SlideShare a Scribd company logo
1 of 82
SCHOOL OF ARCHITECTURE, BUILDING &
DESIGN
Bachelor of Science (Honours) (Architecture)
Building Structures (ARC 2522/2523)
Project 2: Structural Analysis of a Bungalow
Tutor:
Mr Azim Sulaiman
Team Members:
EVELIN DEVINA 0322176
LIM JOE ONN 0318679
ONG SENG PENG 0319016
1
TABLE OF CONTENTS
Introduction to Bungalow
Floor Plans
• Ground Floor
• First Floor
Structural Plans
• Foundation Plan
• Ground Floor Plan
• First Floor Plan
• Roof Plan
Structural 3D model
Design Brief
• Assumed Material Weight
• Assumed Live Load
Beam Analysis Report
• Load Distribution Plans
• Load Diagram
• Bending Moment Diagram
• Shear Force Diagram
Column Analysis Report
• Load Distribution Plans for Column Design
• Estimation of Column Load
• Suggested Column Size
Conclusion
2
The proposed bungalow is built to accommodate the needs of a family. With an
estimated total built up area of 450 square meters, its interior spaces include a
living hall, a dining area, two kitchens, a guest room, three bathrooms, a master
bedroom, two bedrooms and a storage space.
Typical to modern day residential houses, its structure consists of basic key
components of columns and beams which functions to support its own weight.
Basic procedures of building structure design are recognized, executed and
implemented. A structural proposal is produced to ensure the bungalow’s
structural integrity, guaranteeing the safety of its inhabitants.
INTRODUCTION TO BUNGALOW
3
ARCHITECTURAL PLANS
4
STRUCTURAL PLANS
5
STRUCTURAL PLANS
6
LOAD DISTRIBUTION PLANS
7
LIVE LOAD PLANS
8
STRUCTURAL 3D MODEL
9
STRUCTURAL 3D MODEL
10
Dead Loads of Structure (Constant)
Density of concrete = 24 kN/m3
Density of brick = 19 kN/m3
Dead load of roof = 1.0 kN/m2
(According to UBBL)
Dead load factor = 1.4
Structure Self-weight Calculation
Concrete beam
self-weight
Cross-sectional area = width x height of the beam
= 0.2m x 0.3m = 0.06m2
Beam self-weight per meter length
= cross-sectional area x density of concrete
= 0.06m2 x 24 kN/m3 = 1.44 kN/m
Brick wall self-
weight
Wall self-weight per meter length
= thickness x height x density of brick wall
= 0.15m x 3.0m x 19 kN/m2
= 8.55 kN/m
Floor slab self-
weight
Floor slab self-weight per meter square
= slab thickness x density of concrete
= 0.15m x 24 kN/m3 = 3.6kN/m2
Live Loads of Rooms according to its function (Constant)
Live load factor = 1.6
Room Live Load per meter square
area (kN/m2)
Bedroom 1.5
Dining Area 2.0
Living Area 2.0
Bathroom 2.0
Corridor 1.5
Kitchen 2.0
Roof 0.5
Design Brief:
11
SCHOOL OF ARCHITECTURE, BUILDING &
DESIGN
Bachelor of Science (Honours) (Architecture)
Building Structures (ARC 2522/2523)
Project 2: Structural Analysis of a Bungalow
Individual Work:
EVELIN DEVINA 0322176
12
Slab A-B/1-2A
Ly/Lx = 4200/3000
= 1.4 < 2
(Two way slab)
Determine one way or two way slab:
Slab A-B/2A-3
Ly/Lx = 4600/3000
= 1.53 < 2
(Two way slab)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Brick Wall Load
= Wall density x (thickness x height)
= 19 kN/m3 x (0.15m x 3m)
= 8.55 kN/m
3. Load from Slab A-B/1-2A (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (3/2)m = 5.4 kN/m
4. Load from Slab A-B/2A-3 (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (3/2)m = 5.4 kN/m
