SlideShare a Scribd company logo
F:Elementscable programscable ampacity calculation IEC.docx Page 1
1 SCOPE AND DEFINITIONS
The scope of the attached calculations is to determine the required cables sizes based on the
project standards and design criteria.
Design Criteria.
Following design criteria is used for the settings sheet.
Maximum Operating Conductor temperatures with Insulation:
1.1 Thermoplastic (PVC) = 75°C
1.2 Thermoset (XLPE or EPR) = 90°C
1.3 Cable Voltage Rating = 1 kV (Um = 1.2 kV)
F:Elementscable programscable ampacity calculation IEC.docx Page 2
2 CABLE AMPACITY
2.1 Conductor Ampacity Selection
The cable ampacities are based as follows;
PVC insulation, copper conductors –Conductor temperature: 70 °C, reference ambient
temperature: 30 °C
Current-carrying capacities in amperes
for installation methods–XLPE or EPR insulation, copper conductors –Conductor
temperature: 90 °C, reference ambient temperature: 30 °C
MM2
AIR
PVC
XLPE-)
3-1/C
(1.5-16MM2)
&
(25-400MM2)]
1-3/C
3-1/C
(1.5-16MM2)
&
(25-400MM2)]
1-3/C
2.5 25 25 32 32
4 34 34 42 42
6 43 43 54 54
10 60 60 75 75
16 80 80 100 100
25 110 101 135 127
35 137 126 169 158
50 167 153 207 192
70 216 196 268 246
95 264 238 328 298
120 308 276 383 346
150 356 319 444 399
185 409 364 510 456
240 485 430 607 538
300 561 497 703 621
400 600 600 823 823
F:Elementscable programscable ampacity calculation IEC.docx Page 3
Current-carrying capacities in amperes for methods of installation
PVC insulation, three loaded conductors/copper or aluminium –Conductor temperature: 70 °C, ambient
temperature: 30 °C in air, 20 °C in ground.
Current-carrying capacities in amperes for methods of installation
XLPE or EPR insulation, three loaded conductors/copper or aluminium – Conductor temperature: 90 °C,
ambient temperature: 30 °C in air, 20 °C in ground
MM2
DB
PVC- XLPE-
1-3/C-DB-COND
1-3/C -DB-
CABLE
1-3/C-DB-
COND
1-3/C -DB-
CABLE
2.5 24 24 28 30
4 30 33 36 39
6 38 41 44 49
10 50 54 58 65
16 64 70 75 84
25 82 92 96 107
35 98 110 115 129
50 116 130 135 153
70 143 162 167 188
95 169 193 197 226
120 192 220 223 257
150 217 246 251 287
185 243 278 281 324
240 280 320 324 375
300 316 359 365 419
400 400 400 400 500
F:Elementscable programscable ampacity calculation IEC.docx Page 4
2.2 Conductor Ampacity and Temperature de-rating factor (TDF)
Correction factor for ambient air temperatures other than 30 °C to be applied to the current-
carrying capacities for cables in the air.
AIR AMB TEMP
PVC-AIR-AMB-deg-C-10 1.22
PVC-AIR-AMB-deg-C-15 1.17
PVC-AIR-AMB-deg-C-20 1.12
PVC-AIR-AMB-deg-C-25 1.08
PVC-AIR-AMB-deg-C-30 1
PVC-AIR-AMB-deg-C-35 0.94
PVC-AIR-AMB-deg-C-40 0.87
PVC-AIR-AMB-deg-C-45 0.79
PVC-AIR-AMB-deg-C-50 0.71
PVC-AIR-AMB-deg-C-55 0.61
PVC-AIR-AMB-deg-C-60 0.5
XLPE-AIR-AMB-deg-C-10 1.15
XLPE-AIR-AMB-deg-C-15 1.12
XLPE-AIR-AMB-deg-C-20 1.08
XLPE-AIR-AMB-deg-C-25 1.04
XLPE-AIR-AMB-deg-C-30 1
XLPE-AIR-AMB-deg-C-35 0.96
XLPE-AIR-AMB-deg-C-40 0.91
XLPE-AIR-AMB-deg-C-45 0.87
XLPE-AIR-AMB-deg-C-50 0.82
XLPE-AIR-AMB-deg-C-55 0.76
XLPE-AIR-AMB-deg-C-60 0.71
F:Elementscable programscable ampacity calculation IEC.docx Page 5
Correction factors for ambient ground temperatures other than 20 °C to be applied to the current-
carrying capacities for cables in ducts in the ground.
GR AMB TEMP
PVC-GR-AMB-deg-C-10 1.1
PVC-GR-AMB-deg-C-15 1.05
PVC-GR-AMB-deg-C-20 1
PVC-GR-AMB-deg-C-25 0.95
PVC-GR-AMB-deg-C-30 0.89
PVC-GR-AMB-deg-C-35 0.84
PVC-GR-AMB-deg-C-40 0.77
PVC-GR-AMB-deg-C-45 0.71
PVC-GR-AMB-deg-C-50 0.63
PVC-GR-AMB-deg-C-55 0.55
PVC-GR-AMB-deg-C-60 0.45
XLPE-GR-AMB-deg-C-10 1.07
XLPE-GR-AMB-deg-C-15 1.04
XLPE-GR-AMB-deg-C-20 1
XLPE-GR-AMB-deg-C-25 0.98
XLPE-GR-AMB-deg-C-30 0.93
XLPE-GR-AMB-deg-C-35 0.89
XLPE-GR-AMB-deg-C-40 0.85
XLPE-GR-AMB-deg-C-45 0.8
XLPE-GR-AMB-deg-C-50 0.76
XLPE-GR-AMB-deg-C-55 0.71
XLPE-GR-AMB-deg-C-60 0.65
XLPE-GR-AMB-deg-C-65 0.6
XLPE-GR-AMB-deg-C-70 0.53
XLPE-GR-AMB-deg-C-75 0.46
XLPE-GR-AMB-deg-C-80 0.38
F:Elementscable programscable ampacity calculation IEC.docx Page 6
Correction factors for cables buried direct in the ground or in buried ducts for soil thermal
resistivities other than 2,5 K·m/W to be applied to the current-carrying capacities
soil thermal resistivity
Thermal Resistivity-K*m/W-1(DB) 1.5
Thermal Resistivity-K*m/W-1.5(DB) 1.25
Thermal Resistivity-K*m/W-2(DB) 1.12
Thermal Resistivity-K*m/W-2.5(DB) 1
Thermal Resistivity-K*m/W-3(DB) 0.9
Thermal Resistivity-K*m/W-1(DUCT) 1.18
Thermal Resistivity-K*m/W-1.5(DUCT) 1.1
Thermal Resistivity-K*m/W-2(DUCT) 1.05
Thermal Resistivity-K*m/W-2.5(DUCT) 1
Thermal Resistivity-K*m/W-3(DUCT) 0.96
F:Elementscable programscable ampacity calculation IEC.docx Page 7
Reduction factors for more than one circuit, cables laid directly in the ground –
Installation method – Single-core or multi-core cables.
DB-1/C OR 3/C
DB-Touching-Circuit-1 1
DB-Touching-Circuit-2 0.75
DB-Touching-Circuit-3 0.65
DB-Touching-Circuit-4 0.6
DB-Touching-Circuit-5 0.55
DB-Touching-Circuit-6 0.5
DB-One Dia apart-Circuit-1 1
DB-One Dia apart-Circuit-2 0.8
DB-One Dia apart-Circuit-3 0.7
DB-One Dia apart-Circuit-4 0.6
DB-One Dia apart-Circuit-5 0.55
DB-One Dia apart-Circuit-6 0.55
DB-0.125-m - apart-Circuit-1 1
DB-0.125-m - apart-Circuit-2 0.85
DB-0.125-m - apart-Circuit-3 0.75
DB-0.125-m - apart-Circuit-4 0.7
DB-0.125-m - apart-Circuit-5 0.65
DB-0.125-m - apart-Circuit-6 0.6
DB-0.25-m - apart-Circuit-1 1
DB-0.25-m - apart-Circuit-2 0.9
DB-0.25-m - apart-Circuit-3 0.8
DB-0.25-m - apart-Circuit-4 0.75
DB-0.25-m - apart-Circuit-5 0.7
DB-0.25-m - apart-Circuit-6 0.7
DB-0.5-m - apart-Circuit-1 1
DB-0.5-m - apart-Circuit-2 0.9
DB-0.5-m - apart-Circuit-3 0.85
DB-0.5-m - apart-Circuit-4 0.8
DB-0.5-m - apart-Circuit-5 0.8
DB-0.5-m - apart-Circuit-6 0.8
F:Elementscable programscable ampacity calculation IEC.docx Page 8
Reduction factors for group of more than one multi-core cable to be applied to reference current-
carrying capacities for multi-core cables in free air –
Reduction factors for group of more than one
multi-core cable
to be applied to reference current-carrying
capacities for multi-core cables in free air –
Ladder Tary-multi-layer-Circuit-1 1
Ladder Tary-multi-layer-Circuit-2 0.8
Ladder Tary-multi-layer-Circuit-3 0.7
Ladder Tary-multi-layer-Circuit-4 0.65
Ladder Tary-multi-layer-Circuit-5 0.6
Ladder Tary-multi-layer-Circuit-6 0.57
Ladder Tary-multi-layer-Circuit-7 0.54
Ladder Tary-multi-layer-Circuit-8 0.52
Ladder Tary-multi-layer-Circuit-9 0.5
Ladder Tary-multi-layer-Circuit-12 0.45
Ladder Tary-multi-layer-Circuit-16 0.41
Ladder Tary-multi-layer-Circuit-20 0.38
Ladder Tary-Single-layer-Circuit-1 1
Ladder Tary-Single-layer-Circuit-2 0.87
Ladder Tary-Single-layer-Circuit-3 0.82
Ladder Tary-Single-layer-Circuit-4 0.8
Ladder Tary-Single-layer-Circuit-5 0.8
Ladder Tary-Single-layer-Circuit-6 0.79
Ladder Tary-Single-layer-Circuit-7 0.79
Ladder Tary-Single-layer-Circuit-8 0.78
Ladder Tary-Single-layer-Circuit-9 0.78
F:Elementscable programscable ampacity calculation IEC.docx Page 9
3 CABLE IMPEDANCE CALCULATIONS
3.1 Conductor Resistivity
The Resistivity is defined as the electrical resistance of a body of unit length, and
unit cross-sectional area or unit weight.
Volume Resistivity is commonly expressed in ohms for a theoretical conductor of
unit length and cross-sectional area, in inch-pound units in Ω ·cmil / ft and in
acceptable metric units in Ω·mm2/m. It may be calculated by the following equation:
 Where: = ρ = Volume resistivity, Ω·cmil / ft,
 A = cross-sectional area, cmil,
 L = gauge length, used to determine R, ft
 R = measured resistance.
 In Accordance with ASTM- B-193, Table 2
 Volume resistivity for Copper, Ω·cmil/ft or Ω·mm2/m = 10.371

