)
TWO-DIMENSIONAL FLOW OF THE REAL FLUIDS (Lecture notes 07)TWO-DIMENSIONAL FLOW OF THE REAL FLUIDS (Lecture notes 07)
TWO-DIMENSIONAL FLOW OF THE REAL FLUIDS (Lecture notes 07)Shekh Muhsen Uddin Ahmed
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeSam Alalimi
 
Fluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid StaticsFluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid StaticsAddisu Dagne Zegeye
 
Mechanical Engineering-Fluid mechanics-impact of jets
Mechanical Engineering-Fluid mechanics-impact of jetsMechanical Engineering-Fluid mechanics-impact of jets
Mechanical Engineering-Fluid mechanics-impact of jetsHimanshu Vasistha
 
Navier stokes equation
Navier stokes equationNavier stokes equation
Navier stokes equationnaveensapare
 
venturi and orifices meter
venturi and orifices meterventuri and orifices meter
venturi and orifices meterAryanChaurasia3
 
Fluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowFluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowAddisu Dagne Zegeye
 

What's hot (20)

Energy quations and its application
Energy quations and its applicationEnergy quations and its application
Energy quations and its application
 
Buckingham's theorem
Buckingham's  theoremBuckingham's  theorem
Buckingham's theorem
 
Couette flow
Couette flowCouette flow
Couette flow
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
Fluid Mechanics Chapter 3. Integral relations for a control volume
Fluid Mechanics Chapter 3. Integral relations for a control volumeFluid Mechanics Chapter 3. Integral relations for a control volume
Fluid Mechanics Chapter 3. Integral relations for a control volume
 
TWO-DIMENSIONAL FLOW OF THE REAL FLUIDS (Lecture notes 07)
TWO-DIMENSIONAL FLOW OF THE REAL FLUIDS (Lecture notes 07)TWO-DIMENSIONAL FLOW OF THE REAL FLUIDS (Lecture notes 07)
TWO-DIMENSIONAL FLOW OF THE REAL FLUIDS (Lecture notes 07)
 
Flow in pipes
Flow in pipesFlow in pipes
Flow in pipes
 
Fluid kinematics
Fluid kinematics Fluid kinematics
Fluid kinematics
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shape
 
Potential flow
Potential flowPotential flow
Potential flow
 
Fluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid StaticsFluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid Statics
 
Mechanical Engineering-Fluid mechanics-impact of jets
Mechanical Engineering-Fluid mechanics-impact of jetsMechanical Engineering-Fluid mechanics-impact of jets
Mechanical Engineering-Fluid mechanics-impact of jets
 
Navier stokes equation
Navier stokes equationNavier stokes equation
Navier stokes equation
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 
venturi and orifices meter
venturi and orifices meterventuri and orifices meter
venturi and orifices meter
 
Fluid statics
Fluid staticsFluid statics
Fluid statics
 
Fluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowFluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flow
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
vortex and circulation
vortex and circulationvortex and circulation
vortex and circulation
 
Continuity Equation
Continuity EquationContinuity Equation
Continuity Equation
 

Similar to Irrotational Flow Principles and Elementary Plane Flows

Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
CIVE 572 Final Project
CIVE 572 Final ProjectCIVE 572 Final Project
CIVE 572 Final Projectdanielrobb
 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gateSoumith V
 
Trigonometry and its basic rules and regulation
Trigonometry and its basic rules and regulationTrigonometry and its basic rules and regulation
Trigonometry and its basic rules and regulationKartikey Rohila
 
Trigonometry
TrigonometryTrigonometry
TrigonometryMurali BL
 
Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misEngMyKer
 
Steady axisymetric-torsional-flows
Steady axisymetric-torsional-flowsSteady axisymetric-torsional-flows
Steady axisymetric-torsional-flowssaira alvi
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
Basic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsBasic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsTarun Gehlot
 
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...LucasMogaka
 
19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdfrabeamatouk
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13Carlos Fuentes
 
Electrical engg material
Electrical engg material Electrical engg material
Electrical engg material Ramesh Meti
 

Similar to Irrotational Flow Principles and Elementary Plane Flows (20)

Shell theory
Shell theoryShell theory
Shell theory
 
NS Equation .pdf
NS Equation .pdfNS Equation .pdf
NS Equation .pdf
 
Ideal flow
Ideal flowIdeal flow
Ideal flow
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Vol flowmeasurements 1
Vol flowmeasurements 1Vol flowmeasurements 1
Vol flowmeasurements 1
 