Total Dead Load on Beam A/2-2A
= (1.44 + 8.55 + 5.4) kN/m
= 15.39 kN/m
Total Dead Load on Beam A/2A-3
= (1.44 + 8.55 + 5.4) kN/m
= 15.39 kN/m
1) First Floor Beam A/2-3
Slab self-weight
= Slab thickness x concrete density
= 0.15m x 24 kN/m3
= 3.6 kN/m2
2 3
8.55 kN/m
5.4kN/m
1.44kN/m
4.6m
5.4kN/m
2A
1.2m
15.39kN/m
15.39
Live Load
1. Load from Slab A-B/1-2A (two-way slab)
= Live load intensity x (Lx/2)
= 2 kN/m2 x (3/2)m = 3 kN/m
2. Load from Slab A-B/2A-3 (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (3/2)m = 2.25 kN/m
Ultimate Load
 Ultimate Load on Beam A/2-2A
= Ultimate Dead Load + Ultimate Live Load
= (15.39 kN/m x 1.4) + (3 kN/m x 1.6)
= 21.55 KN/m + 4.8 kN/m = 26.35 kN/m
 Ultimate Load on Beam A/2A-3
= Ultimate Dead Load + Ultimate Live Load
= (15.39 kN/m x 1.4) + (2.25 kN/m x 1.6)
= 21.55 KN/m + 3.6 kN/m = 25.15 kN/m
Point Load at point A/2A from beam A-B/2A
1. Concrete Beam Self-weight = 1.44 kN/m
2. Brick Wall Load = 8.55 kN/m
3. Dead Load from Slab A-B/1-2A (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
4. Dead Load from Slab A-B/2A-3 (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
Total Dead Load on Beam A-B/2A
= (1.44 + 8.55 + 3.6 + 3.6)kN/m = 17.19 kN/m
5. Live Load from Slab A-B/1-2A (two-way slab)
= Live Load Intensity x (Lx/2) x 2/3
= 2 kN/m2 x (3/2)m x 2/3 = 2 kN/m
6. Live Load from Slab A-B/2A-3 (two-way slab)
= Live Load Intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m
Total Live Load on Beam A-B/2A
= (2 + 1.5)kN/m = 3.5 kN/m
2 3
4.6m
2A
1.2m
3kN/m
2.25kN/m
25.15kN/m
26.35kN/m
Ultimate Load on Beam A-B/2A
= (17.19 kN/m x 1.4) + (3.5 kN/m x 1.6)
= 29.67 kN/m
Total Load on Beam A-B/2A
= Uniform Distributed Load x Beam Length
= 29.67 kN/m x 3m
= 89.01 kN
 Point Load at Point A/2A
Total Load is distributed equally to 2 points
= 89.01 kN / 2 = 44.51 kN
Reaction Force
1. Beam A/2-2A UDL to Point Load
= 26.35 kN/m x 1.2m = 31.62 kN
2. Beam A/2A-3 UDL to Point Load
= 25.15 kN/m x 4.6m = 115.69 kN
0 = ∑M2
0 = (31.62kN x 0.6m) + (44.51kN x 1.2m) +
(115.69kN x 3.5m) – (R3 x 5.8m)
R3 = 477.3kNm / 5.8m = 82.30 kN
∑Fy = (31.62 + 44.51 + 115.69) - (R2 + 82.30) = 0
R2 = 191.82 – 82.30 = 109.52 kN
Shear Force Diagram
33.39 : X = 82.30 : (4.6 - X)
82.3 X = 33.39 (4.6 – X)
X = 153.59/115.69 = 1.33m
Bending Moment Diagram
1. (109.52m + 77.9m)/2 x 1.2m = 112.45m2
2. (33.39m x1.33m)/2 = 21.70m2
3. (82.30m x 3.27m)/2 = 134.56m2
2 3
4.6m
2A
1.2m
25.15kN/m
26.35kN/m
44.51kN
R3=82.30kN
31.62kN
44.51kN
R2=109.52kN
115.69kN
x
(4.6 – x)
82.30
33.39
4.6m1.2m
109.52kN
134.65kNm
(109.52-31.62= 77.9kN)
(77.9-44.51= 33.39kN)
0
(33.39-115.69= -82.30kN)
112.45kNm
(134.65-134.56= +0.9)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Load from Slab B-C/2-2B (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m
3. Load from Slab B-C/2B-3 (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (3/2)m = 5.4 kN/m
Total Dead Load on Beam B-C/2B
= (1.44 + 5.04 + 5.4) kN/m
= 11.88 kN/m
Slab B-C/2-2B
Ly/Lx = 3900/2800
= 1.39 < 2
(Two way slab)
Determine one way or two way slab:
Slab B-C/2B-3
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
2) First Floor Beam B-C/2B
Slab self-weight