A
L




R
F:Elementscable programscable ampacity calculation IEC.docx Page 10
3.2 Temperature Correction
The measurement is made at any other than a reference temperature; the
resistance may be corrected for moderate temperature differences to what it would
be at the reference temperature, as follows:
Where:
 Rt = resistance at reference temperature T2,
 R = resistance as measured at temperature T1,
 Alpha T = known or given temperature coefficient of
resistance
 of the specimen being measured at reference temperature T,
 T2 = reference temperature, and
 T1 = temperature at which measurement is made.
NOTE 1—The parameter AlphaT, in the above equation, varies with
conductivity and temperature. For copper of 100 % conductivity and a reference
temperature of 20°C, its value is 0.00393.
Rt R 1  T2 T1 
F:Elementscable programscable ampacity calculation IEC.docx Page 11
3.3 Resistance of stranded conductors Correction.
3.3.1 DC RESISTANCE @ 70 DEG C OR 90 DEG C
CALCULATE
CALCULATE
STRANDING
FACTOR
CALCULATE CALCULATE
Nominal
Cross
Section
Area
Nominal
CONDUCTOR
Diameter
Minimum
Number
of
Wires in
Conductor
Nominal
Stranded
CONDUCTOR
Diameter
Maximum
Resistance of
Conductor at
20 deg C
Annealed
Copper
Conductor Plain
Wires
Ώ / km
Resistance
at= t Deg C
temperature
IEC-60228-
Annex B
mm2
d=(4/pi*A)^.5
= mm
Circular
Cu
d x str-factor =
Mm
Rdc-t=
[1+0.00393
(t-20)]*
Rdc-20
Ώ/1000
meter =90
0.5 0.798 7 1.134 0.905 36 45.904
0.75 0.977 7 1.134 1.108 24.5 31.240
1 1.128 7 1.134 1.279 18.1 23.079
1.5 1.382 7 1.134 1.567 12.1 15.429
2.5 1.784 7 1.134 2.023 7.41 9.448
4 2.257 7 1.134 2.559 4.61 5.878
6 2.764 7 1.134 3.134 3.08 3.927
10 3.568 7 1.134 4.046 1.83 2.333
16 4.513 7 1.134 5.118 1.15 1.466
25 5.642 7 1.134 6.397 0.727 0.927
35 6.675 7 1.134 7.569 0.524 0.668
50 7.978 19 1.147 9.152 0.387 0.493
70 9.440 19 1.147 10.829 0.268 0.342
95 10.997 19 1.147 12.615 0.193 0.246
120 12.360 37 1.151 14.224 0.153 0.195
150 13.819 37 1.151 15.903 0.124 0.158
185 15.347 37 1.151 17.661 0.0991 0.126
240 17.480 37 1.151 20.115 0.0754 0.096
300 19.543 61 1.152 22.520 0.0601 0.077
400 22.566 61 1.152 26.004 0.047 0.060
500 25.230 61 1.152 29.073 0.0366 0.047
630 28.320 91 1.153 32.656 0.0283 0.036
800 31.913 91 1.153 36.800 0.0221 0.028
1000 35.680 91 1.153 41.143 0.0176 0.022
F:Elementscable programscable ampacity calculation IEC.docx Page 12
3.3.2 CALCULATE CABLE SPACING BASED ON INSULATION THICKNESS “PVC,
XLPE, EPR”.
Nominal
Cross
Section
Area
Nominal
Thickness
of PVC
Insulation
Nominal
Thickness
of XLPE
Insulation
Nominal
Thickness
of EPR
Insulation
fictitious
diameter
Dc of
single
core
PVC
cable
fictitious
diameter
Dc of
single
core
XLPE
cable
fictitious
diameter
Dc of
single
core
EPR
cable
Diameter
overlaid up
cores
Reduced
Neutral
Size
mm2
0.6/1
(1.2)
kV
mm
0.6/1
(1.2)
kV
mm
0.6/1
(1.2)
kV
mm
Dc=
dL+2 * ti
=mm
Dc=
dL+2 *
ti=mm
Dc=
dL+2 *
ti=mm Df=kDc=mm mm 2
0.5 0.6 0.7 1 2.105 2.305 2.905 1 0.5
0.75 0.6 0.7 1 2.308 2.508 3.108 1 0.75
1 0.6 0.7 1 2.479 2.679 3.279 1 1
1.5 0.6 0.7 1 2.767 2.967 3.567 1 1.5
2.5 0.6 0.7 1 3.223 3.423 4.023 1 2.5
4 1 0.7 1 4.559 3.959 4.559 1 4
6 1 0.7 1 5.134 4.534 5.134 1 6
10 1 0.7 1 6.046 5.446 6.046 1 10
16 1 0.7 1 7.118 6.518 7.118 1 16
25 1.2 0.9 1.2 8.797 8.197 8.797 1 16
35 1.2 0.9 1.2 9.969 9.369 9.969 1 16
50 1.4 1 1.4 11.952 11.152 11.952 1 25
70 1.4 1.1 1.4 13.629 13.029 13.629 1 35
95 1.6 1.1 1.6 15.815 14.815 15.815 1 50
120 1.6 1.2 1.6 17.424 16.624 17.424 1 70
150 1.8 1.4 1.8 19.503 18.703 19.503 1 95
185 2 1.6 2 21.661 20.861 21.661 1 95
240 2.2 1.7 2.2 24.515 23.515 24.515 1 120
300 2.4 1.8 2.4 27.320 26.120 27.320 1 150
400 2.6 2 2.6 31.204 30.004 31.204 1 240
F:Elementscable programscable ampacity calculation IEC.docx Page 13
3.3.3 CALCULATE CABLE SPACING BASED ON INSULATION THICKNESS “PVC,
XLPE, EPR”.
CALCULATE CALCULATE CALCULATE CALCULATE
Nominal
Cross
Section
Area
3-cond,
k=2.16
PVC
Reduced
Neutral Size
PVC
3-1/2-cond,
PVC
4-cond,
k=2.42
PVC
Df=kDc
Dc=
dL+2 * ti
Df=2.42 (3
Dc1+Dc2)/4 Df=kDc
mm2 3-cond-PVC mm-PVC
3-1/2-cond-
PVC 4-cond-PVC
0.5 4.55 1.00 4.42 5.58
0.75 4.99 1.00 4.79 6.07
1 5.36 1.00 5.11 6.48
1.5 5.98 1.00 5.63 7.18
2.5 6.96 1.00 6.45 8.28
4 9.85 1.00 8.88 9.58
6 11.09 1.00 9.92 10.97
10 13.06 1.00 11.58 13.18
16 15.37 1.00 13.52 15.77
25 19.00 1.00 16.57 19.84
35 21.53 1.00 18.70 22.67
50 25.82 1.20 22.42 26.99
70 29.44 1.20 25.46 31.53
95 34.16 1.40 29.55 35.85
120 37.64 1.40 32.47 40.23
150 42.13 1.60 36.37 45.26
185 46.79 1.60 40.28 50.48
240 52.95 1.60 45.46 56.91
300 59.01 1.80 50.67 63.21
400 67.40 2.20 57.97 72.61
F:Elementscable programscable ampacity calculation IEC.docx Page 14
3.3.4 CALCULATE CABLE SPACING BASED ON INSULATION THICKNESS “PVC,
XLPE, EPR”.
CALCULATE CALCULATE CALCULATE CALCULATE
Nominal
Cross
Section
Area
3-cond,
k=2.16
XLPE
Reduced
Neutral Size
XLPE
3-1/2-cond,
XLPE
4-cond,
k=2.42
XLPE
Df=kDc
Dc=
dL+2 * ti
Df=2.42 (3
Dc1+Dc2)/4 Df=kDc
mm2
3-cond-
XLPE mm XLPE
3-1/2-cond-
XLPE
4-cond-
XLPE
0.5 4.98 2.10 5.46 5.58
0.75 5.42 2.31 5.95 6.07
1 5.79 2.48 6.36 6.48
1.5 6.41 2.77 7.06 7.18
2.5 7.39 3.22 8.16 8.28
4 8.55 4.56 9.94 9.58
6 9.79 5.13 11.33 10.97
10 11.76 6.05 13.54 13.18
16 14.08 7.12 16.14 15.77
25 17.71 7.12 19.18 19.84
35 20.24 7.12 21.31 22.67
50 24.09 8.80 25.56 26.99
70 28.14 9.97 29.68 31.53
95 32.00 11.95 34.12 35.85
120 35.91 13.63 38.42 40.23
150 40.40 15.81 43.51 45.26
185 45.06 15.81 47.43 50.48
240 50.79 17.42 53.22 56.91
300 56.42 19.50 59.21 63.21
400 64.81 24.52 69.29 72.61
F:Elementscable programscable ampacity calculation IEC.docx Page 15
3.3.5 CALCULATE CABLE SPACING BASED ON INSULATION THICKNESS “PVC,
XLPE, EPR”.
CALCULATE CALCULATE CALCULATE CALCULATE
Nominal
Cross
Section
Area
3-cond,
k=2.16
EPR
Reduced
Neutral Size
EPR
3-1/2-cond,
EPR
4-cond, k=2.42
EPR
Df=kDc
Dc=
dL+2 * ti
Df=2.42 (3
Dc1+Dc2)/4 Df=kDc
mm2 3-cond-EPR mm EPR
3-1/2-cond-
EPR 4-cond-EPR
0.5 6.27 2.305 6.67 7.029
0.75 6.71 2.508 7.16 7.521
1 7.08 2.679 7.57 7.936
1.5 7.70 2.967 8.27 8.632
2.5 8.69 3.423 9.37 9.735
4 9.85 3.959 10.67 11.032
6 11.09 4.534 12.06 12.424
10 13.06 5.446 14.27 14.631
16 15.37 6.518 16.86 17.224
25 19.00 6.518 19.91 21.288
35 21.53 6.518 22.04 24.125
50 25.82 8.197 26.65 28.923
70 29.44 9.369 30.40 32.981
95 34.16 11.152 35.45 38.272
120 37.64 13.029 39.51 42.166
150 42.13 14.815 44.36 47.196
185 46.79 14.815 48.28 52.419
240 52.95 16.624 54.55 59.327
300 59.01 18.703 60.90 66.114
400 67.40 23.515 70.86 75.513
F:Elementscable programscable ampacity calculation IEC.docx Page 16
AC-RESISTANCE OF CONDUCTOR
Nominal
Cross
Section
Area R=R' (1+ys+yp)
ys=xs^4 / (192+0.8 . xs^4)
xs^2= 8.pi.f.(10^-7) ks /R'
ks=1
yp=xp^4*(dc/s)^2 0. 2.9/(192+xp^4)
xp^2=8.pi*f.10^-7 .lp /R'
kp=1
mm2 xs^2=
ys=xs^4 /
(192+0.8 .
xs^4)
xp^2=
yp=xp^4*(dc/s)^2.0.
2.9
/(192+xp^4)
R=R'
(1+ys+yp)
0.5 2.738E-06 6.510E-03 2.738E-06 2.091E-14 4.620E+01
0.75 4.023E-06 6.510E-03 4.023E-06 5.632E-14 3.144E+01
1 5.445E-06 6.510E-03 5.445E-06 1.192E-13 2.323E+01
1.5 8.145E-06 6.510E-03 8.145E-06 3.213E-13 1.553E+01
2.5 1.330E-05 6.510E-03 1.330E-05 1.053E-12 9.510E+00
4 2.138E-05 6.510E-03 2.138E-05 2.175E-12 5.916E+00
6 3.200E-05 6.510E-03 3.200E-05 5.762E-12 3.953E+00
10 5.385E-05 6.510E-03 5.385E-05 1.962E-11 2.349E+00
16 8.570E-05 6.510E-03 8.570E-05 5.734E-11 1.476E+00
25 1.356E-04 6.510E-03 1.356E-04 1.468E-10 9.330E-01
35 1.881E-04 6.510E-03 1.881E-04 3.080E-10 6.725E-01
50 2.547E-04 6.510E-03 2.547E-04 5.743E-10 4.967E-01
70 3.677E-04 6.510E-03 3.677E-04 1.289E-09 3.440E-01
95 5.106E-04 6.510E-03 5.106E-04 2.506E-09 2.477E-01
120 6.441E-04 6.510E-03 6.441E-04 4.176E-09 1.964E-01
150 7.948E-04 6.510E-03 7.948E-04 6.344E-09 1.591E-01
185 9.945E-04 6.510E-03 9.945E-04 9.930E-09 1.272E-01
240 1.307E-03 6.510E-03 1.307E-03 1.737E-08 9.677E-02
300 1.640E-03 6.510E-03 1.640E-03 2.760E-08 7.713E-02
400 2.097E-03 6.510E-03 2.097E-03 4.612E-08 6.032E-02
F:Elementscable programscable ampacity calculation IEC.docx Page 17
Inductance Inductance - Inductance -
Nominal
Cross
Section
Area
PVC
Insulated
L=K+0.2
Log e (2S
/d)
mH/km
PVC
Insulated
X=2pif*L
Ώ/km
XLPE
Insulated
L=K+0.2
Log e (2S
/d)
mH/km
XLPE
Insulated
X=2pif*L
Ώ/km
EPR
Insulated
L=K+0.2
Log e (2S /d)
mH/km
EPR
Insulated
X=2pif*L
Ώ/km
Typical Values for
Constant (K) for
different Stranded
Conductors (50 Hz)
n=3, K=0.0778
n=7, K=0.0642
n=19, K=0.0554
n=37, K=0.0528
n=61, K=0.0514
Typical Values for
Constant (K) for
different Stranded
Conductors (50 Hz)
n=3, K=0.0778
n=7, K=0.0642
n=19, K=0.0554
n=37, K=0.0528
n=61, K=0.0514
Typical Values for Constant
(K) for
different Stranded
Conductors (50 Hz)
n=3, K=0.0778
n=7, K=0.0642
n=19, K=0.0554
n=37, K=0.0528
n=61, K=0.0514mm2
0.5 0.2330703 0.0732212 0.2512262 0.078925 0.297502883 0.093463287
0.75 0.2109673 0.0662773 0.2275884 0.071499 0.270487529 0.084976163
1 0.1965267 0.0617407 0.2120421 0.066615 0.252455876 0.079311353
1.5 0.177925 0.0558968 0.1918829 0.0602818 0.228718644 0.071854081
2.5 0.1573508 0.0494332 0.1693922 0.0532161 0.201695389 0.063364475
4 0.1797057 0.0564562 0.1514817 0.0475894 0.179705662 0.056456199
6 0.1629193 0.0511826 0.1380623 0.0433736 0.162919334 0.051182618
10 0.1445377 0.0454079 0.1236337 0.0388407 0.144537705 0.045407859
16 0.1301779 0.0408966 0.1125648 0.0353633 0.130177935 0.040896604
25 0.1279172 0.0401864 0.1137885 0.0357477 0.12791723 0.040186383
35 0.1192845 0.0374743 0.1068696 0.0335741 0.119284456 0.037474317
50 0.1175864 0.0369409 0.1037302 0.0325878 0.108786415 0.03417626
70 0.1101962 0.0346192 0.1011915 0.0317902 0.10139625 0.031854571
95 0.109415 0.0343737 0.0963511 0.0302696 0.100614953 0.03160912
120 0.1047842 0.0329189 0.0953838 0.0299657 0.093384173 0.029337503
150 0.1050129 0.0329908 0.0966359 0.0303591 0.1050129 0.032990776
185 0.1050314 0.0329966 0.0975049 0.0306321 0.105031372 0.032996579
240 0.1037631 0.0325981 0.0954339 0.0299814 0.103763075 0.032598131
300 0.1028433 0.0323092 0.0938597 0.0294869 0.10284331 0.032309179
400 0.1006596 0.0316232 0.0928164 0.0291591 0.100659619 0.031623152
F:Elementscable programscable ampacity calculation IEC.docx Page 18
3.4 Conductor Reactance
D= Spacing between conductors
D= diameter of wire (2 x radius) + 2 x insulation thickness
r = Radius of conductors.
, the insulation thickness for multiconductor cables with outer coverings is as
follows,
XL 2  f L
L