CIVE 572 Final Project
CIVE 572 Final ProjectCIVE 572 Final Project
CIVE 572 Final Project
 
Fountains&pumps&turbines
 Fountains&pumps&turbines Fountains&pumps&turbines
Fountains&pumps&turbines
 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gate
 
Trigonometry and its basic rules and regulation
Trigonometry and its basic rules and regulationTrigonometry and its basic rules and regulation
Trigonometry and its basic rules and regulation
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake mis
 
Steam turbine
Steam turbine Steam turbine
Steam turbine
 
Steady axisymetric-torsional-flows
Steady axisymetric-torsional-flowsSteady axisymetric-torsional-flows
Steady axisymetric-torsional-flows
 
Ppt unit 2
Ppt unit 2Ppt unit 2
Ppt unit 2
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Basic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsBasic differential equations in fluid mechanics
Basic differential equations in fluid mechanics
 
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
 
19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
Electrical engg material
Electrical engg material Electrical engg material
Electrical engg material
 

Recently uploaded

Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfSeasiaInfotech2
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 

Recently uploaded (20)

Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdf
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 

Irrotational Flow Principles and Elementary Plane Flows

  • 1. Irrotational Flow(Potential Flow) • Bernoulli Equation • Velocity Potential • Two-Dimensional, Irrotational, Incompressible Flow • Elementary Plane Flows • Superposition of Elementary Plane Flows
  • 2. Irrotational Flow Fluid elements moving in the flow field do not undergo any rotation 0,0 =×∇=ω V  0= ∂ ∂ − ∂ υ∂ = ∂ ∂ − ∂ ∂ = ∂ υ∂ − ∂ ∂ y u xx w z u zy w 0 111 = θ∂ ∂ − ∂ ∂ = ∂ ∂ − ∂ ∂ = ∂ ∂ − θ∂ ∂ θθ rzrr V rr rV rr V z V z VV r Rectangular coordinate Cylindrical coordinate
  • 3. Bernoulli Equation If the flow is irrotational, ( )VVkgp  ˆ1 ∇⋅=−∇ ρ − ( ) ( ) ( )VVVVVV  ×∇×−⋅∇=∇⋅ 2 1 = 0 ( ) ( )2 2 1 2 1ˆ1 VVVkgp ∇=⋅∇=−∇ ρ −  [ ] rd  ⋅ dzkdyjdxird ˆˆˆ ++=  z k y j x i ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ ˆˆˆ ( )2 2 1 Vdgdz dp =− ρ − 0 2 2 =      ++ ρ gz Vp d constant 2 2 =++ ρ gz Vp valid between any two points in an irrotational flow 0=×∇ V 
  • 4. Example: Flow field with tangential motion - Forced Vortex ( )rfVVr == θand0 Forced Vortex (rigid body rotation) ( ) rrfV ω==θ ( )       θ∂ ∂ − ∂ ∂ =×∇=ω θ r zz V rr rV r V 11 2 1 2 1  ( ) ω=ω=         ∂ ω∂ = r rr r r 2 2 11 2 1 2 a b ra rb ∫ ρω=∫       ∂ ∂ =− ar br ar brba rdrdr r p pp 2 ( ) 0 2 22 2 >− ρω = ba rr
