SlideShare a Scribd company logo
1
POWER SYSTEMS
SUBJECT NAME : POWER SYSTEMS
CHAPTER NO: 1
CHAPTER NAME : POWER SYSTEM FUNDAMENTALS
LECTURE : 1
Power System Introduction
India grid
Southern grid
SRLDC
1. Basic Concepts
2. Synchronous Machines and
Transformer Modelling
3. Transmission Line Modelling
4. Power Flow Analysis
5. Fault Analysis
6. Power System Stability
7. Economic Operation of Power
System,
G M
50 MVA
11 kV /132kV
50 MVA
11 kV
50 MVA
132kV /11 kV
50 MVA
11 kV
G M
50 MVA
11 kV
/132kV
50
MVA
11 kV
50 MVA
132kV /11
kV
50
MVA
11 kV
G M
50 MVA
11 kV
/132kV
50
MVA
11 kV
50 MVA
132kV /11
kV
50
MVA
11 kV
G M
50 MVA
11 kV
/132kV
50
MVA
11 kV
50 MVA
132kV /11
kV
50
MVA
11 kV
G M
50 MVA
11 kV
/132kV
50
MVA
11 kV
50 MVA
132kV /11
kV
50
MVA
11 kV
G M
50 MVA
11 kV /132kV
50 MVA
11 kV
50 MVA
132kV /11 kV
50 MVA
11 kV
0.15 PU
0.12 PU
0.08 PU 0.08 PU
0.12 PU
G M
50 MVA
11 kV /132kV
50 MVA
11 kV
50 MVA
132kV /11 kV
50 MVA
11 kV
0.15 PU
0.12 PU
0.08 PU 0.08 PU
0.12 PU
G M
50 MVA
11 kV /132kV
50 MVA
11 kV
50 MVA
132kV /11 kV
50 MVA
11 kV
0.15 PU
0.12 PU
0.08 PU 0.08 PU
0.12 PU
G M
50 MVA
11 kV /132kV
50 MVA
11 kV
50 MVA
132kV /11 kV
50 MVA
11 kV
0.15 PU
0.12 PU
0.08 PU 0.08 PU
0.12 PU
24
25
26
27
Per-Unit System
In the per-unit system, the voltages, currents, powers,
impedances, and other electrical quantities are expressed on a per-
unit basis by the equation:
Quantity per unit =
Actual value
Base value of quantity
It is customary to select two base quantities to define a given per-
unit system. The ones usually selected are voltage and power.
28
Per-Unit System
Assume:
Then compute base values for currents and impedances:
rated
b V
V 
rated
b S
S 
b
b
b
V
S
I 
b
b
b
b
b
S
V
I
V
Z
2


29
Per-Unit System
And the per-unit system is:
b
actual
u
p
V
V
V 
.
.
b
actual
u
p
I
I
I 
.
.
b
actual
u
p
S
S
S 
.
.
b
actual
u
p
Z
Z
Z 
.
.
%
100
% .
. 
 u
p
Z
Z
Percent of base Z
rated
b V
V 
rated
b S
S 
b
b
b
V
S
I 
b
b
b
b
b
S
V
I
V
Z
2


30
Example 1
An electrical lamp is rated 120 volts, 500 watts. Compute the per-
unit and percent impedance of the lamp. Give the p.u. equivalent
circuit.
Solution:
(1) Compute lamp resistance
(2) Select base quantities
(3) Compute base impedance
(4) Find the per-unit impedance
120 volts
500 watts
31
Example 1
An electrical lamp is rated 120 volts, 500 watts. Compute the per-
unit and percent impedance of the lamp. Give the p.u. equivalent
circuit.
Solution:
(1) Compute lamp resistance
power factor = 1.0





 8
.
28
500
)
120
( 2
2
2
P
V
R
R
V
P


 0
8
.
28
Z
120 volts
500 watts
32
Example 1
(2) Select base quantities
(3) Compute base impedance
(4) The per-unit impedance is:
VA
Sb 500

V
Vb 120




 8
.
28
500
)
120
( 2
2
b
b
b
S
V
Z
.
.
0
1
8
.
28
0
8
.
28
.
. u
p
Z
Z
Z
b
u
p 




33
Example 1
(5) Percent impedance:
(6) Per-unit equivalent circuit:
%
100
% 
Z
.
.
0
1 u
p
Z 

.
.
0
1 u
p
VS 

34
Example 2
An electrical lamp is rated 120 volts, 500 watts. If the voltage
applied across the lamp is twice the rated value, compute the
current that flows through the lamp. Use the per-unit method.
Solution:
(1) Compute lamp resistance
(2) Select base quantities
(3) Compute base impedance
(4) Find the per-unit impedance
120 V
500 W
2 X 120 V
240 V
35
Example 2
An electrical lamp is rated 120 volts, 500 watts. If the voltage
applied across the lamp is twice the rated value, compute the
current that flows through the lamp. Use the per-unit method.
Solution:
V
Vb 120

.
.
0
2
120
240
.
. u
p
V
V
V
b
u
p 



.
.
0
1
.
. u
p
Z u
p 

36
Example 2
The per-unit equivalent circuit is as follows:
.
.
0
1 u
p
Z 

.
.
0
2 u
p
VS 

.
.
0
2
0
1
0
2
.
.
.
.
.
. u
p
Z
V
I
u
p
u
p
u
p 





A
V
S
I
b
b
b 167
.
4
120
500



A
I
I
I b
u
p
actual 0
334
.
8
167
.
4
0
2
.
. 





37
Per-unit System for 1-  Circuits
One-phase circuits
LV
bLV V
V 



 I
V
S
Sb 
 
1
where
neutral
to
line
V
V 



current
line
I
I 


HV
bHV V
V 

bLV
b
bLV
V
S
I 
bHV
b
bHV
V
S
I 
Transformer
38
Per-unit System for 1-  Circuits
b
bLV
bLV
bLV
bLV
S
V
I
V
Z
2
)
(


b
bHV
bHV
bHV
bHV
S
V
I
V
Z
2
)
(


*
pu
pu
b
pu I
V
S
S
S 


cos
pu
pu
b
pu I
V
S
P
P 


sin
pu
pu
b
pu I
V
S
Q
Q 

39
Transformation Between Bases
Selection 1
A
b V
V 
1
A
b S
S 
1
Then
1
1
b
L
pu
Z
Z
Z 
1
2
1
1
b
b
b
S
V
Z 
Selection 2
B
b V
V 
2
B
b S
S 
2
Then
2
2
b
L
pu
Z
Z
Z 
2
2
2
2
b
b
b
S
V
Z 
40
Transformation Between Bases
2
2
2
1
2
1
2
1
1
2
1
2
b
b
b
b
b
b
L
b
b
L
pu
pu
V
S
S
V
Z
Z
Z
Z
Z
Z
Z
Z























1
2
2
2
1
1
2
b
b
b
b
pu
pu
S
S
V
V
Z
Z
“1” – old
“2” - new


















old
b
new
b
new
b
old
b
old
pu
new
pu
S
S
V
V
Z
Z
,
,
2
,
,
,
,
41
Transformation Between Bases
Generally per-unit values given to another base can be converted
to new base by by the equations:
2
1
1
_
_
_
2
_
_
_ )
,
,
(
)
,
,
(
base
base
base
on
pu
base
on
pu
S
S
S
Q
P
S
Q
P 
2
1
1
_
_
_
2
_
_
_
base
base
base
on
pu
base
on
pu
V
V
V
V 
1
2
2
2
2
1
1
_
_
_
2
_
_
_
)
(
)
(
)
,
,
(
)
,
,
(
base
base
base
base
base
on
pu
base
on
pu
S
V
S
V
Z
X
R
Z
X
R 
When performing calculations in a power system, every per-unit value
must be converted to the same base.
42
Per-unit System for 1- Transformer
Consider the equivalent circuit of transformer referred to LV side and
HV side shown below:
LV
V HV
V LV
V HV
V
S
S jX
R 
1
N 2
N
2
2
a
X
j
a
R S
S

(1) Referred to LV side (2) Referred to HV side
Define 1
2
1



N
N
V
V
a
HV
LV
S
43
Per-unit System for 1- Transformer
Choose:
rated
LV
b V
V ,
1 
rated
b S
S 
Compute:
1
1
2
1
b
b
LV
HV
b V
a
V
V
V
V 

b
b
b
S
V
Z
2
1
1 
b
b
b
S
V
Z
2
2
2 
2
2
1
2
1
2
2
2
1
2
1
)
1
(
a
V
a
V
V
V
Z
Z
b
b
b
b
b
b



Normally choose rated
values as base values
44
Per-unit System for 1- Transformer
Per-unit impedances are:
1
1
.
.
b
S
S
u
p
Z
jX
R
Z