8 
1 4 ln
D
r







 4  10
7

H
m

F:Elementscable programscable ampacity calculation IEC.docx Page 19
Nominal
Cross
Section
Area
Nominal
Thickness
of PVC
Insulation
Nominal
Thickness
of XLPE
Insulation
Nominal
Thickness
of EPR
Insulation
fictitious
diameter
Dc of
single
core
PVC
cable
fictitious
diameter
Dc of
single
core
XLPE
cable
fictitious
diameter
Dc of
single
core
EPR
cable
Dc=
dL+2 * ti
Dc=
dL+2 * ti
Dc=
dL+2 * ti
mm2
0.6/1
(1.2)
kV
mm
0.6/1
(1.2)
kV
mm
0.6/1
(1.2)
kV
mm mm mm mm
0.5 0.8 0.7 1 2.505 2.305 2.905
0.75 0.8 0.7 1 2.708 2.508 3.108
1 0.8 0.7 1 2.879 2.679 3.279
1.5 0.8 0.7 1 3.167 2.967 3.567
2.5 0.8 0.7 1 3.623 3.423 4.023
4 1 0.7 1 4.559 3.959 4.559
6 1 0.7 1 5.134 4.534 5.134
10 1 0.7 1 6.046 5.446 6.046
16 1 0.7 1 7.118 6.518 7.118
25 1.2 0.9 1.2 8.797 8.197 8.797
35 1.2 0.9 1.2 9.969 9.369 9.969
50 1.4 1 1.4 11.952 11.152 11.952
70 1.4 1.1 1.4 13.629 13.029 13.629
95 1.6 1.1 1.6 15.815 14.815 15.815
120 1.6 1.2 1.6 17.424 16.624 17.424
150 1.8 1.4 1.8 19.503 18.703 19.503
185 2 1.6 2 21.661 20.861 21.661
240 2.2 1.7 2.2 24.515 23.515 24.515
300 2.4 1.8 2.4 27.320 26.120 27.320
400 2.6 2 2.6 31.204 30.004 31.204
500 2.8 2.2 2.8 34.673 33.473 34.673
630 2.8 2.4 2.8 38.256 37.456 38.256
800 2.8 2.6 2.8 42.400 42.000 42.400
1000 3 2.8 3 47.143 46.743 47.143
F:Elementscable programscable ampacity calculation IEC.docx Page 20
4 CABLE VOLTAGE DROP CALCULATIONS.
Permissible Voltage Drop, with respect to Load Power Factor.
Volt drop can be defined as the difference in magnitude of the voltage at the supply
compared to the voltage at the load. This voltage drop is based on the loads power
factor, the cable's internal resistance and reactance, and the cable length.
The three phase voltage drop permitted on the circuit run is calculated using the
following equation.
Vd.3 I L R cos ( ) X sin ( )( 3
Where:
Vd3p = three phase voltage drop, volts (V)
ө = Power factor Angle
I = current flowing in cable, amperes (A)
L = route length of circuit, meters (m)
R = AC resistance of cable, ohm/kilometer (W/km)
X = reactance of cable, ohm/kilometer (W/km)
F:Elementscable programscable ampacity calculation IEC.docx Page 21
5 CABLE SIZING & CURRENT-CARRYING CAPACITY
CALCULATION STEPS
To calculate the current-carrying capacity requirements of a circuit:
STEP-1 Determine the current requirements, based on 1.25 times the FLA
continuous current, of the Loads.
STEP-2 Select the Cable Size based on the De-Rated Ampacity of the
Cable.
STEP-3 Calculate Length x Amp factor for each size of the cable based on
% voltage drop and the circuit power factor, as per the following formula.
STEP-4 Calculate the length of the selected cable based on the FLA of the
circuit.
STEP-4 If the calculated length L is < than the circuit length D, then
calculate Length x Amp FLA x D of the circuit.
STEP-5 Select the cable FLA x D with the matching Length x Amp L X I
factor.
STEP-6 Calculate Length x Amp factor for each size of the cable based on
% voltage drop and the circuit power factor, as per the above formula.
STEP-7 Calculate the Circuit Voltage drop for the length of the circuit.
STEP-8 if the voltage drop exceeds the design criteria then increases the
Cable size to meet the voltage drop.
STEP-9 SELECTS THE CALCULATED CABLE SIZE.
IL 
Vd3
R cos ( ) X sin ( )(
L
Vd3
R cos ( ) X sin ( )( )( I