  • 5. Example: Flow field with tangential motion - Free Vortex ( )rfVVr == θand0 Free Vortex (irrotational vortex) ( ) r r r C rfV a ω ===θ 2 ( )       θ∂ ∂ − ∂ ∂ =×∇=ω θ r zz V rr rV r V 11 2 1 2 1  0 1 2 1 =      ∂ ∂ = r C r a b ra rb ( )22 2 abba VVpp − ρ =−         − ρ = 22 2 11 2 ab rr C thenIf 2ω= arC ( ) 0 2 222 2 >− ρω =− babba rrrpp
  • 6. Velocity Potential If the flow is irrotational, a potential function, φ, can be formulated to represent the velocity field. From the vector identity, 0=φ∇×∇ The velocity field of an irrotational flow can be defined by a potential function so that φ−∇≡V  z w yx u ∂ φ∂ −= ∂ φ∂ −=υ ∂ φ∂ −= z V r V r V zr ∂ φ∂ −= θ∂ φ∂ −= ∂ φ∂ −= θ 1
  • 7. Stream Function and Velocity Potential For a two-dimensional, incompressible, irrotational flow, the velocity field can be expressed in terms of both ψ and φ. xy u ∂ ψ∂ −=υ ∂ ψ∂ = yx u ∂ φ∂ −=υ ∂ φ∂ −= According to the irrotationality condition, 0= ∂ ∂ − ∂ υ∂ y u x 02 2 2 2 = ∂ ψ∂ + ∂ ψ∂ yx According to the continuity equation, 0= ∂ υ∂ + ∂ ∂ yx u 02 2 2 2 = ∂ φ∂ + ∂ φ∂ yx } Laplace’s equation Solution of Laplace’s equation represents a possible 2- D, incompressible, irrotational flow field.
  • 8. Slope of Velocity Potential Line Along a line of constant φ, dφ=0 and 0= ∂ φ∂ + ∂ φ∂ =φ dy y dx x d The slope of a line of constant φ is given by υ −= ∂φ∂ ∂φ∂ −=   φ u y x dx dy uuy x dx dy υ = υ− −= ∂ψ∂ ∂ψ∂ −=   ψ 1−= υ × υ −=   ×   ψφ u u dx dy dx dy The slope of a line of constant ψ is given by Lines of constant ψ and constant φ are orthogonal.
  • 9. Example: Determine the Velocity Potential Line of a Flow The flow streamline function is .2axy=ψ       ∂ ψ∂ ∂ ∂ −      ∂ ψ∂ − ∂ ∂ = ∂ ∂ − ∂ υ∂ =ω yyxxy u x z2 ( ) ( ) 022 = ∂ ∂ −− ∂ ∂ = ax y ay x ay x ax y u 22 −= ∂ ψ∂ −=υ= ∂ ψ∂ = The flow is irrotational. In term of velocity potential, the velocity components are ay y ax x u 22 −= ∂ φ∂ −=υ= ∂ φ∂ −= ( ) ( ) 2 22 22 caxxgax dx dg uxgayay y +−=⇒=−=⇒+=φ⇒−= ∂ φ∂ −=υ ( ) ( ) 1 22 22 cayyfay dy df yfaxax x u +=⇒−=−=υ⇒+−=φ⇒= ∂ φ∂ −= caxay +−=φ 22
  • 10. Elementary Plane Flows Uniform Flow 3c=ψ 2c=ψ 1c=ψ 0=ψ 1c−=ψ 2c−=ψ 3c−=ψ =φ 3k 2k 1k 0 1k− 2k− 3k− U x y x y Uu = 0=υ Uy=ψ U y u = ∂ ψ∂ = 0= ∂ ψ∂ −=υ x Ux−=φ U x u = ∂ φ∂ −= 0= ∂ φ∂ −=υ y Γ=0 around any closed curve
  • 11. Inclined uniform flow =φ 3k 2k 1k 0 1k− 2k− 3k− x yα= cosVu α=υ sinV ( ) ( )xVyV α−α=ψ sincos α= ∂ ψ∂ = cosV y u α= ∂ ψ∂ −=υ sinV x ( ) ( )xVyV α−α−=φ cossin α= ∂ φ∂ −= cosV x u α= ∂ φ∂ −=υ sinV y V x y α 0 3c 2c 1c 1c− 2c− 3c− =ψ Γ=0 around any closed curve
  • 14. Irrotational Vortex x y 3c−=ψ 2c−=ψ 1c−=ψ 4c−=ψ 3k−=φ 2k−=φ 1k−=φ 0=φ4k−=φ 5k−=φ 6k−=φ 7k−=φ x y r K V π =θ 2 0=rV θ π −=φ 2 K r K ln 2π −=ψ Origin is singular point K: strength of the vortex Γ=K around any closed curve enclosing origin Γ=0 around any closed curve not enclosing origin