1
2
1
2
2
2
2
2
2
.
.
b
S
S
b
S
S
b
S
S
u
p
Z
jX
R
a
Z
a
jX
a
R
Z
a
jX
a
R
Z






So:
2
.
.
1
.
. u
p
u
p Z
Z 
Per-unit equivalent
circuits of transformer
referred to LV side and
HV side are identical !!
45
Per-unit Eq. Circuit for 1- Transformer
LV
V HV
V
S
S jX
R 
1
N 2
N
Fig 1. Eq Ckt referred to LV side
1
2
1



N
N
V
V
a
HV
LV
S
1
b
Z
1
b
V 2
b
V
Fig 2. Per-unit Eq Ckt referred to LV side Fig 3.
pu
S
Z ,
1
:
1
1
b
V 2
b
V
pu
S
Z ,
1
b
V 2
b
V
b
S
46
Per-unit Eq. Circuit for 1- Transformer
LV
V HV
V
1
N 2
N
Fig 4. Eq Ckt referred to HV side
1
2
1



N
N
V
V
a
HV
LV
S
2
b
Z
2
b
V
Fig 5. Per-unit Eq Ckt referred to HV side Fig 6.
pu
S
Z ,
1
:
1
1
b
V 2
b
V
pu
S
Z ,
1
b
V 2
b
V
1
b
V
2
2
a
X
j
a
R S
S

b
S
47
Voltage Regulation
%
100






load
full
load
full
load
no
V
V
V
VR
Voltage regulation is defined as:
%
100
,
,
,






load
full
pu
load
full
pu
load
no
pu
V
V
V
VR
In per-unit system:
Vfull-load: Desired load voltage at full load. It may be equal
to, above, or below rated voltage
Vno-load: The no load voltage when the primary voltage is
the desired voltage in order the secondary voltage
be at its desired value at full load
48
Voltage Regulation Example
A single-phase transformer rated 200-kVA, 200/400-V, and 10% short circuit
reactance. Compute the VR when the transformer is fully loaded at unity PF
and rated voltage 400-V.
Solution:
Fig 7. Per-unit equivalent circuit
P
V S
V
1
.
0
j
load
S
V
Vb 400
2 
kVA
Sb 200

pu
S pu
load 0
1
, 

pu
j
X pu
S 1
.
0
, 
S
X
49
Voltage Regulation Example
Rated voltage:
pu
V pu
S 0
0
.
1
, 

pu
j
j
X
I
V
V
o
pu
S
pu
pu
S
pu
P
7
.
5
001
.
1
1
.
0
1
1
.
0
0
0
.
1
0
0
.
1
,
,
,











pu
V
S
I
pu
S
pu
load
pu
load 0
0
.
1
0
0
.
1
0
0
.
1
*
*
,
,
, 



















50
Voltage Regulation Example
pu
V
V o
pu
P
load
no
pu 7
.
5
001
.
1
,
, 



pu
V
V pu
S
load
full
pu 0
0
.
1
,
, 



Secondary side:
Voltage regulation:
%
1
.
0
%
100
0
.
1
0
.
1
001
.
1
%
100
,
,
,










load
full
pu
load
full
pu
load
no
pu
V
V
V
VR
51
Problem 1
Select Vbase in generator circuit and Sb=100MVA,
compute p.u. equivalent circuit.
G

100
j
20 kV 22kV/220kV
80MVA
14%
220kV/20kV
50MVA
10%
50MVA
0.8 PF
lagging
52
Per-unit System for 3- Circuits
Three-phase circuits
LV
L
bLV V
V ,




 I
V
S
S
Sb 3
3 1
3 

 

where
3
/
)
(line
L
neutral
to
line V
V
V 
 


L
current
line I
I
I 
 

HV
L
bHV V
V ,

L
L
b I
V
S 3

bHV
bHV
bLV
bLV
b I
V
I
V
S 3
3 

53
Per-unit System for 3- Circuits
b
bLV
b
bLV
bLV
LV
LV
bLV
S
V
S
V
V
I
V
Z
2
)
(
3
3





b
bHV
bHV
S
V
Z
2
)
(

*
*
3
3
3
pu
pu
b
b
L
L
b
pu I
V
I
V
I
V
S
S
S 



bLV
b
bLV
V
S
I
3

bHV
b
bHV
V
S
I
3

54
Per-unit System for 3- Transformer
Three 25-kVA, 34500/277-V transformers connected in -Y. Short-
circuit test on high voltage side:
Determine the per-unit equivalent circuit of the transformer.
V
V SC
Line 2010
, 
A
I SC
Line 26
.
1
, 
W
P SC 912
,
3 

55
Per-unit System for 3- Transformer
(a) Using Y-equivalent
3
34500
277
S
S jX
R 
VA
Sb 25000

3
2010

SC
V
26
.
1

SC
I


 00
.
921
26
.
1
47
.
1160
SC
Z
V
VSC 47
.
1160
3
2010


56
Per-unit System for 3- Transformer
So





 86
.
900
48
.
191
921 2
2
2
2
S
SC
S R
Z
X
W
P 304
3
912


 


 48
.
191
26
.
1
304
2
2
SC
S
I
P
R 


 86
.
900
48
.
191 j
ZSC
VA
Sb 25000
 V
V HV
b 58
.
19918
3
34500
, 



 99
.
15869
25000
58
.
19918 2
,HV
b
Z
pu
j
j
Z Y
pu
SC 0568
.
0
012
.
0
99
.
15869
86
.
900
48
.
191
,
, 



57
Per-unit System for 3- Transformer
(b) Using -equivalent
34500 277

,
SC
Z
VA
Sb 25000

2010

SC
V
3
26
.
1

SC
I



 79
.
2764
727
.
0
2010
,
SC
Z
V
VSC 2010
 A
ISC 727
.
0
3
26
.
1


58
Per-unit System for 3- Transformer
So





 

 30
.
2704
18
.
575
79
.
2764 2
2
2
,
2
,
, S
SC
S R
Z
X
W
P 304
3
912


 



 18
.
575
727
.
0
304
2
2
,
SC
S
I
P
R 


 86
.
900
48
.
191 j
ZSC
VA
Sb 25000
 V
V HV
b 34500
, 


 47610
25000
34500 2
,HV
b
Z
pu
j
j
Z pu
SC 0568
.
0
012
.
0
47610
30
.
1704
18
.
575
,
, 




59
In power systems there are so many different elements such as Motors, Generators and Transformers with very
different sizes and nominal values.
To be able to compare the performances of a big and a small element, per unit system is used
Physical Components in the system are represented by a mathematical model.
Mathematical models of components are connected in exactly the same way as the physical components to
obtain the system representation.
Various physical components have different ratings or basis.
It is convenient to obtain the representation with respect to a common basis.
60
The numerical per unit value of any quantity is its ratio to the chosen base quantity of the same dimensions.
Thus a per unit quantity is a normalized quantity with respect to a chosen base value.
Percent is the per unit quantity multiplied by a 100
In the per-unit system of representation, device parameters tend to fall in a relatively fixed range, making
erroneous values prominent.
Ideal transformers are eliminated as circuit elements. This results in a large saving in component representation
and reduces computational burden.
The voltage magnitude throughout a given power system is relatively close to unity in the per-unit system for a
power system operating normally. This characteristic provides a useful check on the calculations.
61
The numerical per unit value of any quantity is its ratio to the chosen base quantity of the same dimensions.
In power system calculations the nominal voltage of lines and equipment is almost always known, so the voltage
is a convenient base value to choose.
The apparent power (volt-ampere) is usually chosen as a second base. In equipment this quantity is usually
known and makes a convenient base.
The choice of these two base quantities will automatically fix the base of current, impedance, and admittance.
In a system study, the volt-ampere base can be selected to be any convenient value such as 100 MVA, 200 MVA,
etc
The same volt-ampere base is used in all parts of the system. One base voltage in a certain part of the system is
selected arbitrarily. All other base voltages must be related to the arbitrarily selected one by the turns ratio of
the connecting transformers.
62
Power system quantities such as voltage, current and impedance are often expressed in per unit or percent of
specified values.
Per unit quantities are calculated as:
Quantity per unit =
Actual value
Base value of quantity
63
Per-Unit System
Assume:
Then compute base values for currents and impedances:
rated
b V
V 
rated
b S
S 
b
b
b
V
S
I 
b
b
b
b
b
S
V
I
V
Z
2


64
Per-Unit System
And the per-unit system is:
b
actual
u
p
V
V
V 
.
.
b
actual
u
p
I
I
I 
.
.
b
actual
u
p
S
S
S 
.
.
b
actual
u
p
Z
Z
Z 
.
.
%
100
% .
. 
 u
p
Z
Z
Percent of base Z
65
Per-unit System for 1-  Circuits
One-phase circuits
LV
bLV V
V 