More Related Content

What's hot

Inplant training about 110kv/11kv substation
Inplant training about 110kv/11kv substationInplant training about 110kv/11kv substation
Inplant training about 110kv/11kv substation
shivashankar307
 
Transformers
TransformersTransformers
Transformers
michaeljmack
 
Protection of transmission lines (distance)
Protection of transmission lines (distance)Protection of transmission lines (distance)
Protection of transmission lines (distance)
Rohini Haridas
 
Tes p-122.03-r0
Tes p-122.03-r0Tes p-122.03-r0
Tes p-122.03-r0
Ibrahim Ali
 
Harmonic analysis procedure
Harmonic analysis procedureHarmonic analysis procedure
Harmonic analysis procedure
srini09
 
Power Electronics Lab Manual ME PED
Power Electronics Lab Manual ME PEDPower Electronics Lab Manual ME PED
Power Electronics Lab Manual ME PED
Dr M Muruganandam Masilamani
 
UNIT - 05 DISTRIBUTION LINES AND TRANSFORMER CENTRE
UNIT - 05 DISTRIBUTION LINES AND TRANSFORMER CENTREUNIT - 05 DISTRIBUTION LINES AND TRANSFORMER CENTRE
UNIT - 05 DISTRIBUTION LINES AND TRANSFORMER CENTRE
PremanandDesai
 
Ipsa mv relay co-ordiantion shaik adam
Ipsa  mv relay  co-ordiantion shaik adamIpsa  mv relay  co-ordiantion shaik adam
Ipsa mv relay co-ordiantion shaik adam
Shaik Abdullah Adam
 
transmission line
transmission line transmission line
transmission line
singh1515
 
SWITCHYARD EQUIPMENTS & PROTECTION SYSTEMS
SWITCHYARD EQUIPMENTS & PROTECTION SYSTEMSSWITCHYARD EQUIPMENTS & PROTECTION SYSTEMS
SWITCHYARD EQUIPMENTS & PROTECTION SYSTEMSPartha Parida
 
Busbar configuarations
Busbar configuarationsBusbar configuarations
Busbar configuarations
Boopathi Thambusamy
 
IEEE substation design
IEEE substation designIEEE substation design
IEEE substation design
Vincent Wedelich, PE MBA
 
220 KV Switchyard general overview
220 KV Switchyard general overview220 KV Switchyard general overview
220 KV Switchyard general overview
Thien Huynh
 
Sld for pmcc
Sld for pmccSld for pmcc
Sld for pmcc
Avneet Monga
 
TDU - Unit 02 - HVDC, FACTS and sub-stations
TDU - Unit  02 - HVDC, FACTS and sub-stations TDU - Unit  02 - HVDC, FACTS and sub-stations
TDU - Unit 02 - HVDC, FACTS and sub-stations
PremanandDesai
 
Technical presentation on protection distance protection
Technical presentation on protection  distance protectionTechnical presentation on protection  distance protection
Technical presentation on protection distance protection
Sujith Mohandas
 
PLC Control Panel for HVACR System
PLC Control Panel for HVACR SystemPLC Control Panel for HVACR System
PLC Control Panel for HVACR SystemMuhammad Sarfraz
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
Forward2025
 
220 66 kv nrs sub report
220 66 kv nrs sub report220 66 kv nrs sub report
220 66 kv nrs sub report
Mayur Dhanaji Rane
 

What's hot (20)

Inplant training about 110kv/11kv substation
Inplant training about 110kv/11kv substationInplant training about 110kv/11kv substation
Inplant training about 110kv/11kv substation
 
Transformers
TransformersTransformers
Transformers
 
Protection of transmission lines (distance)
Protection of transmission lines (distance)Protection of transmission lines (distance)
Protection of transmission lines (distance)
 
Tes p-122.03-r0
Tes p-122.03-r0Tes p-122.03-r0
Tes p-122.03-r0
 
Harmonic analysis procedure
Harmonic analysis procedureHarmonic analysis procedure
Harmonic analysis procedure
 
Power Electronics Lab Manual ME PED
Power Electronics Lab Manual ME PEDPower Electronics Lab Manual ME PED
Power Electronics Lab Manual ME PED
 
UNIT - 05 DISTRIBUTION LINES AND TRANSFORMER CENTRE
UNIT - 05 DISTRIBUTION LINES AND TRANSFORMER CENTREUNIT - 05 DISTRIBUTION LINES AND TRANSFORMER CENTRE
UNIT - 05 DISTRIBUTION LINES AND TRANSFORMER CENTRE
 
Ipsa mv relay co-ordiantion shaik adam
Ipsa  mv relay  co-ordiantion shaik adamIpsa  mv relay  co-ordiantion shaik adam
Ipsa mv relay co-ordiantion shaik adam
 
transmission line
transmission line transmission line
transmission line
 
SWITCHYARD EQUIPMENTS & PROTECTION SYSTEMS
SWITCHYARD EQUIPMENTS & PROTECTION SYSTEMSSWITCHYARD EQUIPMENTS & PROTECTION SYSTEMS
SWITCHYARD EQUIPMENTS & PROTECTION SYSTEMS
 
Busbar configuarations
Busbar configuarationsBusbar configuarations
Busbar configuarations
 
Visio-BMS
Visio-BMSVisio-BMS
Visio-BMS
 
IEEE substation design
IEEE substation designIEEE substation design
IEEE substation design
 
220 KV Switchyard general overview
220 KV Switchyard general overview220 KV Switchyard general overview
220 KV Switchyard general overview
 
Sld for pmcc
Sld for pmccSld for pmcc
Sld for pmcc
 
TDU - Unit 02 - HVDC, FACTS and sub-stations
TDU - Unit  02 - HVDC, FACTS and sub-stations TDU - Unit  02 - HVDC, FACTS and sub-stations
TDU - Unit 02 - HVDC, FACTS and sub-stations
 
Technical presentation on protection distance protection
Technical presentation on protection  distance protectionTechnical presentation on protection  distance protection
Technical presentation on protection distance protection
 
PLC Control Panel for HVACR System
PLC Control Panel for HVACR SystemPLC Control Panel for HVACR System
PLC Control Panel for HVACR System
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
 
220 66 kv nrs sub report
220 66 kv nrs sub report220 66 kv nrs sub report
220 66 kv nrs sub report
 

Viewers also liked

Cesc limited
Cesc limitedCesc limited
Cesc limited
engineeringwatch
 
ESI Electro Service India - Float Cum Battery Charger
ESI Electro Service India - Float Cum Battery ChargerESI Electro Service India - Float Cum Battery Charger
ESI Electro Service India - Float Cum Battery Charger
Radhika Goyal
 
World Wrestling Entertainment (WWE) BRAND analysis
World Wrestling Entertainment (WWE) BRAND analysisWorld Wrestling Entertainment (WWE) BRAND analysis
World Wrestling Entertainment (WWE) BRAND analysis
Regimantas Urbanas
 
WWE from a Strategy Perspective
WWE from a Strategy PerspectiveWWE from a Strategy Perspective
WWE from a Strategy Perspective
Gaurav Mehrotra
 
Project presentation - battery charger 24V/33A
Project presentation - battery charger 24V/33AProject presentation - battery charger 24V/33A
Project presentation - battery charger 24V/33A
Prathamesh Deshpande
 
Ch 18 Electric Fields
Ch 18 Electric FieldsCh 18 Electric Fields
Ch 18 Electric FieldsScott Thomas
 
Analysing Electric Fields and Charge Flow
Analysing Electric Fields and Charge FlowAnalysing Electric Fields and Charge Flow
Analysing Electric Fields and Charge Flow
Tuisyen Geliga
 
Lecture 8 bjt_1
Lecture 8 bjt_1Lecture 8 bjt_1
Lecture 8 bjt_1
Napex Terra
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9Shiwam Isrie
 
The Business side of IPL
The Business side of IPLThe Business side of IPL
The Business side of IPLshaileshjoshi19
 
Electrostatic Precipitator
Electrostatic Precipitator Electrostatic Precipitator
Electrostatic Precipitator Ninad Ghormade
 