  • 15. Doublet 3c−=ψ 2c−=ψ 1c−=ψ 0=ψ 1c=ψ 2c=ψ 3c=ψ 2k=φ 1k=φ 1k−=φ 2k−=φ x y x y θ Λ −=θ sin2 r Vθ Λ −= cos2 r Vr r θΛ −=φ cos r θΛ −=ψ sin Origin is singular point Λ: strength of the doublet Γ=0 around any closed curve
  • 16. Superposition of Elementary Plane Flows ∀ φ and ψ satisfy Laplace’s equation. • Laplace’s equation is linear and homogeneous. • Solutions of Laplace’s equation may be added together (superposed) to develop more complex flow patterns. • If ψ1 and ψ2 satisfy Laplace’s equation, so does ψ3 = ψ1 + ψ2 . • Any streamline contour can be imagined to represent a solid surface (there is no flow across a streamline).
  • 17. Source + Uniform Flow θ+θ π =+θ π =ψ+ψ=ψ sin 22 flowuniformsource Ur q Uy q θ− π −=− π −=φ+φ=φ cosln 2 ln 2 flowuniformsource Urr q Uxr q x y U Stagnation point Flow past a half body Solid surface formed by two streamlines
  • 18. Source + Sink Flow ( )2121sinksource 222 θ−θ π =θ π −θ π =ψ+ψ=ψ qqq 1 2 21sinksource ln 2 ln 2 ln 2 r rq r q r q π = π + π −=φ+φ=φ Source and sink with equal strength, origin separated 2a apart
  • 19. Source + Sink+Uniform Flow ( ) θ+θ−θ π =+θ π −θ π =ψ+ψ=ψ sin 222 2121flowuniformsource Ur q Uy qq θ− π =− π + π −=φ+φ=φ cosln 2 ln 2 ln 2 1 2 21flowuniformsource Ur r rq Uxr q r q x y U Stagnation point (Flow past a Rankine body) Solid surface formed by two streamlines Stagnation point
  • 20. Doublet+Uniform Flow       Λ −θ=θ+ θΛ −=+ θΛ −=ψ+ψ=ψ 2flowuniformdoublet 1sinsin sinsin r U UrUr r Uy r       Λ +θ−=θ− θΛ −=− θΛ −=φ+φ=φ 2flowuniformdoublet 1coscos coscos r U UrUr r Ux r U Stagnation point Flow past a cylinder Solid surface formed by two streamlines Stagnation point a U a Λ =
  • 23. Vortex Pair 1 2 21vortex2vortex1 ln 2 ln 2 ln 2 r rK r K r K π = π + π −=ψ+ψ=ψ ( )1221vortex2vortex1 222 θ−θ π =θ π +θ π −=φ+φ=φ KKK
  • 24. Example: Flow past a cylinder       Λ −θ=ψ+ψ=ψ 2flowuniformdoublet 1sin r U Ur       Λ +θ−=φ+φ=φ 2flowuniformdoublet 1cos r U Ur U Stagnation point (a,π) Stagnation point (a,0) a U a Λ =       −θ=            +θ ∂ ∂ = ∂ φ∂ −= 2 2 2 2 1cos1cos r a U r a Ur rr Vr       +θ−=            +θ θ∂ ∂ −= θ∂ φ∂ −=θ 2 2 2 2 1sin1cos 11 r a U r a Ur rr V
  • 25. Example: Flow past a cylinder- pressure distribution on the surface U a U a Λ =       −θ= 2 2 1cos r a UVr       +θ−=θ 2 2 1sin r a UV ∞p gz V pgz U p ++=++∞ 22 22 ] ] θ=+= =θ= 22222 sin4UVVV arrar = 0 ( ) ( ) ( )θ−ρ=θ−ρ=−ρ=− ∞ 2222222 sin41 2 1 sin4 2 1 2 1 UUUVUpp θ−= ρ − ∞ 2 2 sin41 2 1 U pp
  • 26. Pressure distribution on the surface of the cylinder 2 2 1 U pp ρ − ∞ θ θ−= ρ − ∞ 2 2 sin41 2 1 U pp