 I
V
S
Sb 
 
1
where
neutral
to
line
V
V 



current
line
I
I 


HV
bHV V
V 

bLV
b
bLV
V
S
I 
bHV
b
bHV
V
S
I 
66
Per-unit System for 1-  Circuits
b
bLV
bLV
bLV
bLV
S
V
I
V
Z
2
)
(


b
bHV
bHV
bHV
bHV
S
V
I
V
Z
2
)
(


*
pu
pu
b
pu I
V
S
S
S 


cos
pu
pu
b
pu I
V
S
P
P 


sin
pu
pu
b
pu I
V
S
Q
Q 

67
Transformation Between Bases
Selection 1
A
b V
V 
1
A
b S
S 
1
Then
1
1
b
L
pu
Z
Z
Z 
1
2
1
1
b
b
b
S
V
Z 
Selection 2
B
b V
V 
2
B
b S
S 
2
Then
2
2
b
L
pu
Z
Z
Z 
2
2
2
2
b
b
b
S
V
Z 
68
Transformation Between Bases
2
2
2
1
2
1
2
1
1
2
1
2
b
b
b
b
b
b
L
b
b
L
pu
pu
V
S
S
V
Z
Z
Z
Z
Z
Z
Z
Z























1
2
2
2
1
1
2
b
b
b
b
pu
pu
S
S
V
V
Z
Z
“1” – old
“2” - new


















old
b
new
b
new
b
old
b
old
pu
new
pu
S
S
V
V
Z
Z
,
,
2
,
,
,
,
69
Transformation Between Bases
Generally per-unit values given to another base can be converted
to new base by by the equations:
2
1
1
_
_
_
2
_
_
_ )
,
,
(
)
,
,
(
base
base
base
on
pu
base
on
pu
S
S
S
Q
P
S
Q
P 
2
1
1
_
_
_
2
_
_
_
base
base
base
on
pu
base
on
pu
V
V
V
V 
1
2
2
2
2
1
1
_
_
_
2
_
_
_
)
(
)
(
)
,
,
(
)
,
,
(
base
base
base
base
base
on
pu
base
on
pu
S
V
S
V
Z
X
R
Z
X
R 
When performing calculations in a power system, every per-unit value
must be converted to the same base.
70
Ideal Transformer


 2
2
1
1 I
N
I
N 
2
2
1
1
N
V
N
V

0

Rc
0

Rw
71
*
2
2
2
*
1
1
1 I
V
S
I
V
S 


72
Real Transformer
000
,
10

 0

Rw 0

Rc
C
M
E I
I
I 
 M
M L
X 

2
2
2
1 ' N
I
I
N  Where LM is the
magnetizing inductance
73
t
V
V m
s 
cos

m
s
JX
V 


0
Im 


 90
m
s
X
V
74
RP + JXP
RC JXM
VP VS
NS
NP
+
+
-
-
RS + JXS
Schematic of a Real Transformer
75
s
s
p
s
N
V
N
V

'
s
s
p
s I
N
N
I 
'
s
p
N
N
a 
2
2
)
(
s
p
N
N
a  s
s
p
s V
N
N
V )
(
' 
S
S aV
V 
'
S
P
s
S I
N
N
I 
'
a
I
I
s
s 
'
Referring to primary side
JXM
RC
RP + JXP a2RS + Ja2XS
V’s
+
-
+
-
VP
VS
+
-
NS
NP
Is’ Is
76
Referring to secondary side
p
p aI
I 
'
p
p
s
p V
N
N
V 
'
s
p
p
p
N
V
N
V '
 p
s
p
p I
N
N
I '

a
V
V p
p 
'
IP
VP
+
-
I’P RP/a2 + JXP/a2 RS + JXS
+
-
VS
JXM/a2
RC/a2
IS
NS
NP
VP’
77
Approximate Equivalent circuit
Place the magnetizing branch at the primary side
VP VS
+ +
- -
JXM
RC
IE
RP+JXP RS+JXS
JXM
RC
VP
-
+
+
VS
-
NP NS
NP NS
REQP=RP+a2RS
XEQP=XP+a2XS
REQ+JXEQ
Original
Circuit
Looking
From
primary
78
a
V
V
p
p 
' s
p
EQS R
a
R
R 
 2
p
p aI
I 
' s
P
EQS X
a
X
X 
 2
Place the magnetizing branch at the primary side
VP VS
+ +
- -
JXM/a2
RC/a2
REQ+JXEQ
V’P
+
-
IE
NP NS
I’P
IP
Looking
From
Secondary
79
LOAD
FULL
e I
I _
)
05
.
0
(

s
P
EQP R
a
R
R 2


s
P
EQP X
a
X
X 2


c
m R
X || Very Large
REQP+JXEQP
VP VS
+ +
- -
IP IS
NP NS
I’S=IS/a
80
s
P
EQS R
a
R
R 
 2
s
P
EQS X
a
X
X 
 2
IP
VP VS
IS
REQS+JXEQS
V’P
+ +
- -
81
240
480
2
240
480


a
10
)
240
480
(
' 2
2

 L
L R
a
R 40
)
10
(
4 

Example
From High Voltage Side
Refine
Ideal Transformer
100VA

10
L
R
82
4
10
10
' 2


a
R L
2
240
480


a
Define
From Low Voltage Side
From Low Voltage Side R’L=?

10
L
R
480
240
480
240
R’L
83
4
.
)
1
(.
4
' 2


 L
L X
a
X
2
240
480


a
From High Voltage Side
J 0.1

10
L
R
480
240
XL
84
Per-unit System for 1- Transformer
Consider the equivalent circuit of transformer referred to LV side and
HV side shown below:
LV
V HV
V LV
V HV
V
S
S jX
R 
1
N 2
N
2
2
a
X
j
a
R S
S

(1) Referred to LV side (2) Referred to HV side
Define 1
2
1



N
N
V
V
a
HV
LV
S
85
Per-unit System for 1- Transformer
Choose:
rated
LV
b V
V ,
1 
rated
b S
S 
Compute:
1
1
2
1
b
b
LV
HV
b V
a
V
V
V
V 

b
b
b
S
V
Z
2
1
1 
b
b
b
S
V
Z
2
2
2 
2
2
1
2
1
2
2
2
1
2
1
)
1
(
a
V
a
V
V
V
Z
Z
b
b
b
b
b
b



Normally choose rated
values as base values
86
Per-unit System for 1- Transformer
Per-unit impedances are:
1
1
.
.
b
S
S
u
p
Z
jX
R
Z


1
2
1
2
2
2
2
2
2
.
.
b
S
S
b
S
S
b
S
S
u
p
Z
jX
R
a
Z
a
jX
a
R
Z
a
jX
a
R
Z






So:
2
.
.
1
.
. u
p
u
p Z
Z 
Per-unit equivalent
circuits of transformer
referred to LV side and
HV side are identical !!
87
Per-unit Eq. Circuit for 1- Transformer
LV
V HV
V
S
S jX
R 
1
N 2
N
Fig 1. Eq Ckt referred to LV side
1
2
1



N
N
V
V
a
HV
LV
S
1
b
Z
1
b
V 2
b
V
Fig 2. Per-unit Eq Ckt referred to LV side Fig 3.
pu
S
Z ,
1
:
1
1
b
V 2
b
V
pu
S
Z ,
1
b
V 2
b
V
b
S
88
Per-unit Eq. Circuit for 1- Transformer
LV
V HV
V
1
N 2
N
Fig 4. Eq Ckt referred to HV side
1
2
1