ESP (Electrostatic precipitator)
ESP (Electrostatic precipitator)ESP (Electrostatic precipitator)
ESP (Electrostatic precipitator)
Gaurav Kaushik
 
Performing mensuration and calculation
Performing mensuration and calculationPerforming mensuration and calculation
Performing mensuration and calculationNorman Polilin
 
Electrostatic precipitator (esp) - working function
Electrostatic precipitator (esp) - working functionElectrostatic precipitator (esp) - working function
Electrostatic precipitator (esp) - working function
Yokesh Mech
 
3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)firozamin
 
Electrical Wiring Practices and Diagrams
Electrical Wiring Practices and DiagramsElectrical Wiring Practices and Diagrams
Electrical Wiring Practices and Diagrams
Practicing In Some Infra Company
 

Viewers also liked (19)

Cesc limited
Cesc limitedCesc limited
Cesc limited
 
CESC_cert
CESC_certCESC_cert
CESC_cert
 
ESI Electro Service India - Float Cum Battery Charger
ESI Electro Service India - Float Cum Battery ChargerESI Electro Service India - Float Cum Battery Charger
ESI Electro Service India - Float Cum Battery Charger
 
World Wrestling Entertainment (WWE) BRAND analysis
World Wrestling Entertainment (WWE) BRAND analysisWorld Wrestling Entertainment (WWE) BRAND analysis
World Wrestling Entertainment (WWE) BRAND analysis
 
WWE from a Strategy Perspective
WWE from a Strategy PerspectiveWWE from a Strategy Perspective
WWE from a Strategy Perspective
 
Project presentation - battery charger 24V/33A
Project presentation - battery charger 24V/33AProject presentation - battery charger 24V/33A
Project presentation - battery charger 24V/33A
 
Ch 18 Electric Fields
Ch 18 Electric FieldsCh 18 Electric Fields
Ch 18 Electric Fields
 
Analysing Electric Fields and Charge Flow
Analysing Electric Fields and Charge FlowAnalysing Electric Fields and Charge Flow
Analysing Electric Fields and Charge Flow
 
Lecture 8 bjt_1
Lecture 8 bjt_1Lecture 8 bjt_1
Lecture 8 bjt_1
 
Electric Fields
Electric FieldsElectric Fields
Electric Fields
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9
 
Electric Fields
Electric FieldsElectric Fields
Electric Fields
 
The Business side of IPL
The Business side of IPLThe Business side of IPL
The Business side of IPL
 
Electrostatic Precipitator
Electrostatic Precipitator Electrostatic Precipitator
Electrostatic Precipitator
 
ESP (Electrostatic precipitator)
ESP (Electrostatic precipitator)ESP (Electrostatic precipitator)
ESP (Electrostatic precipitator)
 
Performing mensuration and calculation
Performing mensuration and calculationPerforming mensuration and calculation
Performing mensuration and calculation
 
Electrostatic precipitator (esp) - working function
Electrostatic precipitator (esp) - working functionElectrostatic precipitator (esp) - working function
Electrostatic precipitator (esp) - working function
 
3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)
 
Electrical Wiring Practices and Diagrams
Electrical Wiring Practices and DiagramsElectrical Wiring Practices and Diagrams
Electrical Wiring Practices and Diagrams
 

Similar to Cable ampacity calculations iec

cable sizing.ppt
cable sizing.pptcable sizing.ppt
cable sizing.ppt
ChadWood16
 
Electrical component at airport for airfield lighting circuit
Electrical component at airport for airfield lighting circuitElectrical component at airport for airfield lighting circuit
Electrical component at airport for airfield lighting circuit
RLarivee
 
Principles of Cable Sizing
Principles of Cable SizingPrinciples of Cable Sizing
Principles of Cable Sizing
Leonardo ENERGY
 
H046044147
H046044147H046044147
H046044147
IJERA Editor
 
17 mse010 loss in pv plant
17 mse010 loss in pv plant17 mse010 loss in pv plant
17 mse010 loss in pv plant
paneliya sagar
 
cgmcosmos system
cgmcosmos systemcgmcosmos system
cgmcosmos system
Ormazabal
 
Effect of the Cable Capacitance of Long Control Cables on the Actuation of Co...
Effect of the Cable Capacitance of Long Control Cables on the Actuation of Co...Effect of the Cable Capacitance of Long Control Cables on the Actuation of Co...
Effect of the Cable Capacitance of Long Control Cables on the Actuation of Co...
Cengiz TANYERI
 
Earthing and bonding - Power cables
Earthing and bonding - Power cablesEarthing and bonding - Power cables
Earthing and bonding - Power cables
Leonardo ENERGY
 
Transmission Line presentation______.ppt
Transmission Line presentation______.pptTransmission Line presentation______.ppt
Transmission Line presentation______.ppt
ssuserc3b807
 
360786862-Indice-de-Normas.pdf
360786862-Indice-de-Normas.pdf360786862-Indice-de-Normas.pdf
360786862-Indice-de-Normas.pdf
Eduardo Bas
 
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englis...
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englis...Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englis...
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englis...
htrindia
 
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englishHtr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
SiddheshPathak3
 
power cable1.ppt
power cable1.pptpower cable1.ppt
power cable1.ppt
MAHMOUDMOHAMED431205
 
Schneider Technical Guide - Medium Voltage Equipment Designers
Schneider Technical Guide - Medium Voltage Equipment DesignersSchneider Technical Guide - Medium Voltage Equipment Designers
Schneider Technical Guide - Medium Voltage Equipment Designers
Thorne & Derrick International
 
Dlah dluh catalogue
Dlah dluh catalogueDlah dluh catalogue
Dlah dluh catalogue
Thomas Chan
 
Cigre test system description justifications and simulation results v3
Cigre test system   description justifications and simulation results v3Cigre test system   description justifications and simulation results v3
Cigre test system description justifications and simulation results v3
sebden
 
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englishHtr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
htrindia
 
7 h0011x0 w&c_tech_handbook_sec_06
7 h0011x0 w&c_tech_handbook_sec_067 h0011x0 w&c_tech_handbook_sec_06
7 h0011x0 w&c_tech_handbook_sec_06Ashwani kumar
 
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPEVHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
htrindia
 

Similar to Cable ampacity calculations iec (20)

cable sizing.ppt
cable sizing.pptcable sizing.ppt
cable sizing.ppt
 
Electrical component at airport for airfield lighting circuit
Electrical component at airport for airfield lighting circuitElectrical component at airport for airfield lighting circuit
Electrical component at airport for airfield lighting circuit
 
Principles of Cable Sizing
Principles of Cable SizingPrinciples of Cable Sizing
Principles of Cable Sizing
 
H046044147
H046044147H046044147
H046044147
 
17 mse010 loss in pv plant
17 mse010 loss in pv plant17 mse010 loss in pv plant
17 mse010 loss in pv plant
 
cgmcosmos system
cgmcosmos systemcgmcosmos system
cgmcosmos system
 
Effect of the Cable Capacitance of Long Control Cables on the Actuation of Co...
Effect of the Cable Capacitance of Long Control Cables on the Actuation of Co...Effect of the Cable Capacitance of Long Control Cables on the Actuation of Co...
Effect of the Cable Capacitance of Long Control Cables on the Actuation of Co...
 
Earthing and bonding - Power cables
Earthing and bonding - Power cablesEarthing and bonding - Power cables
Earthing and bonding - Power cables
 
Transmission Line presentation______.ppt
Transmission Line presentation______.pptTransmission Line presentation______.ppt
Transmission Line presentation______.ppt
 
360786862-Indice-de-Normas.pdf
360786862-Indice-de-Normas.pdf360786862-Indice-de-Normas.pdf
360786862-Indice-de-Normas.pdf
 
Specifications
SpecificationsSpecifications
Specifications
 
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englis...
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englis...Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englis...
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englis...
 
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englishHtr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
 
power cable1.ppt
power cable1.pptpower cable1.ppt
power cable1.ppt
 
Schneider Technical Guide - Medium Voltage Equipment Designers
Schneider Technical Guide - Medium Voltage Equipment DesignersSchneider Technical Guide - Medium Voltage Equipment Designers
Schneider Technical Guide - Medium Voltage Equipment Designers
 
Dlah dluh catalogue
Dlah dluh catalogueDlah dluh catalogue
Dlah dluh catalogue
 
Cigre test system description justifications and simulation results v3
Cigre test system   description justifications and simulation results v3Cigre test system   description justifications and simulation results v3
Cigre test system description justifications and simulation results v3
 
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-englishHtr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
Htr india-products-wire-wound-resistors-silicone-coated-resistors-vhia-english
 
7 h0011x0 w&c_tech_handbook_sec_06
7 h0011x0 w&c_tech_handbook_sec_067 h0011x0 w&c_tech_handbook_sec_06
7 h0011x0 w&c_tech_handbook_sec_06
 
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPEVHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
 

Recently uploaded

MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 

Recently uploaded (20)

MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 

Cable ampacity calculations iec

  • 1. F:Elementscable programscable ampacity calculation IEC.docx Page 1 1 SCOPE AND DEFINITIONS The scope of the attached calculations is to determine the required cables sizes based on the project standards and design criteria. Design Criteria. Following design criteria is used for the settings sheet. Maximum Operating Conductor temperatures with Insulation: 1.1 Thermoplastic (PVC) = 75°C 1.2 Thermoset (XLPE or EPR) = 90°C 1.3 Cable Voltage Rating = 1 kV (Um = 1.2 kV)
  • 2. F:Elementscable programscable ampacity calculation IEC.docx Page 2 2 CABLE AMPACITY 2.1 Conductor Ampacity Selection The cable ampacities are based as follows; PVC insulation, copper conductors –Conductor temperature: 70 °C, reference ambient temperature: 30 °C Current-carrying capacities in amperes for installation methods–XLPE or EPR insulation, copper conductors –Conductor temperature: 90 °C, reference ambient temperature: 30 °C MM2 AIR PVC XLPE-) 3-1/C (1.5-16MM2) & (25-400MM2)] 1-3/C 3-1/C (1.5-16MM2) & (25-400MM2)] 1-3/C 2.5 25 25 32 32 4 34 34 42 42 6 43 43 54 54 10 60 60 75 75 16 80 80 100 100 25 110 101 135 127 35 137 126 169 158 50 167 153 207 192 70 216 196 268 246 95 264 238 328 298 120 308 276 383 346 150 356 319 444 399 185 409 364 510 456 240 485 430 607 538 300 561 497 703 621 400 600 600 823 823
  • 3. F:Elementscable programscable ampacity calculation IEC.docx Page 3 Current-carrying capacities in amperes for methods of installation PVC insulation, three loaded conductors/copper or aluminium –Conductor temperature: 70 °C, ambient temperature: 30 °C in air, 20 °C in ground. Current-carrying capacities in amperes for methods of installation XLPE or EPR insulation, three loaded conductors/copper or aluminium – Conductor temperature: 90 °C, ambient temperature: 30 °C in air, 20 °C in ground MM2 DB PVC- XLPE- 1-3/C-DB-COND 1-3/C -DB- CABLE 1-3/C-DB- COND 1-3/C -DB- CABLE 2.5 24 24 28 30 4 30 33 36 39 6 38 41 44 49 10 50 54 58 65 16 64 70 75 84 25 82 92 96 107 35 98 110 115 129 50 116 130 135 153 70 143 162 167 188 95 169 193 197 226 120 192 220 223 257 150 217 246 251 287 185 243 278 281 324 240 280 320 324 375 300 316 359 365 419 400 400 400 400 500
  • 4. F:Elementscable programscable ampacity calculation IEC.docx Page 4 2.2 Conductor Ampacity and Temperature de-rating factor (TDF) Correction factor for ambient air temperatures other than 30 °C to be applied to the current- carrying capacities for cables in the air. AIR AMB TEMP PVC-AIR-AMB-deg-C-10 1.22 PVC-AIR-AMB-deg-C-15 1.17 PVC-AIR-AMB-deg-C-20 1.12 PVC-AIR-AMB-deg-C-25 1.08 PVC-AIR-AMB-deg-C-30 1 PVC-AIR-AMB-deg-C-35 0.94 PVC-AIR-AMB-deg-C-40 0.87 PVC-AIR-AMB-deg-C-45 0.79 PVC-AIR-AMB-deg-C-50 0.71 PVC-AIR-AMB-deg-C-55 0.61 PVC-AIR-AMB-deg-C-60 0.5 XLPE-AIR-AMB-deg-C-10 1.15 XLPE-AIR-AMB-deg-C-15 1.12 XLPE-AIR-AMB-deg-C-20 1.08 XLPE-AIR-AMB-deg-C-25 1.04 XLPE-AIR-AMB-deg-C-30 1 XLPE-AIR-AMB-deg-C-35 0.96 XLPE-AIR-AMB-deg-C-40 0.91 XLPE-AIR-AMB-deg-C-45 0.87 XLPE-AIR-AMB-deg-C-50 0.82 XLPE-AIR-AMB-deg-C-55 0.76 XLPE-AIR-AMB-deg-C-60 0.71
  • 5. F:Elementscable programscable ampacity calculation IEC.docx Page 5 Correction factors for ambient ground temperatures other than 20 °C to be applied to the current- carrying capacities for cables in ducts in the ground. GR AMB TEMP PVC-GR-AMB-deg-C-10 1.1 PVC-GR-AMB-deg-C-15 1.05 PVC-GR-AMB-deg-C-20 1 PVC-GR-AMB-deg-C-25 0.95 PVC-GR-AMB-deg-C-30 0.89 PVC-GR-AMB-deg-C-35 0.84 PVC-GR-AMB-deg-C-40 0.77 PVC-GR-AMB-deg-C-45 0.71 PVC-GR-AMB-deg-C-50 0.63 PVC-GR-AMB-deg-C-55 0.55 PVC-GR-AMB-deg-C-60 0.45 XLPE-GR-AMB-deg-C-10 1.07 XLPE-GR-AMB-deg-C-15 1.04 XLPE-GR-AMB-deg-C-20 1 XLPE-GR-AMB-deg-C-25 0.98 XLPE-GR-AMB-deg-C-30 0.93 XLPE-GR-AMB-deg-C-35 0.89 XLPE-GR-AMB-deg-C-40 0.85 XLPE-GR-AMB-deg-C-45 0.8 XLPE-GR-AMB-deg-C-50 0.76 XLPE-GR-AMB-deg-C-55 0.71 XLPE-GR-AMB-deg-C-60 0.65 XLPE-GR-AMB-deg-C-65 0.6 XLPE-GR-AMB-deg-C-70 0.53 XLPE-GR-AMB-deg-C-75 0.46 XLPE-GR-AMB-deg-C-80 0.38
  • 6. F:Elementscable programscable ampacity calculation IEC.docx Page 6 Correction factors for cables buried direct in the ground or in buried ducts for soil thermal resistivities other than 2,5 K·m/W to be applied to the current-carrying capacities soil thermal resistivity Thermal Resistivity-K*m/W-1(DB) 1.5 Thermal Resistivity-K*m/W-1.5(DB) 1.25 Thermal Resistivity-K*m/W-2(DB) 1.12 Thermal Resistivity-K*m/W-2.5(DB) 1 Thermal Resistivity-K*m/W-3(DB) 0.9 Thermal Resistivity-K*m/W-1(DUCT) 1.18 Thermal Resistivity-K*m/W-1.5(DUCT) 1.1 Thermal Resistivity-K*m/W-2(DUCT) 1.05 Thermal Resistivity-K*m/W-2.5(DUCT) 1 Thermal Resistivity-K*m/W-3(DUCT) 0.96
  • 7. F:Elementscable programscable ampacity calculation IEC.docx Page 7 Reduction factors for more than one circuit, cables laid directly in the ground – Installation method – Single-core or multi-core cables. DB-1/C OR 3/C DB-Touching-Circuit-1 1 DB-Touching-Circuit-2 0.75 DB-Touching-Circuit-3 0.65 DB-Touching-Circuit-4 0.6 DB-Touching-Circuit-5 0.55 DB-Touching-Circuit-6 0.5 DB-One Dia apart-Circuit-1 1 DB-One Dia apart-Circuit-2 0.8 DB-One Dia apart-Circuit-3 0.7 DB-One Dia apart-Circuit-4 0.6 DB-One Dia apart-Circuit-5 0.55 DB-One Dia apart-Circuit-6 0.55 DB-0.125-m - apart-Circuit-1 1 DB-0.125-m - apart-Circuit-2 0.85 DB-0.125-m - apart-Circuit-3 0.75 DB-0.125-m - apart-Circuit-4 0.7 DB-0.125-m - apart-Circuit-5 0.65 DB-0.125-m - apart-Circuit-6 0.6 DB-0.25-m - apart-Circuit-1 1 DB-0.25-m - apart-Circuit-2 0.9 DB-0.25-m - apart-Circuit-3 0.8 DB-0.25-m - apart-Circuit-4 0.75 DB-0.25-m - apart-Circuit-5 0.7 DB-0.25-m - apart-Circuit-6 0.7 DB-0.5-m - apart-Circuit-1 1 DB-0.5-m - apart-Circuit-2 0.9 DB-0.5-m - apart-Circuit-3 0.85 DB-0.5-m - apart-Circuit-4 0.8 DB-0.5-m - apart-Circuit-5 0.8 DB-0.5-m - apart-Circuit-6 0.8
  • 8. F:Elementscable programscable ampacity calculation IEC.docx Page 8 Reduction factors for group of more than one multi-core cable to be applied to reference current- carrying capacities for multi-core cables in free air – Reduction factors for group of more than one multi-core cable to be applied to reference current-carrying capacities for multi-core cables in free air – Ladder Tary-multi-layer-Circuit-1 1 Ladder Tary-multi-layer-Circuit-2 0.8 Ladder Tary-multi-layer-Circuit-3 0.7 Ladder Tary-multi-layer-Circuit-4 0.65 Ladder Tary-multi-layer-Circuit-5 0.6 Ladder Tary-multi-layer-Circuit-6 0.57 Ladder Tary-multi-layer-Circuit-7 0.54 Ladder Tary-multi-layer-Circuit-8 0.52 Ladder Tary-multi-layer-Circuit-9 0.5 Ladder Tary-multi-layer-Circuit-12 0.45 Ladder Tary-multi-layer-Circuit-16 0.41 Ladder Tary-multi-layer-Circuit-20 0.38 Ladder Tary-Single-layer-Circuit-1 1 Ladder Tary-Single-layer-Circuit-2 0.87 Ladder Tary-Single-layer-Circuit-3 0.82 Ladder Tary-Single-layer-Circuit-4 0.8 Ladder Tary-Single-layer-Circuit-5 0.8 Ladder Tary-Single-layer-Circuit-6 0.79 Ladder Tary-Single-layer-Circuit-7 0.79 Ladder Tary-Single-layer-Circuit-8 0.78 Ladder Tary-Single-layer-Circuit-9 0.78