= Slab thickness x concrete density
= 0.15m x 24 kN/m3
= 3.6 kN/m2
Live Load
1. Load from Slab B-C/2-2B (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (2.8/2)m = 2.1 kN/m
2. Load from Slab B-C/2B-3 (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (3/2)m = 2.25 kN/m
Total Live Load on Beam B-C/2B
= (2.1 + 2.25) kN/m
= 4.35 kN/m
B C
5.04 kN/m
1.44kN/m
3.9m
5.4 kN/m
11.88 kN/m
2.1 kN/m
2.25 kN/m
4.35 kN/m
Ultimate Load
 Ultimate Load on Beam B-C/2B
= Ultimate Dead Load + Ultimate Live Load
= (11.88 kN/m x 1.4) + (4.35 kN/m x 1.6)
= 16.63 KN/m + 6.96 kN/m = 23.59 kN/m
Reaction Force
Beam B-C/2B UDL to Point Load
= 23.59 kN/m x 3.9m = 92 kN
RB = RC
∑Fy = 92 - (RB + RC) = 0
RB = 46 kN
RC = 46 kN
Shear Force Diagram
Bending Moment Diagram
(46m x 1.95m)/2 = 89.7 m2
B C
3.9m
RC=46 kN
92 kN
23.59kN/m
RB=46 kN
46kN
1.95 m 1.95 m
0
- 46kN
89.7 kNm
0
(89.7-89.7 = 0)
Slab B-C/2-2B = C-D/2/2B
Ly/Lx = 3900/2800
= 1.39 < 2
(Two way slab)
Determine one way or two way slab:
Slab B-C/2-2B = C-D/2B-3
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Brick Wall Load
= Wall density x (thickness x height)
= 19 kN/m3 x (0.15m x 3m)
= 8.55 kN/m
3. Load from Slab B-C/2-2B (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m
= Load from Slab C-D/2-2B
4. Load from Slab B-C/2B-3 (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
= Load from Slab C-D/2B-3
Total Dead Load on Beam C/2-2B
= (1.44 + 8.55 + 3.36 + 3.36) kN/m
= 16.71 kN/m
Total Dead Load on Beam C/2B-3
= (1.44 + 8.55 + 3.6 + 3.6) kN/m
= 17.19 kN/m
3) First Floor Beam C/2-3
Slab self-weight
= Slab thickness x concrete density
= 0.15m x 24 kN/m3
= 3.6 kN/m2
2 3
8.55 kN/m
3.36kN/m
1.44kN/m
3m
3.6kN/m
17.19kN/m
16.71kN/m
2B
2.8m
Live Load
1. Load from Slab B-C/2-2B (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (2.8/2)m x 2/3 = 1.4 kN/m
= Load from Slab C-D/2-2B
2. Load from Slab B-C/2B-3 (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m
= Load from Slab C-D/2B-3
Total Live Load on Beam C/2-2B
= (1.4 + 1.4) kN/m
= 2.8 kN/m
Total Dead Load on Beam C/2B-3
= (1.5 + 1.5) kN/m
= 3 kN/m
Ultimate Load
 Ultimate Load on Beam C/2-2B
= Ultimate Dead Load + Ultimate Live Load
= (16.71 kN/m x 1.4) + (2.8 kN/m x 1.6)
= 23.39 KN/m + 4.48 kN/m = 27.87 kN/m
 Ultimate Load on Beam C/2B-3
= Ultimate Dead Load + Ultimate Live Load
= (17.19 kN/m x 1.4) + (3 kN/m x 1.6)
= 24.07 KN/m + 4.8 kN/m = 28.87 kN/m
Point Load at point C/2B from beam B-C/2B
and beam C-D/2B
From calculation no.2;
1. Point Load from beam B-C/2B = 46kN
2. Point Load from beam C-D/2B = 46kN
 Point Load at Point C/2B = 92kN
2 3
1.4kN/m
3m
1.5kN/m
3kN/m2.8kN/m
2B
2.8m
28.87kN/m27.87kN/m
92kN/m
28.87kN/m27.87kN/m
Reaction Force
1. Beam C/2-2B UDL to Point Load
= 27.87 kN/m x 2.8m = 78.04 kN
2. Beam C/2B-3 UDL to Point Load
= 28.87 kN/m x 3m = 86.6 kN
0 = ∑M2
0 = (78.04kN x 1.4m) + (92kN x 2.8m) +
(86.6kN x 4.3m) – (R3 x 5.8m)
R3 = 739.24kNm / 5.8m = 127.45 kN
∑Fy = (78.04 + 92 + 86.6) - (R2 + 127.45) = 0
R2 = 256.64 –127.45 = 129.19 kN
Shear Force Diagram
Bending Moment Diagram
1. (129.19m + 51.15m)/2 x 2.8m = 252.48m2
2. (40.85m + 127.45m)/2 x 3m = 252.45m2
R3=127.45kN
92kN
86.6kN
2 3
3m
2B
2.8m
R2=129.19kN
78.04kN
20
129.19kN
252.48kNm
(129.19-78.04= 51.15kN)