N
N
V
V
a
HV
LV
S
2
b
Z
2
b
V
Fig 5. Per-unit Eq Ckt referred to HV side Fig 6.
pu
S
Z ,
1
:
1
1
b
V 2
b
V
pu
S
Z ,
1
b
V 2
b
V
1
b
V
2
2
a
X
j
a
R S
S

b
S
89
Voltage Regulation
%
100






load
full
load
full
load
no
V
V
V
VR
Voltage regulation is defined as:
%
100
,
,
,






load
full
pu
load
full
pu
load
no
pu
V
V
V
VR
In per-unit system:
Vfull-load: Desired load voltage at full load. It may be equal
to, above, or below rated voltage
Vno-load: The no load voltage when the primary voltage is
the desired voltage in order the secondary voltage
be at its desired value at full load
90
Voltage Regulation
%
100






load
full
load
full
load
no
V
V
V
VR
Voltage regulation is defined as:
%
100
,
,
,






load
full
pu
load
full
pu
load
no
pu
V
V
V
VR
In per-unit system:
Vfull-load: Desired load voltage at full load. It may be equal
to, above, or below rated voltage
Vno-load: The no load voltage when the primary voltage is
the desired voltage in order the secondary voltage
be at its desired value at full load
91
Voltage Regulation Example
A single-phase transformer rated 200-kVA, 200/400-V, and
10% short circuit reactance. Compute the VR when the
transformer is fully loaded at unity PF and rated voltage
400-V.
Solution:
Fig 7. Per-unit equivalent circuit
P
V S
V
1
.
0
j
load
S
V
Vb 400
2 
kVA
Sb 200

pu
S pu
load 0
1
, 

pu
j
X pu
S 1
.
0
, 
S
X
92
Voltage Regulation Example
Rated voltage:
pu
V pu
S 0
0
.
1
, 

pu
j
j
X
I
V
V
o
pu
S
pu
pu
S
pu
P
7
.
5
001
.
1
1
.
0
1
1
.
0
0
0
.
1
0
0
.
1
,
,
,











pu
V
S
I
pu
S
pu
load
pu
load 0
0
.
1
0
0
.
1
0
0
.
1
*
*
,
,
, 



















93
Voltage Regulation Example
pu
V
V o
pu
P
load
no
pu 7
.
5
001
.
1
,
, 



pu
V
V pu
S
load
full
pu 0
0
.
1
,
, 



Secondary side:
Voltage regulation:
%
1
.
0
%
100
0
.
1
0
.
1
001
.
1
%
100
,
,
,










load
full
pu
load
full
pu
load
no
pu
V
V
V
VR
94
Select Vbase in generator circuit and Sb=100MVA,
compute p.u. equivalent circuit.
Problem 1
G

100
j
20 kV 22kV/220kV
80MVA
14%
220kV/20kV
50MVA
10%
50MVA
0.8 PF
lagging
95
Per-unit System for 3- Circuits
Three-phase circuits
LV
L
bLV V
V ,




 I
V
S
S
Sb 3
3 1
3 

 

where
3
/
)
(line
L
neutral
to
line V
V
V 
 


L
current
line I
I
I 
 

HV
L
bHV V
V ,

L
L
b I
V
S 3

bHV
bHV
bLV
bLV
b I
V
I
V
S 3
3 

96
Per-unit System for 3- Circuits
b
bLV
b
bLV
bLV
LV
LV
bLV
S
V
S
V
V
I
V
Z
2
)
(
3
3





b
bHV
bHV
S
V
Z
2
)
(

*
*
3
3
3
pu
pu
b
b
L
L
b
pu I
V
I
V
I
V
S
S
S 



bLV
b
bLV
V
S
I
3

bHV
b
bHV
V
S
I
3

97
Three 25-kVA, 34500/277-V transformers
connected in -Y. Short-circuit test on high voltage
side:
Determine the per-unit equivalent circuit of the
transformer.
Per-unit System for 3- Transformer
V
V SC
Line 2010
, 
A
I SC
Line 26
.
1
, 
W
P SC 912
,
3 

98
(a) Using Y-equivalent
Per-unit System for 3- Transformer
3
34500
277
S
S jX
R 
VA
Sb 25000

3
2010

SC
V
26
.
1

SC
I


 00
.
921
26
.
1
47
.
1160
SC
Z
V
VSC 47
.
1160
3
2010


99
So
Per-unit System for 3- Transformer





 86
.
900
48
.
191
921 2
2
2
2
S
SC
S R
Z
X
W
P 304
3
912


 


 48
.
191
26
.
1
304
2
2
SC
S
I
P
R 


 86
.
900
48
.
191 j
ZSC
VA
Sb 25000
 V
V HV
b 58
.
19918
3
34500
, 



 99
.
15869
25000
58
.
19918 2
,HV
b
Z
pu
j
j
Z Y
pu
SC 0568
.
0
012
.
0
99
.
15869
86
.
900
48
.
191
,
, 



100
(b) Using -equivalent
Per-unit System for 3- Transformer
34500 277

,
SC
Z
VA
Sb 25000

2010

SC
V
3
26
.
1

SC
I



 79
.
2764
727
.
0
2010
,
SC
Z
V
VSC 2010
 A
ISC 727
.
0
3
26
.
1


101
So
Per-unit System for 3- Transformer





 

 30
.
2704
18
.
575
79
.
2764 2
2
2
,
2
,
, S
SC
S R
Z
X
W
P 304
3
912


 



 18
.
575
727
.
0
304
2
2
,
SC
S
I
P
R 


 86
.
900
48
.
191 j
ZSC
VA
Sb 25000
 V
V HV
b 34500
, 


 47610
25000
34500 2
,HV
b
Z
pu
j
j
Z pu
SC 0568
.
0
012
.
0
47610
30
.
1704
18
.
575
,
, 




102
Related Materials in Textbook
(1) Section 2.6 and 2.7, page 83~90, Chapman
book
(2) Section 2.10, page 113~116, Chapman book
103
•More meaningful when comparing different voltage levels
•The per unit equivalent impedance of the transformer remains the same when referred to either the primary or the
secondary side
•The per unit impedance of a transformer in a three-phase system is the same, regardless the winding connection
•The per unit method is independent of voltage changes and phase shifts through transformers
•Manufacturers usually specify the impedance of the equipment in per unit or percent on the base of its nameplate
ratings
•The per unit impedance values of various ratings of equipment lie in a narrow range
Transformer equivalent circuit can be simplified by properly specifying base quantities.
Give a clear idea of relative magnitudes of various quantities such as voltage, current, power and impedance.
Avoid possibility of making serious calculation error when referring quantities from one side of transformer to
the other
Per-unit impedances of electrical equipment of similar type usually lie within a narrow numerical range when the
equipment ratings are used as base values.
Manufacturers usually specify the impedances of machines and transformers in per-unit or percent in
nameplate rating
The circuit laws are valid in per unit systems, and the power and voltage equation are simplified since the factor
√3 and 3 are eliminated in the per-unit systems.
Ideal for the computerized analysis and simulation of complex power system problems.

More Related Content

What's hot

Two reaction theory and slip test
Two reaction theory and slip testTwo reaction theory and slip test
Two reaction theory and slip test
karthi1017
 
Per unit analysis
Per unit analysisPer unit analysis
Per unit analysis
Revathi Subramaniam
 
Control of active power & reactive power
Control of active power & reactive powerControl of active power & reactive power
Control of active power & reactive power
Pavithran Selvam
 
power system transients.pptx
power system transients.pptxpower system transients.pptx
power system transients.pptx
sameed4
 
Modular Multilevel Converter MMC tutorial
Modular Multilevel Converter MMC tutorialModular Multilevel Converter MMC tutorial
Modular Multilevel Converter MMC tutorial
Ghazal Falahi
 
Control of hvdc system
Control of hvdc systemControl of hvdc system
Control of hvdc system
Aazim Rasool
 
Power System Stability Introduction
Power System Stability IntroductionPower System Stability Introduction
Power System Stability Introduction
Power System Operation
 
DC DC Converter
DC DC ConverterDC DC Converter
DC DC Converter
Mengstu Fentaw
 
Power flow analysis
Power flow analysisPower flow analysis
Power flow analysis
Revathi Subramaniam
 
Load flow studies 19
Load flow studies 19Load flow studies 19
Load flow studies 19
Asha Anu Kurian
 
Per unit calculation
Per unit calculationPer unit calculation
Per unit calculation
obaidurbd
 
PPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITYPPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITY
MAHESH CHAND JATAV
 
Sssc
SsscSssc
Per unit representation
Per unit representationPer unit representation
Per unit representation
Md. Rimon Mia
 
industrial training on 132 kv substation
industrial training on 132 kv substationindustrial training on 132 kv substation
industrial training on 132 kv substation
pk130992
 
Load flow study
Load flow studyLoad flow study
Load flow study
Asif Jamadar
 
Various Bus-Bar Arrangements.
Various Bus-Bar Arrangements.Various Bus-Bar Arrangements.
Various Bus-Bar Arrangements.
SaiSampath16
 
Three level inverter
Three level inverterThree level inverter
Three level inverter
Vinay Singh
 
Introduction to reactive power control in electrical power
Introduction to reactive power control in electrical powerIntroduction to reactive power control in electrical power
Introduction to reactive power control in electrical power
Dr.Raja R
 
3 reactive power and voltage control
3 reactive power and voltage control3 reactive power and voltage control
3 reactive power and voltage control
8141245710
 

What's hot (20)

Two reaction theory and slip test
Two reaction theory and slip testTwo reaction theory and slip test
Two reaction theory and slip test
 
Per unit analysis
Per unit analysisPer unit analysis
Per unit analysis
 
Control of active power & reactive power
Control of active power & reactive powerControl of active power & reactive power
Control of active power & reactive power
 
power system transients.pptx
power system transients.pptxpower system transients.pptx
power system transients.pptx
 
Modular Multilevel Converter MMC tutorial
Modular Multilevel Converter MMC tutorialModular Multilevel Converter MMC tutorial
Modular Multilevel Converter MMC tutorial
 
Control of hvdc system
Control of hvdc systemControl of hvdc system
Control of hvdc system
 
Power System Stability Introduction
Power System Stability IntroductionPower System Stability Introduction
Power System Stability Introduction
 
DC DC Converter
DC DC ConverterDC DC Converter
DC DC Converter
 
Power flow analysis
Power flow analysisPower flow analysis
Power flow analysis
 
Load flow studies 19
Load flow studies 19Load flow studies 19
Load flow studies 19
 
Per unit calculation
Per unit calculationPer unit calculation
Per unit calculation
 
PPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITYPPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITY
 
Sssc
SsscSssc
Sssc
 
Per unit representation
Per unit representationPer unit representation
Per unit representation
 
industrial training on 132 kv substation
industrial training on 132 kv substationindustrial training on 132 kv substation
industrial training on 132 kv substation
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Various Bus-Bar Arrangements.
Various Bus-Bar Arrangements.Various Bus-Bar Arrangements.
Various Bus-Bar Arrangements.
 