  • 9. F:Elementscable programscable ampacity calculation IEC.docx Page 9 3 CABLE IMPEDANCE CALCULATIONS 3.1 Conductor Resistivity The Resistivity is defined as the electrical resistance of a body of unit length, and unit cross-sectional area or unit weight. Volume Resistivity is commonly expressed in ohms for a theoretical conductor of unit length and cross-sectional area, in inch-pound units in Ω ·cmil / ft and in acceptable metric units in Ω·mm2/m. It may be calculated by the following equation:  Where: = ρ = Volume resistivity, Ω·cmil / ft,  A = cross-sectional area, cmil,  L = gauge length, used to determine R, ft  R = measured resistance.  In Accordance with ASTM- B-193, Table 2  Volume resistivity for Copper, Ω·cmil/ft or Ω·mm2/m = 10.371  A L     R
  • 10. F:Elementscable programscable ampacity calculation IEC.docx Page 10 3.2 Temperature Correction The measurement is made at any other than a reference temperature; the resistance may be corrected for moderate temperature differences to what it would be at the reference temperature, as follows: Where:  Rt = resistance at reference temperature T2,  R = resistance as measured at temperature T1,  Alpha T = known or given temperature coefficient of resistance  of the specimen being measured at reference temperature T,  T2 = reference temperature, and  T1 = temperature at which measurement is made. NOTE 1—The parameter AlphaT, in the above equation, varies with conductivity and temperature. For copper of 100 % conductivity and a reference temperature of 20°C, its value is 0.00393. Rt R 1  T2 T1 
  • 11. F:Elementscable programscable ampacity calculation IEC.docx Page 11 3.3 Resistance of stranded conductors Correction. 3.3.1 DC RESISTANCE @ 70 DEG C OR 90 DEG C CALCULATE CALCULATE STRANDING FACTOR CALCULATE CALCULATE Nominal Cross Section Area Nominal CONDUCTOR Diameter Minimum Number of Wires in Conductor Nominal Stranded CONDUCTOR Diameter Maximum Resistance of Conductor at 20 deg C Annealed Copper Conductor Plain Wires Ώ / km Resistance at= t Deg C temperature IEC-60228- Annex B mm2 d=(4/pi*A)^.5 = mm Circular Cu d x str-factor = Mm Rdc-t= [1+0.00393 (t-20)]* Rdc-20 Ώ/1000 meter =90 0.5 0.798 7 1.134 0.905 36 45.904 0.75 0.977 7 1.134 1.108 24.5 31.240 1 1.128 7 1.134 1.279 18.1 23.079 1.5 1.382 7 1.134 1.567 12.1 15.429 2.5 1.784 7 1.134 2.023 7.41 9.448 4 2.257 7 1.134 2.559 4.61 5.878 6 2.764 7 1.134 3.134 3.08 3.927 10 3.568 7 1.134 4.046 1.83 2.333 16 4.513 7 1.134 5.118 1.15 1.466 25 5.642 7 1.134 6.397 0.727 0.927 35 6.675 7 1.134 7.569 0.524 0.668 50 7.978 19 1.147 9.152 0.387 0.493 70 9.440 19 1.147 10.829 0.268 0.342 95 10.997 19 1.147 12.615 0.193 0.246 120 12.360 37 1.151 14.224 0.153 0.195 150 13.819 37 1.151 15.903 0.124 0.158 185 15.347 37 1.151 17.661 0.0991 0.126 240 17.480 37 1.151 20.115 0.0754 0.096 300 19.543 61 1.152 22.520 0.0601 0.077 400 22.566 61 1.152 26.004 0.047 0.060 500 25.230 61 1.152 29.073 0.0366 0.047 630 28.320 91 1.153 32.656 0.0283 0.036 800 31.913 91 1.153 36.800 0.0221 0.028 1000 35.680 91 1.153 41.143 0.0176 0.022
  • 12. F:Elementscable programscable ampacity calculation IEC.docx Page 12 3.3.2 CALCULATE CABLE SPACING BASED ON INSULATION THICKNESS “PVC, XLPE, EPR”. Nominal Cross Section Area Nominal Thickness of PVC Insulation Nominal Thickness of XLPE Insulation Nominal Thickness of EPR Insulation fictitious diameter Dc of single core PVC cable fictitious diameter Dc of single core XLPE cable fictitious diameter Dc of single core EPR cable Diameter overlaid up cores Reduced Neutral Size mm2 0.6/1 (1.2) kV mm 0.6/1 (1.2) kV mm 0.6/1 (1.2) kV mm Dc= dL+2 * ti =mm Dc= dL+2 * ti=mm Dc= dL+2 * ti=mm Df=kDc=mm mm 2 0.5 0.6 0.7 1 2.105 2.305 2.905 1 0.5 0.75 0.6 0.7 1 2.308 2.508 3.108 1 0.75 1 0.6 0.7 1 2.479 2.679 3.279 1 1 1.5 0.6 0.7 1 2.767 2.967 3.567 1 1.5 2.5 0.6 0.7 1 3.223 3.423 4.023 1 2.5 4 1 0.7 1 4.559 3.959 4.559 1 4 6 1 0.7 1 5.134 4.534 5.134 1 6 10 1 0.7 1 6.046 5.446 6.046 1 10 16 1 0.7 1 7.118 6.518 7.118 1 16 25 1.2 0.9 1.2 8.797 8.197 8.797 1 16 35 1.2 0.9 1.2 9.969 9.369 9.969 1 16 50 1.4 1 1.4 11.952 11.152 11.952 1 25 70 1.4 1.1 1.4 13.629 13.029 13.629 1 35 95 1.6 1.1 1.6 15.815 14.815 15.815 1 50 120 1.6 1.2 1.6 17.424 16.624 17.424 1 70 150 1.8 1.4 1.8 19.503 18.703 19.503 1 95 185 2 1.6 2 21.661 20.861 21.661 1 95 240 2.2 1.7 2.2 24.515 23.515 24.515 1 120 300 2.4 1.8 2.4 27.320 26.120 27.320 1 150 400 2.6 2 2.6 31.204 30.004 31.204 1 240
  • 13. F:Elementscable programscable ampacity calculation IEC.docx Page 13 3.3.3 CALCULATE CABLE SPACING BASED ON INSULATION THICKNESS “PVC, XLPE, EPR”. CALCULATE CALCULATE CALCULATE CALCULATE Nominal Cross Section Area 3-cond, k=2.16 PVC Reduced Neutral Size PVC 3-1/2-cond, PVC 4-cond, k=2.42 PVC Df=kDc Dc= dL+2 * ti Df=2.42 (3 Dc1+Dc2)/4 Df=kDc mm2 3-cond-PVC mm-PVC 3-1/2-cond- PVC 4-cond-PVC 0.5 4.55 1.00 4.42 5.58 0.75 4.99 1.00 4.79 6.07 1 5.36 1.00 5.11 6.48 1.5 5.98 1.00 5.63 7.18 2.5 6.96 1.00 6.45 8.28 4 9.85 1.00 8.88 9.58 6 11.09 1.00 9.92 10.97 10 13.06 1.00 11.58 13.18 16 15.37 1.00 13.52 15.77 25 19.00 1.00 16.57 19.84 35 21.53 1.00 18.70 22.67 50 25.82 1.20 22.42 26.99 70 29.44 1.20 25.46 31.53 95 34.16 1.40 29.55 35.85 120 37.64 1.40 32.47 40.23 150 42.13 1.60 36.37 45.26 185 46.79 1.60 40.28 50.48 240 52.95 1.60 45.46 56.91 300 59.01 1.80 50.67 63.21 400 67.40 2.20 57.97 72.61
  • 14. F:Elementscable programscable ampacity calculation IEC.docx Page 14 3.3.4 CALCULATE CABLE SPACING BASED ON INSULATION THICKNESS “PVC, XLPE, EPR”. CALCULATE CALCULATE CALCULATE CALCULATE Nominal Cross Section Area 3-cond, k=2.16 XLPE Reduced Neutral Size XLPE 3-1/2-cond, XLPE 4-cond, k=2.42 XLPE Df=kDc Dc= dL+2 * ti Df=2.42 (3 Dc1+Dc2)/4 Df=kDc mm2 3-cond- XLPE mm XLPE 3-1/2-cond- XLPE 4-cond- XLPE 0.5 4.98 2.10 5.46 5.58 0.75 5.42 2.31 5.95 6.07 1 5.79 2.48 6.36 6.48 1.5 6.41 2.77 7.06 7.18 2.5 7.39 3.22 8.16 8.28 4 8.55 4.56 9.94 9.58 6 9.79 5.13 11.33 10.97 10 11.76 6.05 13.54 13.18 16 14.08 7.12 16.14 15.77 25 17.71 7.12 19.18 19.84 35 20.24 7.12 21.31 22.67 50 24.09 8.80 25.56 26.99 70 28.14 9.97 29.68 31.53 95 32.00 11.95 34.12 35.85 120 35.91 13.63 38.42 40.23 150 40.40 15.81 43.51 45.26 185 45.06 15.81 47.43 50.48 240 50.79 17.42 53.22 56.91 300 56.42 19.50 59.21 63.21 400 64.81 24.52 69.29 72.61
  • 15. F:Elementscable programscable ampacity calculation IEC.docx Page 15 3.3.5 CALCULATE CABLE SPACING BASED ON INSULATION THICKNESS “PVC, XLPE, EPR”. CALCULATE CALCULATE CALCULATE CALCULATE Nominal Cross Section Area 3-cond, k=2.16 EPR Reduced Neutral Size EPR 3-1/2-cond, EPR 4-cond, k=2.42 EPR Df=kDc Dc= dL+2 * ti Df=2.42 (3 Dc1+Dc2)/4 Df=kDc mm2 3-cond-EPR mm EPR 3-1/2-cond- EPR 4-cond-EPR 0.5 6.27 2.305 6.67 7.029 0.75 6.71 2.508 7.16 7.521 1 7.08 2.679 7.57 7.936 1.5 7.70 2.967 8.27 8.632 2.5 8.69 3.423 9.37 9.735 4 9.85 3.959 10.67 11.032 6 11.09 4.534 12.06 12.424 10 13.06 5.446 14.27 14.631 16 15.37 6.518 16.86 17.224 25 19.00 6.518 19.91 21.288 35 21.53 6.518 22.04 24.125 50 25.82 8.197 26.65 28.923 70 29.44 9.369 30.40 32.981 95 34.16 11.152 35.45 38.272 120 37.64 13.029 39.51 42.166 150 42.13 14.815 44.36 47.196 185 46.79 14.815 48.28 52.419 240 52.95 16.624 54.55 59.327 300 59.01 18.703 60.90 66.114 400 67.40 23.515 70.86 75.513