  • 27. Pressure drag force acting on the cylinder U ∞p ApdFd  = a       − ρ += ∞ 2 22 1 2 U VU pp ] ( )∫ π ∞ θθ      θ−ρ+−= 2 0 22 pressure cossin41 2 1 dabUpF Drag  ] ππ π ∞    θρ+   θρ−θ−= 2 0 32 2 0 22 0 sin 3 4 2 1 sin 2 1 sin abUabUabp 0= θ ] ( ) ∫∫ π θθ−=θ−= 2 0 pressure coscos dpabpdAF ADrag 
  • 28. Lift force acting on the cylinder U ∞p ApdFd  = a ] ( ) ∫∫ π θθ−=θ−= 2 0 pressure sinsin dpabpdAF ALift  ] ( )∫ π ∞ θθ      θ−ρ+−= 2 0 22 pressure sinsin41 2 1 dabUpF Drag  ] ππ π ∞          θ− θ ρ+   θρ+θ= 2 0 3 2 2 0 22 0 cos4 3 cos4 2 1 cos 2 1 cos abUabUabp 0= θ
  • 29. Example: Flow past a cylinder with circulation r K r a Ur ln 2 1sin 2 2 flowuniformvortexdoublet π +      −θ=ψ+ψ+ψ=ψ θ π +      +θ−=φ+φ+φ=φ 2 1cos 2 2 flowuniformvortexdoublet K r a Ur a U a Λ = UaUK Λπ=π< 44       −θ−= ∂ φ∂ −= 2 2 1cos r a U r Vr r K r a U r V π −      +θ−= θ∂ φ∂ −=θ 2 1sin 1 2 2 Stagnation points ] a K UV ar π −θ−==θ 2 sin2 4 sinandat0 1-       π =θ==θ Ua K arV
  • 30. Flow past a cylinder with circulation - Surface pressure distribution a U a Λ = UaUK Λπ=π< 44 ] a K UV ar π −θ−==θ 2 sin2 ] ( )] 2 222 2 sin2       π −θ−=+= =θ= a K UVVV arrar ] 01cos 2 2 =      −θ−== a a UV arr       − ρ += ∞ 2 22 1 2 U VU pp 2 2 2 2 2 sin 2 sin4       π +θ π +θ= Ua K Ua K U V               π −θ π −θ− ρ += ∞ 2 2 2 2 sin 2 sin41 2 Ua K Ua KU pp
  • 31. Pressure distribution on the surface of the cylinder 2 2 1 U pp ρ − ∞ θ aUK π= aUK π= 2 aUK π= 3               π −θ π −θ− ρ += ∞ 2 2 2 2 sin 2 sin41 2 Ua K Ua KU pp
  • 32. Pressure drag force acting on the cylinder ∞p       − ρ += ∞ 2 22 1 2 U VU pp ] ∫ π ∞ θθ                       π −θ π −θ−ρ+−= 2 0 2 22 pressure cos 2 sin 2 sin41 2 1 dab aU K aU K UpF Drag  ApdFd  = θ ] ( ) ∫∫ π θθ−=θ−= 2 0 pressure coscos dpabpdAF ADrag  a ( )∫ π ∞ θθ      θ−ρ+−= 2 0 22 cossin41 2 1 dabUp ∫ π θθ               π +θ π ρ+ 2 0 2 2 cos 2 sin 2 2 1 dab Ua K Ua K U 0= 0sin 22 sin2 2 0 22 =         θ      π + θ π = π ab Ua K Ua Kab
  • 33. Lift force acting on the cylinder ∞p       − ρ += ∞ 2 22 1 2 U VU pp ] ∫ π ∞ θθ                       π −θ π −θ−ρ+−= 2 0 2 22 pressure sin 2 sin 2 sin41 2 1 dab aU K aU K UpF Lift  ApdFd  = θ ] ( ) ∫∫ π θθ−=θ−= 2 0 pressure sinsin dpabpdAF ALift  a ( )∫ π ∞ θθ      θ−ρ+−= 2 0 22 sinsin41 2 1 dabUp ∫ π θθ               π +θ π ρ+ 2 0 2 2 sin 2 sin 2 2 1 dab Ua K Ua K U 0=      ρ =      π π ρ =         θ      π +      θ − θ π = π b U KU b U KU ab Ua K Ua Kab 2 22 2 2 cos 24 sin 2 2 22 2 0 22
  • 34. Circulation around on the cylinder ∞p ( ) ∫∫∫ π θθθ π θ π θθθ ⋅θ+⋅θ=θ⋅+=Γ 2 0 2 0 2 0 ˆˆˆˆˆˆˆ eerdVeerdVerdeVeV rrrrr ∫ ⋅≡Γ sdV  a ∫ π θ      π −θ−= 2 0 2 sin2 rd Ur K U 0= r K UV π −θ−=θ 2 sin2       −θ−= 2 2 1cos r a UVr ] K K Ur −=  θ π −θ= π π 2 0 2 0 2 cos2       ρ= U K U b FLift 2 2 1 2 Γρ−=ρ= UUK
  • 35. Home work: 6.51, 6.66, 6.76, 6.93, 6.96, 6.98