Three level inverter
Three level inverterThree level inverter
Three level inverter
 
Introduction to reactive power control in electrical power
Introduction to reactive power control in electrical powerIntroduction to reactive power control in electrical power
Introduction to reactive power control in electrical power
 
3 reactive power and voltage control
3 reactive power and voltage control3 reactive power and voltage control
3 reactive power and voltage control
 

Similar to Per unit systems in power systems

UNIT -I per unit calculation,EQUIVALENT CIRCUIT
UNIT -I per unit calculation,EQUIVALENT CIRCUITUNIT -I per unit calculation,EQUIVALENT CIRCUIT
UNIT -I per unit calculation,EQUIVALENT CIRCUIT
Abinaya Saraswathy T
 
1_Intro + Per Unit.pdf
1_Intro + Per Unit.pdf1_Intro + Per Unit.pdf
1_Intro + Per Unit.pdf
LiewChiaPing
 
Lecture 8
Lecture 8Lecture 8
Lecture 8
Forward2025
 
fdocuments.in_chapter-2-the-per-unit-system-new.ppt
fdocuments.in_chapter-2-the-per-unit-system-new.pptfdocuments.in_chapter-2-the-per-unit-system-new.ppt
fdocuments.in_chapter-2-the-per-unit-system-new.ppt
vMty
 
per_unit_system.pptx
per_unit_system.pptxper_unit_system.pptx
per_unit_system.pptx
PaylamKanal
 
BEF 23803 - Lecture 14 - Per Unit Analysis of Three Phase System.ppt
BEF 23803 - Lecture 14 - Per Unit Analysis of Three Phase System.pptBEF 23803 - Lecture 14 - Per Unit Analysis of Three Phase System.ppt
BEF 23803 - Lecture 14 - Per Unit Analysis of Three Phase System.ppt
LiewChiaPing
 
Lab sheet
Lab sheetLab sheet
Lab sheet
rahul9374
 
Emec 1 bank nee 301
Emec 1 bank nee 301Emec 1 bank nee 301
Emec 1 bank nee 301
Ravi Anand
 
US3153766.pdf
US3153766.pdfUS3153766.pdf
US3153766.pdf
oldjanus
 
Multi-KilowattFlybackConverters.pptx
Multi-KilowattFlybackConverters.pptxMulti-KilowattFlybackConverters.pptx
Multi-KilowattFlybackConverters.pptx
RickMaity
 
Single phase transformer
Single phase transformerSingle phase transformer
Single phase transformer
Jayaraju Gaddala
 
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
IJMER
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
 
Lab 7 diode with operational amplifiers by kehali b. haileselassie and kou
Lab 7  diode with operational amplifiers by kehali b. haileselassie and kouLab 7  diode with operational amplifiers by kehali b. haileselassie and kou
Lab 7 diode with operational amplifiers by kehali b. haileselassie and kou
kehali Haileselassie
 
Chapter 6.ppt
Chapter 6.pptChapter 6.ppt
Chapter 6.ppt
abdirahman gure
 
Fundamentals of power system
Fundamentals of power systemFundamentals of power system
Fundamentals of power system
Balaram Das
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
 
DC Power Supply with a Full-Wave Bridge Rectifier
DC Power Supply with a Full-Wave Bridge RectifierDC Power Supply with a Full-Wave Bridge Rectifier
DC Power Supply with a Full-Wave Bridge Rectifier
Kyla Marino
 
Transformer part-1
Transformer part-1Transformer part-1
Transformer part-1
NizarTayem2
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
Zahid Yousaf
 

Similar to Per unit systems in power systems (20)

UNIT -I per unit calculation,EQUIVALENT CIRCUIT
UNIT -I per unit calculation,EQUIVALENT CIRCUITUNIT -I per unit calculation,EQUIVALENT CIRCUIT
UNIT -I per unit calculation,EQUIVALENT CIRCUIT
 
1_Intro + Per Unit.pdf
1_Intro + Per Unit.pdf1_Intro + Per Unit.pdf
1_Intro + Per Unit.pdf
 
Lecture 8
Lecture 8Lecture 8
Lecture 8
 
fdocuments.in_chapter-2-the-per-unit-system-new.ppt
fdocuments.in_chapter-2-the-per-unit-system-new.pptfdocuments.in_chapter-2-the-per-unit-system-new.ppt
fdocuments.in_chapter-2-the-per-unit-system-new.ppt
 
per_unit_system.pptx
per_unit_system.pptxper_unit_system.pptx
per_unit_system.pptx
 
BEF 23803 - Lecture 14 - Per Unit Analysis of Three Phase System.ppt
BEF 23803 - Lecture 14 - Per Unit Analysis of Three Phase System.pptBEF 23803 - Lecture 14 - Per Unit Analysis of Three Phase System.ppt
BEF 23803 - Lecture 14 - Per Unit Analysis of Three Phase System.ppt
 
Lab sheet
Lab sheetLab sheet
Lab sheet
 
Emec 1 bank nee 301
Emec 1 bank nee 301Emec 1 bank nee 301
Emec 1 bank nee 301
 
US3153766.pdf
US3153766.pdfUS3153766.pdf
US3153766.pdf
 
Multi-KilowattFlybackConverters.pptx
Multi-KilowattFlybackConverters.pptxMulti-KilowattFlybackConverters.pptx
Multi-KilowattFlybackConverters.pptx
 
Single phase transformer
Single phase transformerSingle phase transformer
Single phase transformer
 
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Lab 7 diode with operational amplifiers by kehali b. haileselassie and kou
Lab 7  diode with operational amplifiers by kehali b. haileselassie and kouLab 7  diode with operational amplifiers by kehali b. haileselassie and kou
Lab 7 diode with operational amplifiers by kehali b. haileselassie and kou
 
Chapter 6.ppt
Chapter 6.pptChapter 6.ppt
Chapter 6.ppt
 
Fundamentals of power system
Fundamentals of power systemFundamentals of power system
Fundamentals of power system
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
DC Power Supply with a Full-Wave Bridge Rectifier
DC Power Supply with a Full-Wave Bridge RectifierDC Power Supply with a Full-Wave Bridge Rectifier
DC Power Supply with a Full-Wave Bridge Rectifier
 
Transformer part-1
Transformer part-1Transformer part-1
Transformer part-1
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
 

Recently uploaded

2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
PuktoonEngr
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
awadeshbabu
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
nooriasukmaningtyas
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
Ratnakar Mikkili
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
Divyam548318
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
anoopmanoharan2
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
MIGUELANGEL966976
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 

Recently uploaded (20)