  • 16. F:Elementscable programscable ampacity calculation IEC.docx Page 16 AC-RESISTANCE OF CONDUCTOR Nominal Cross Section Area R=R' (1+ys+yp) ys=xs^4 / (192+0.8 . xs^4) xs^2= 8.pi.f.(10^-7) ks /R' ks=1 yp=xp^4*(dc/s)^2 0. 2.9/(192+xp^4) xp^2=8.pi*f.10^-7 .lp /R' kp=1 mm2 xs^2= ys=xs^4 / (192+0.8 . xs^4) xp^2= yp=xp^4*(dc/s)^2.0. 2.9 /(192+xp^4) R=R' (1+ys+yp) 0.5 2.738E-06 6.510E-03 2.738E-06 2.091E-14 4.620E+01 0.75 4.023E-06 6.510E-03 4.023E-06 5.632E-14 3.144E+01 1 5.445E-06 6.510E-03 5.445E-06 1.192E-13 2.323E+01 1.5 8.145E-06 6.510E-03 8.145E-06 3.213E-13 1.553E+01 2.5 1.330E-05 6.510E-03 1.330E-05 1.053E-12 9.510E+00 4 2.138E-05 6.510E-03 2.138E-05 2.175E-12 5.916E+00 6 3.200E-05 6.510E-03 3.200E-05 5.762E-12 3.953E+00 10 5.385E-05 6.510E-03 5.385E-05 1.962E-11 2.349E+00 16 8.570E-05 6.510E-03 8.570E-05 5.734E-11 1.476E+00 25 1.356E-04 6.510E-03 1.356E-04 1.468E-10 9.330E-01 35 1.881E-04 6.510E-03 1.881E-04 3.080E-10 6.725E-01 50 2.547E-04 6.510E-03 2.547E-04 5.743E-10 4.967E-01 70 3.677E-04 6.510E-03 3.677E-04 1.289E-09 3.440E-01 95 5.106E-04 6.510E-03 5.106E-04 2.506E-09 2.477E-01 120 6.441E-04 6.510E-03 6.441E-04 4.176E-09 1.964E-01 150 7.948E-04 6.510E-03 7.948E-04 6.344E-09 1.591E-01 185 9.945E-04 6.510E-03 9.945E-04 9.930E-09 1.272E-01 240 1.307E-03 6.510E-03 1.307E-03 1.737E-08 9.677E-02 300 1.640E-03 6.510E-03 1.640E-03 2.760E-08 7.713E-02 400 2.097E-03 6.510E-03 2.097E-03 4.612E-08 6.032E-02
  • 17. F:Elementscable programscable ampacity calculation IEC.docx Page 17 Inductance Inductance - Inductance - Nominal Cross Section Area PVC Insulated L=K+0.2 Log e (2S /d) mH/km PVC Insulated X=2pif*L Ώ/km XLPE Insulated L=K+0.2 Log e (2S /d) mH/km XLPE Insulated X=2pif*L Ώ/km EPR Insulated L=K+0.2 Log e (2S /d) mH/km EPR Insulated X=2pif*L Ώ/km Typical Values for Constant (K) for different Stranded Conductors (50 Hz) n=3, K=0.0778 n=7, K=0.0642 n=19, K=0.0554 n=37, K=0.0528 n=61, K=0.0514 Typical Values for Constant (K) for different Stranded Conductors (50 Hz) n=3, K=0.0778 n=7, K=0.0642 n=19, K=0.0554 n=37, K=0.0528 n=61, K=0.0514 Typical Values for Constant (K) for different Stranded Conductors (50 Hz) n=3, K=0.0778 n=7, K=0.0642 n=19, K=0.0554 n=37, K=0.0528 n=61, K=0.0514mm2 0.5 0.2330703 0.0732212 0.2512262 0.078925 0.297502883 0.093463287 0.75 0.2109673 0.0662773 0.2275884 0.071499 0.270487529 0.084976163 1 0.1965267 0.0617407 0.2120421 0.066615 0.252455876 0.079311353 1.5 0.177925 0.0558968 0.1918829 0.0602818 0.228718644 0.071854081 2.5 0.1573508 0.0494332 0.1693922 0.0532161 0.201695389 0.063364475 4 0.1797057 0.0564562 0.1514817 0.0475894 0.179705662 0.056456199 6 0.1629193 0.0511826 0.1380623 0.0433736 0.162919334 0.051182618 10 0.1445377 0.0454079 0.1236337 0.0388407 0.144537705 0.045407859 16 0.1301779 0.0408966 0.1125648 0.0353633 0.130177935 0.040896604 25 0.1279172 0.0401864 0.1137885 0.0357477 0.12791723 0.040186383 35 0.1192845 0.0374743 0.1068696 0.0335741 0.119284456 0.037474317 50 0.1175864 0.0369409 0.1037302 0.0325878 0.108786415 0.03417626 70 0.1101962 0.0346192 0.1011915 0.0317902 0.10139625 0.031854571 95 0.109415 0.0343737 0.0963511 0.0302696 0.100614953 0.03160912 120 0.1047842 0.0329189 0.0953838 0.0299657 0.093384173 0.029337503 150 0.1050129 0.0329908 0.0966359 0.0303591 0.1050129 0.032990776 185 0.1050314 0.0329966 0.0975049 0.0306321 0.105031372 0.032996579 240 0.1037631 0.0325981 0.0954339 0.0299814 0.103763075 0.032598131 300 0.1028433 0.0323092 0.0938597 0.0294869 0.10284331 0.032309179 400 0.1006596 0.0316232 0.0928164 0.0291591 0.100659619 0.031623152
  • 18. F:Elementscable programscable ampacity calculation IEC.docx Page 18 3.4 Conductor Reactance D= Spacing between conductors D= diameter of wire (2 x radius) + 2 x insulation thickness r = Radius of conductors. , the insulation thickness for multiconductor cables with outer coverings is as follows, XL 2  f L L  8  1 4 ln D r         4  10 7  H m 
  • 19. F:Elementscable programscable ampacity calculation IEC.docx Page 19 Nominal Cross Section Area Nominal Thickness of PVC Insulation Nominal Thickness of XLPE Insulation Nominal Thickness of EPR Insulation fictitious diameter Dc of single core PVC cable fictitious diameter Dc of single core XLPE cable fictitious diameter Dc of single core EPR cable Dc= dL+2 * ti Dc= dL+2 * ti Dc= dL+2 * ti mm2 0.6/1 (1.2) kV mm 0.6/1 (1.2) kV mm 0.6/1 (1.2) kV mm mm mm mm 0.5 0.8 0.7 1 2.505 2.305 2.905 0.75 0.8 0.7 1 2.708 2.508 3.108 1 0.8 0.7 1 2.879 2.679 3.279 1.5 0.8 0.7 1 3.167 2.967 3.567 2.5 0.8 0.7 1 3.623 3.423 4.023 4 1 0.7 1 4.559 3.959 4.559 6 1 0.7 1 5.134 4.534 5.134 10 1 0.7 1 6.046 5.446 6.046 16 1 0.7 1 7.118 6.518 7.118 25 1.2 0.9 1.2 8.797 8.197 8.797 35 1.2 0.9 1.2 9.969 9.369 9.969 50 1.4 1 1.4 11.952 11.152 11.952 70 1.4 1.1 1.4 13.629 13.029 13.629 95 1.6 1.1 1.6 15.815 14.815 15.815 120 1.6 1.2 1.6 17.424 16.624 17.424 150 1.8 1.4 1.8 19.503 18.703 19.503 185 2 1.6 2 21.661 20.861 21.661 240 2.2 1.7 2.2 24.515 23.515 24.515 300 2.4 1.8 2.4 27.320 26.120 27.320 400 2.6 2 2.6 31.204 30.004 31.204 500 2.8 2.2 2.8 34.673 33.473 34.673 630 2.8 2.4 2.8 38.256 37.456 38.256 800 2.8 2.6 2.8 42.400 42.000 42.400 1000 3 2.8 3 47.143 46.743 47.143
  • 20. F:Elementscable programscable ampacity calculation IEC.docx Page 20 4 CABLE VOLTAGE DROP CALCULATIONS. Permissible Voltage Drop, with respect to Load Power Factor. Volt drop can be defined as the difference in magnitude of the voltage at the supply compared to the voltage at the load. This voltage drop is based on the loads power factor, the cable's internal resistance and reactance, and the cable length. The three phase voltage drop permitted on the circuit run is calculated using the following equation. Vd.3 I L R cos ( ) X sin ( )( 3 Where: Vd3p = three phase voltage drop, volts (V) ө = Power factor Angle I = current flowing in cable, amperes (A) L = route length of circuit, meters (m) R = AC resistance of cable, ohm/kilometer (W/km) X = reactance of cable, ohm/kilometer (W/km)
  • 21. F:Elementscable programscable ampacity calculation IEC.docx Page 21 5 CABLE SIZING & CURRENT-CARRYING CAPACITY CALCULATION STEPS To calculate the current-carrying capacity requirements of a circuit: STEP-1 Determine the current requirements, based on 1.25 times the FLA continuous current, of the Loads. STEP-2 Select the Cable Size based on the De-Rated Ampacity of the Cable. STEP-3 Calculate Length x Amp factor for each size of the cable based on % voltage drop and the circuit power factor, as per the following formula. STEP-4 Calculate the length of the selected cable based on the FLA of the circuit. STEP-4 If the calculated length L is < than the circuit length D, then calculate Length x Amp FLA x D of the circuit. STEP-5 Select the cable FLA x D with the matching Length x Amp L X I factor. STEP-6 Calculate Length x Amp factor for each size of the cable based on % voltage drop and the circuit power factor, as per the above formula. STEP-7 Calculate the Circuit Voltage drop for the length of the circuit. STEP-8 if the voltage drop exceeds the design criteria then increases the Cable size to meet the voltage drop. STEP-9 SELECTS THE CALCULATED CABLE SIZE. IL  Vd3 R cos ( ) X sin ( )( L Vd3 R cos ( ) X sin ( )( )( I 