2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 

Per unit systems in power systems

  • 1. 1 POWER SYSTEMS SUBJECT NAME : POWER SYSTEMS CHAPTER NO: 1 CHAPTER NAME : POWER SYSTEM FUNDAMENTALS LECTURE : 1
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13. 1. Basic Concepts 2. Synchronous Machines and Transformer Modelling 3. Transmission Line Modelling 4. Power Flow Analysis 5. Fault Analysis 6. Power System Stability 7. Economic Operation of Power System,
  • 14.
  • 15. G M 50 MVA 11 kV /132kV 50 MVA 11 kV 50 MVA 132kV /11 kV 50 MVA 11 kV
  • 16. G M 50 MVA 11 kV /132kV 50 MVA 11 kV 50 MVA 132kV /11 kV 50 MVA 11 kV
  • 17. G M 50 MVA 11 kV /132kV 50 MVA 11 kV 50 MVA 132kV /11 kV 50 MVA 11 kV
  • 18. G M 50 MVA 11 kV /132kV 50 MVA 11 kV 50 MVA 132kV /11 kV 50 MVA 11 kV
  • 19. G M 50 MVA 11 kV /132kV 50 MVA 11 kV 50 MVA 132kV /11 kV 50 MVA 11 kV
  • 20. G M 50 MVA 11 kV /132kV 50 MVA 11 kV 50 MVA 132kV /11 kV 50 MVA 11 kV 0.15 PU 0.12 PU 0.08 PU 0.08 PU 0.12 PU
  • 21. G M 50 MVA 11 kV /132kV 50 MVA 11 kV 50 MVA 132kV /11 kV 50 MVA 11 kV 0.15 PU 0.12 PU 0.08 PU 0.08 PU 0.12 PU
  • 22. G M 50 MVA 11 kV /132kV 50 MVA 11 kV 50 MVA 132kV /11 kV 50 MVA 11 kV 0.15 PU 0.12 PU 0.08 PU 0.08 PU 0.12 PU
  • 23. G M 50 MVA 11 kV /132kV 50 MVA 11 kV 50 MVA 132kV /11 kV 50 MVA 11 kV 0.15 PU 0.12 PU 0.08 PU 0.08 PU 0.12 PU
  • 24. 24
  • 25. 25
  • 26. 26
  • 27. 27 Per-Unit System In the per-unit system, the voltages, currents, powers, impedances, and other electrical quantities are expressed on a per- unit basis by the equation: Quantity per unit = Actual value Base value of quantity It is customary to select two base quantities to define a given per- unit system. The ones usually selected are voltage and power.
  • 28. 28 Per-Unit System Assume: Then compute base values for currents and impedances: rated b V V  rated b S S  b b b V S I  b b b b b S V I V Z 2  
  • 29. 29 Per-Unit System And the per-unit system is: b actual u p V V V  . . b actual u p I I I  . . b actual u p S S S  . . b actual u p Z Z Z  . . % 100 % . .   u p Z Z Percent of base Z rated b V V  rated b S S  b b b V S I  b b b b b S V I V Z 2  
  • 30. 30 Example 1 An electrical lamp is rated 120 volts, 500 watts. Compute the per- unit and percent impedance of the lamp. Give the p.u. equivalent circuit. Solution: (1) Compute lamp resistance (2) Select base quantities (3) Compute base impedance (4) Find the per-unit impedance 120 volts 500 watts
  • 31. 31 Example 1 An electrical lamp is rated 120 volts, 500 watts. Compute the per- unit and percent impedance of the lamp. Give the p.u. equivalent circuit. Solution: (1) Compute lamp resistance power factor = 1.0       8 . 28 500 ) 120 ( 2 2 2 P V R R V P    0 8 . 28 Z 120 volts 500 watts
  • 32. 32 Example 1 (2) Select base quantities (3) Compute base impedance (4) The per-unit impedance is: VA Sb 500  V Vb 120      8 . 28 500 ) 120 ( 2 2 b b b S V Z . . 0 1 8 . 28 0 8 . 28 . . u p Z Z Z b u p     
  • 33. 33 Example 1 (5) Percent impedance: (6) Per-unit equivalent circuit: % 100 %  Z . . 0 1 u p Z   . . 0 1 u p VS  
  • 34. 34 Example 2 An electrical lamp is rated 120 volts, 500 watts. If the voltage applied across the lamp is twice the rated value, compute the current that flows through the lamp. Use the per-unit method. Solution: (1) Compute lamp resistance (2) Select base quantities (3) Compute base impedance (4) Find the per-unit impedance 120 V 500 W 2 X 120 V 240 V
  • 35. 35 Example 2 An electrical lamp is rated 120 volts, 500 watts. If the voltage applied across the lamp is twice the rated value, compute the current that flows through the lamp. Use the per-unit method. Solution: V Vb 120  . . 0 2 120 240 . . u p V V V b u p     . . 0 1 . . u p Z u p  
  • 36. 36 Example 2 The per-unit equivalent circuit is as follows: . . 0 1 u p Z   . . 0 2 u p VS   . . 0 2 0 1 0 2 . . . . . . u p Z V I u p u p u p       A V S I b b b 167 . 4 120 500    A I I I b u p actual 0 334 . 8 167 . 4 0 2 . .      
  • 37. 37 Per-unit System for 1-  Circuits One-phase circuits LV bLV V V      I V S Sb    1 where neutral to line V V     current line I I    HV bHV V V   bLV b bLV V S I  bHV b bHV V S I  Transformer
  • 38. 38 Per-unit System for 1-  Circuits b bLV bLV bLV bLV S V I V Z 2 ) (   b bHV bHV bHV bHV S V I V Z 2 ) (   * pu pu b pu I V S S S    cos pu pu b pu I V S P P    sin pu pu b pu I V S Q Q  
  • 39. 39 Transformation Between Bases Selection 1 A b V V  1 A b S S  1 Then 1 1 b L pu Z Z Z  1 2 1 1 b b b S V Z  Selection 2 B b V V  2 B b S S  2 Then 2 2 b L pu Z Z Z  2 2 2 2 b b b S V Z 
  • 41. 41 Transformation Between Bases Generally per-unit values given to another base can be converted to new base by by the equations: 2 1 1 _ _ _ 2 _ _ _ ) , , ( ) , , ( base base base on pu base on pu S S S Q P S Q P  2 1 1 _ _ _ 2 _ _ _ base base base on pu base on pu V V V V  1 2 2 2 2 1 1 _ _ _ 2 _ _ _ ) ( ) ( ) , , ( ) , , ( base base base base base on pu base on pu S V S V Z X R Z X R  When performing calculations in a power system, every per-unit value must be converted to the same base.
  • 42. 42 Per-unit System for 1- Transformer Consider the equivalent circuit of transformer referred to LV side and HV side shown below: LV V HV V LV V HV V S S jX R  1 N 2 N 2 2 a X j a R S S  (1) Referred to LV side (2) Referred to HV side Define 1 2 1    N N V V a HV LV S
  • 43. 43 Per-unit System for 1- Transformer Choose: rated LV b V V , 1  rated b S S  Compute: 1 1 2 1 b b LV HV b V a V V V V   b b b S V Z 2 1 1  b b b S V Z 2 2 2  2 2 1 2 1 2 2 2 1 2 1 ) 1 ( a V a V V V Z Z b b b b b b    Normally choose rated values as base values
  • 44. 44 Per-unit System for 1- Transformer Per-unit impedances are: 1 1 . . b S S u p Z jX R Z   1 2 1 2 2 2 2 2 2 . . b S S b S S b S S u p Z jX R a Z a jX a R Z a jX a R Z       So: 2 . . 1 . . u p u p Z Z  Per-unit equivalent circuits of transformer referred to LV side and HV side are identical !!
  • 45. 45 Per-unit Eq. Circuit for 1- Transformer LV V HV V S S jX R  1 N 2 N Fig 1. Eq Ckt referred to LV side 1 2 1    N N V V a HV LV S 1 b Z 1 b V 2 b V Fig 2. Per-unit Eq Ckt referred to LV side Fig 3. pu S Z , 1 : 1 1 b V 2 b V pu S Z , 1 b V 2 b V b S
  • 46. 46 Per-unit Eq. Circuit for 1- Transformer LV V HV V 1 N 2 N Fig 4. Eq Ckt referred to HV side 1 2 1    N N V V a HV LV S 2 b Z 2 b V Fig 5. Per-unit Eq Ckt referred to HV side Fig 6. pu S Z , 1 : 1 1 b V 2 b V pu S Z , 1 b V 2 b V 1 b V 2 2 a X j a R S S  b S
  • 47. 47 Voltage Regulation % 100       load full load full load no V V V VR Voltage regulation is defined as: % 100 , , ,       load full pu load full pu load no pu V V V VR In per-unit system: Vfull-load: Desired load voltage at full load. It may be equal to, above, or below rated voltage Vno-load: The no load voltage when the primary voltage is the desired voltage in order the secondary voltage be at its desired value at full load
  • 48. 48 Voltage Regulation Example A single-phase transformer rated 200-kVA, 200/400-V, and 10% short circuit reactance. Compute the VR when the transformer is fully loaded at unity PF and rated voltage 400-V. Solution: Fig 7. Per-unit equivalent circuit P V S V 1 . 0 j load S V Vb 400 2  kVA Sb 200  pu S pu load 0 1 ,   pu j X pu S 1 . 0 ,  S X
  • 49. 49 Voltage Regulation Example Rated voltage: pu V pu S 0 0 . 1 ,   pu j j X I V V o pu S pu pu S pu P 7 . 5 001 . 1 1 . 0 1 1 . 0 0 0 . 1 0 0 . 1 , , ,            pu V S I pu S pu load pu load 0 0 . 1 0 0 . 1 0 0 . 1 * * , , ,                    
  • 50. 50 Voltage Regulation Example pu V V o pu P load no pu 7 . 5 001 . 1 , ,     pu V V pu S load full pu 0 0 . 1 , ,     Secondary side: Voltage regulation: % 1 . 0 % 100 0 . 1 0 . 1 001 . 1 % 100 , , ,           load full pu load full pu load no pu V V V VR
  • 51. 51 Problem 1 Select Vbase in generator circuit and Sb=100MVA, compute p.u. equivalent circuit. G  100 j 20 kV 22kV/220kV 80MVA 14% 220kV/20kV 50MVA 10% 50MVA 0.8 PF lagging
  • 52. 52 Per-unit System for 3- Circuits Three-phase circuits LV L bLV V V ,      I V S S Sb 3 3 1 3      where 3 / ) (line L neutral to line V V V      L current line I I I     HV L bHV V V ,  L L b I V S 3  bHV bHV bLV bLV b I V I V S 3 3  
  • 53. 53 Per-unit System for 3- Circuits b bLV b bLV bLV LV LV bLV S V S V V I V Z 2 ) ( 3 3      b bHV bHV S V Z 2 ) (  * * 3 3 3 pu pu b b L L b pu I V I V I V S S S     bLV b bLV V S I 3  bHV b bHV V S I 3 
  • 54. 54 Per-unit System for 3- Transformer Three 25-kVA, 34500/277-V transformers connected in -Y. Short- circuit test on high voltage side: Determine the per-unit equivalent circuit of the transformer. V V SC Line 2010 ,  A I SC Line 26 . 1 ,  W P SC 912 , 3  
  • 55. 55 Per-unit System for 3- Transformer (a) Using Y-equivalent 3 34500 277 S S jX R  VA Sb 25000  3 2010  SC V 26 . 1  SC I    00 . 921 26 . 1 47 . 1160 SC Z V VSC 47 . 1160 3 2010  
  • 56. 56 Per-unit System for 3- Transformer So       86 . 900 48 . 191 921 2 2 2 2 S SC S R Z X W P 304 3 912        48 . 191 26 . 1 304 2 2 SC S I P R     86 . 900 48 . 191 j ZSC VA Sb 25000  V V HV b 58 . 19918 3 34500 ,      99 . 15869 25000 58 . 19918 2 ,HV b Z pu j j Z Y pu SC 0568 . 0 012 . 0 99 . 15869 86 . 900 48 . 191 , ,    
  • 57. 57 Per-unit System for 3- Transformer (b) Using -equivalent 34500 277  , SC Z VA Sb 25000  2010  SC V 3 26 . 1  SC I     79 . 2764 727 . 0 2010 , SC Z V VSC 2010  A ISC 727 . 0 3 26 . 1  
  • 58. 58 Per-unit System for 3- Transformer So          30 . 2704 18 . 575 79 . 2764 2 2 2 , 2 , , S SC S R Z X W P 304 3 912         18 . 575 727 . 0 304 2 2 , SC S I P R     86 . 900 48 . 191 j ZSC VA Sb 25000  V V HV b 34500 ,     47610 25000 34500 2 ,HV b Z pu j j Z pu SC 0568 . 0 012 . 0 47610 30 . 1704 18 . 575 , ,     
  • 59. 59 In power systems there are so many different elements such as Motors, Generators and Transformers with very different sizes and nominal values. To be able to compare the performances of a big and a small element, per unit system is used Physical Components in the system are represented by a mathematical model. Mathematical models of components are connected in exactly the same way as the physical components to obtain the system representation. Various physical components have different ratings or basis. It is convenient to obtain the representation with respect to a common basis.
  • 60. 60 The numerical per unit value of any quantity is its ratio to the chosen base quantity of the same dimensions. Thus a per unit quantity is a normalized quantity with respect to a chosen base value. Percent is the per unit quantity multiplied by a 100 In the per-unit system of representation, device parameters tend to fall in a relatively fixed range, making erroneous values prominent. Ideal transformers are eliminated as circuit elements. This results in a large saving in component representation and reduces computational burden. The voltage magnitude throughout a given power system is relatively close to unity in the per-unit system for a power system operating normally. This characteristic provides a useful check on the calculations.
  • 61. 61 The numerical per unit value of any quantity is its ratio to the chosen base quantity of the same dimensions. In power system calculations the nominal voltage of lines and equipment is almost always known, so the voltage is a convenient base value to choose. The apparent power (volt-ampere) is usually chosen as a second base. In equipment this quantity is usually known and makes a convenient base. The choice of these two base quantities will automatically fix the base of current, impedance, and admittance. In a system study, the volt-ampere base can be selected to be any convenient value such as 100 MVA, 200 MVA, etc The same volt-ampere base is used in all parts of the system. One base voltage in a certain part of the system is selected arbitrarily. All other base voltages must be related to the arbitrarily selected one by the turns ratio of the connecting transformers.
  • 62. 62 Power system quantities such as voltage, current and impedance are often expressed in per unit or percent of specified values. Per unit quantities are calculated as: Quantity per unit = Actual value Base value of quantity
  • 63. 63 Per-Unit System Assume: Then compute base values for currents and impedances: rated b V V  rated b S S  b b b V S I  b b b b b S V I V Z 2  
  • 64. 64 Per-Unit System And the per-unit system is: b actual u p V V V  . . b actual u p I I I  . . b actual u p S S S  . . b actual u p Z Z Z  . . % 100 % . .   u p Z Z Percent of base Z
  • 65. 65 Per-unit System for 1-  Circuits One-phase circuits LV bLV V V      I V S Sb    1 where neutral to line V V     current line I I    HV bHV V V   bLV b bLV V S I  bHV b bHV V S I 
  • 66. 66 Per-unit System for 1-  Circuits b bLV bLV bLV bLV S V I V Z 2 ) (   b bHV bHV bHV bHV S V I V Z 2 ) (   * pu pu b pu I V S S S    cos pu pu b pu I V S P P    sin pu pu b pu I V S Q Q  
  • 67. 67 Transformation Between Bases Selection 1 A b V V  1 A b S S  1 Then 1 1 b L pu Z Z Z  1 2 1 1 b b b S V Z  Selection 2 B b V V  2 B b S S  2 Then 2 2 b L pu Z Z Z  2 2 2 2 b b b S V Z 
  • 69. 69 Transformation Between Bases Generally per-unit values given to another base can be converted to new base by by the equations: 2 1 1 _ _ _ 2 _ _ _ ) , , ( ) , , ( base base base on pu base on pu S S S Q P S Q P  2 1 1 _ _ _ 2 _ _ _ base base base on pu base on pu V V V V  1 2 2 2 2 1 1 _ _ _ 2 _ _ _ ) ( ) ( ) , , ( ) , , ( base base base base base on pu base on pu S V S V Z X R Z X R  When performing calculations in a power system, every per-unit value must be converted to the same base.
  • 70. 70 Ideal Transformer    2 2 1 1 I N I N  2 2 1 1 N V N V  0  Rc 0  Rw
  • 72. 72 Real Transformer 000 , 10   0  Rw 0  Rc C M E I I I   M M L X   2 2 2 1 ' N I I N  Where LM is the magnetizing inductance
  • 73. 73 t V V m s  cos  m s JX V    0 Im     90 m s X V
  • 74. 74 RP + JXP RC JXM VP VS NS NP + + - - RS + JXS Schematic of a Real Transformer
  • 75. 75 s s p s N V N V  ' s s p s I N N I  ' s p N N a  2 2 ) ( s p N N a  s s p s V N N V ) ( '  S S aV V  ' S P s S I N N I  ' a I I s s  ' Referring to primary side JXM RC RP + JXP a2RS + Ja2XS V’s + - + - VP VS + - NS NP Is’ Is
  • 76. 76 Referring to secondary side p p aI I  ' p p s p V N N V  ' s p p p N V N V '  p s p p I N N I '  a V V p p  ' IP VP + - I’P RP/a2 + JXP/a2 RS + JXS + - VS JXM/a2 RC/a2 IS NS NP VP’
  • 77. 77 Approximate Equivalent circuit Place the magnetizing branch at the primary side VP VS + + - - JXM RC IE RP+JXP RS+JXS JXM RC VP - + + VS - NP NS NP NS REQP=RP+a2RS XEQP=XP+a2XS REQ+JXEQ Original Circuit Looking From primary
  • 78. 78 a V V p p  ' s p EQS R a R R   2 p p aI I  ' s P EQS X a X X   2 Place the magnetizing branch at the primary side VP VS + + - - JXM/a2 RC/a2 REQ+JXEQ V’P + - IE NP NS I’P IP Looking From Secondary
  • 79. 79 LOAD FULL e I I _ ) 05 . 0 (  s P EQP R a R R 2   s P EQP X a X X 2   c m R X || Very Large REQP+JXEQP VP VS + + - - IP IS NP NS I’S=IS/a
  • 80. 80 s P EQS R a R R   2 s P EQS X a X X   2 IP VP VS IS REQS+JXEQS V’P + + - -
  • 81. 81 240 480 2 240 480   a 10 ) 240 480 ( ' 2 2   L L R a R 40 ) 10 ( 4   Example From High Voltage Side Refine Ideal Transformer 100VA  10 L R
  • 82. 82 4 10 10 ' 2   a R L 2 240 480   a Define From Low Voltage Side From Low Voltage Side R’L=?  10 L R 480 240 480 240 R’L
  • 83. 83 4 . ) 1 (. 4 ' 2    L L X a X 2 240 480   a From High Voltage Side J 0.1  10 L R 480 240 XL
  • 84. 84 Per-unit System for 1- Transformer Consider the equivalent circuit of transformer referred to LV side and HV side shown below: LV V HV V LV V HV V S S jX R  1 N 2 N 2 2 a X j a R S S  (1) Referred to LV side (2) Referred to HV side Define 1 2 1    N N V V a HV LV S
  • 85. 85 Per-unit System for 1- Transformer Choose: rated LV b V V , 1  rated b S S  Compute: 1 1 2 1 b b LV HV b V a V V V V   b b b S V Z 2 1 1  b b b S V Z 2 2 2  2 2 1 2 1 2 2 2 1 2 1 ) 1 ( a V a V V V Z Z b b b b b b    Normally choose rated values as base values
  • 86. 86 Per-unit System for 1- Transformer Per-unit impedances are: 1 1 . . b S S u p Z jX R Z   1 2 1 2 2 2 2 2 2 . . b S S b S S b S S u p Z jX R a Z a jX a R Z a jX a R Z       So: 2 . . 1 . . u p u p Z Z  Per-unit equivalent circuits of transformer referred to LV side and HV side are identical !!
  • 87. 87 Per-unit Eq. Circuit for 1- Transformer LV V HV V S S jX R  1 N 2 N Fig 1. Eq Ckt referred to LV side 1 2 1    N N V V a HV LV S 1 b Z 1 b V 2 b V Fig 2. Per-unit Eq Ckt referred to LV side Fig 3. pu S Z , 1 : 1 1 b V 2 b V pu S Z , 1 b V 2 b V b S
  • 88. 88 Per-unit Eq. Circuit for 1- Transformer LV V HV V 1 N 2 N Fig 4. Eq Ckt referred to HV side 1 2 1    N N V V a HV LV S 2 b Z 2 b V Fig 5. Per-unit Eq Ckt referred to HV side Fig 6. pu S Z , 1 : 1 1 b V 2 b V pu S Z , 1 b V 2 b V 1 b V 2 2 a X j a R S S  b S
  • 89. 89 Voltage Regulation % 100       load full load full load no V V V VR Voltage regulation is defined as: % 100 , , ,       load full pu load full pu load no pu V V V VR In per-unit system: Vfull-load: Desired load voltage at full load. It may be equal to, above, or below rated voltage Vno-load: The no load voltage when the primary voltage is the desired voltage in order the secondary voltage be at its desired value at full load
  • 90. 90 Voltage Regulation % 100       load full load full load no V V V VR Voltage regulation is defined as: % 100 , , ,       load full pu load full pu load no pu V V V VR In per-unit system: Vfull-load: Desired load voltage at full load. It may be equal to, above, or below rated voltage Vno-load: The no load voltage when the primary voltage is the desired voltage in order the secondary voltage be at its desired value at full load
  • 91. 91 Voltage Regulation Example A single-phase transformer rated 200-kVA, 200/400-V, and 10% short circuit reactance. Compute the VR when the transformer is fully loaded at unity PF and rated voltage 400-V. Solution: Fig 7. Per-unit equivalent circuit P V S V 1 . 0 j load S V Vb 400 2  kVA Sb 200  pu S pu load 0 1 ,   pu j X pu S 1 . 0 ,  S X
  • 92. 92 Voltage Regulation Example Rated voltage: pu V pu S 0 0 . 1 ,   pu j j X I V V o pu S pu pu S pu P 7 . 5 001 . 1 1 . 0 1 1 . 0 0 0 . 1 0 0 . 1 , , ,            pu V S I pu S pu load pu load 0 0 . 1 0 0 . 1 0 0 . 1 * * , , ,                    
  • 93. 93 Voltage Regulation Example pu V V o pu P load no pu 7 . 5 001 . 1 , ,     pu V V pu S load full pu 0 0 . 1 , ,     Secondary side: Voltage regulation: % 1 . 0 % 100 0 . 1 0 . 1 001 . 1 % 100 , , ,           load full pu load full pu load no pu V V V VR
  • 94. 94 Select Vbase in generator circuit and Sb=100MVA, compute p.u. equivalent circuit. Problem 1 G  100 j 20 kV 22kV/220kV 80MVA 14% 220kV/20kV 50MVA 10% 50MVA 0.8 PF lagging
  • 95. 95 Per-unit System for 3- Circuits Three-phase circuits LV L bLV V V ,      I V S S Sb 3 3 1 3      where 3 / ) (line L neutral to line V V V      L current line I I I     HV L bHV V V ,  L L b I V S 3  bHV bHV bLV bLV b I V I V S 3 3  
  • 96. 96 Per-unit System for 3- Circuits b bLV b bLV bLV LV LV bLV S V S V V I V Z 2 ) ( 3 3      b bHV bHV S V Z 2 ) (  * * 3 3 3 pu pu b b L L b pu I V I V I V S S S     bLV b bLV V S I 3  bHV b bHV V S I 3 
  • 97. 97 Three 25-kVA, 34500/277-V transformers connected in -Y. Short-circuit test on high voltage side: Determine the per-unit equivalent circuit of the transformer. Per-unit System for 3- Transformer V V SC Line 2010 ,  A I SC Line 26 . 1 ,  W P SC 912 , 3  
  • 98. 98 (a) Using Y-equivalent Per-unit System for 3- Transformer 3 34500 277 S S jX R  VA Sb 25000  3 2010  SC V 26 . 1  SC I    00 . 921 26 . 1 47 . 1160 SC Z V VSC 47 . 1160 3 2010  
  • 99. 99 So Per-unit System for 3- Transformer       86 . 900 48 . 191 921 2 2 2 2 S SC S R Z X W P 304 3 912        48 . 191 26 . 1 304 2 2 SC S I P R     86 . 900 48 . 191 j ZSC VA Sb 25000  V V HV b 58 . 19918 3 34500 ,      99 . 15869 25000 58 . 19918 2 ,HV b Z pu j j Z Y pu SC 0568 . 0 012 . 0 99 . 15869 86 . 900 48 . 191 , ,    
  • 100. 100 (b) Using -equivalent Per-unit System for 3- Transformer 34500 277  , SC Z VA Sb 25000  2010  SC V 3 26 . 1  SC I     79 . 2764 727 . 0 2010 , SC Z V VSC 2010  A ISC 727 . 0 3 26 . 1  
  • 101. 101 So Per-unit System for 3- Transformer          30 . 2704 18 . 575 79 . 2764 2 2 2 , 2 , , S SC S R Z X W P 304 3 912         18 . 575 727 . 0 304 2 2 , SC S I P R     86 . 900 48 . 191 j ZSC VA Sb 25000  V V HV b 34500 ,     47610 25000 34500 2 ,HV b Z pu j j Z pu SC 0568 . 0 012 . 0 47610 30 . 1704 18 . 575 , ,     
  • 102. 102 Related Materials in Textbook (1) Section 2.6 and 2.7, page 83~90, Chapman book (2) Section 2.10, page 113~116, Chapman book
  • 103. 103 •More meaningful when comparing different voltage levels •The per unit equivalent impedance of the transformer remains the same when referred to either the primary or the secondary side •The per unit impedance of a transformer in a three-phase system is the same, regardless the winding connection •The per unit method is independent of voltage changes and phase shifts through transformers •Manufacturers usually specify the impedance of the equipment in per unit or percent on the base of its nameplate ratings •The per unit impedance values of various ratings of equipment lie in a narrow range Transformer equivalent circuit can be simplified by properly specifying base quantities. Give a clear idea of relative magnitudes of various quantities such as voltage, current, power and impedance. Avoid possibility of making serious calculation error when referring quantities from one side of transformer to the other Per-unit impedances of electrical equipment of similar type usually lie within a narrow numerical range when the equipment ratings are used as base values. Manufacturers usually specify the impedances of machines and transformers in per-unit or percent in nameplate rating The circuit laws are valid in per unit systems, and the power and voltage equation are simplified since the factor √3 and 3 are eliminated in the per-unit systems. Ideal for the computerized analysis and simulation of complex power system problems.