0
(-40.85-86.6= -127.45kN)
(252.48-252.45= +0.03)
(51.15-92= -40.85kN)
0
Slab B-C/2-2B
Ly/Lx = 3900/2800
= 1.39 < 2
(Two way slab)
Determine one way or two way slab:
Slab C-D/2/2B
Ly/Lx = 3900/2800
= 1.39 < 2
(Two way slab)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Brick Wall Load
= Wall density x (thickness x height)
= 19 kN/m3 x (0.15m x 3m)
= 8.55 kN/m
3. Load from Slab B-C/2-2B (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m
= Load from Slab C-D/2-2B
Total Dead Load on Beam B-C/2
= (1.44 + 8.55 + 5.04) kN/m
= 15.03 kN/m
Total Dead Load on Beam C-D/2
= (1.44 + 5.04) kN/m
= 6.48 kN/m
4) First Floor Beam B-D/2
Slab self-weight
= Slab thickness x concrete density
= 0.15m x 24 kN/m3
= 3.6 kN/m2
Live Load
Load from Slab B-C/2-2B (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (2.8/2)m = 2.1 kN/m
= Load from Slab C-D/2-2B
B D
8.55 kN/m
1.44kN/m
3.9m
C
3.9m
6.48kN/m
15.03kN/m
5.04 kN/m
2.1 kN/m
Ultimate Load
 Ultimate Load on Beam B-C/2
= Ultimate Dead Load + Ultimate Live Load
= (15.03 kN/m x 1.4) + (2.1 kN/m x 1.6)
= 21.04 KN/m + 3.36 kN/m = 24.40 kN/m
 Ultimate Load on Beam C-D/2
= Ultimate Dead Load + Ultimate Live Load
= (6.48 kN/m x 1.4) + (2.1 kN/m x 1.6)
= 9.07KN/m + 3.36 kN/m = 12.43 kN/m
Point Load at point C/2 from beam C/2-3
From calculation no.3;
 Point Load at Point C/2B = 129.19kN
Reaction Force
1. Beam B-C/2 UDL to Point Load
= 24.40 kN/m x 3.9m = 95.16 kN
2. Beam C-D/2 UDL to Point Load
=12.43 kN/m x 3.9m = 48.47 kN
0 = ∑MB
0 = (95.16kN x 1.95m) + (129.19kN x 3.9m) +
(48.47kN x 5.85m) – (RD x 7.8m)
RD = 972.95kNm / 7.8m = 124.74 kN
∑Fy = (95.16 + 129.19 + 48.47) - (R2 + 124.74) = 0
RB = 272.82 –124.74 = 148.08 kN
Shear Force Diagram
Bending Moment Diagram
1. (148.08m + 52.92m)/2 x 3.9m = 391.95m2
2. (76.27m + 124.74m)/2 x 3.9m = 391.97m2
B D
3.9m
C
3.9m
12.43kN/m
24.40kN/m
RD=124.74kN
129.19kN
48.47kN
RB=148.08kN
95.16kN
12.43kN/m
24.40kN/m
129.19kN
22
148.08kN
391.95Nm
(148.08-95.16= 52.92kN)
0
(-76.27-48.47= -124.74)
(391.95-391.97= -0.02)
(52.92-129.19= -76.27)
0
Slab A-B/1-2A
Ly/Lx = 4200/3000
= 1.4 < 2
(Two way slab)
Determine one way or two way slab:
Slab A-B/2A-3
Ly/Lx = 4600/3000
= 1.53 < 2
(Two way slab)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Brick Wall Load
= Wall density x (thickness x height)
= 19 kN/m3 x (0.15m x 3m)
= 8.55 kN/m
3. Load from Slab A-B/1-2A (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (3/2)m = 5.4 kN/m
= Load from Slab A-B/2A-3
4. Load from Slab B-C/2-2B (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m
5. Load from Slab B-C/2B-3 (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
Total Dead Load on Beam B/2-2A
= (1.44 + 8.55 + 5.4 + 3.36) kN/m
= 18.75 kN/m
Total Dead Load on Beam B/2A-2B
= (1.44 + 5.4 + 3.36) kN/m = 10.2 kN/m
Total Dead Load on Beam B/2B-3
= (1.44 + 5.4 + 3.6) kN/m = 10.44 kN/m
5) First Floor Beam B/2-3
Slab self-weight
= Slab thickness x concrete density
= 0.15m x 24 kN/m3
= 3.6 kN/m2
Slab B-C/2-2B
Ly/Lx = 3900/2800
= 1.39 < 2
(Two way slab)
Slab B-C/2B-3
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
2 3
8.55 kN/m
1.44kN/m
3m
18.75kN/m
2A
1.2m
3.6kN/m
2B
1.6m
5.4 kN/m
10.44kN/m
10.2kN/m
3.36kN/m
Live Load
1. Load from Slab A-B/1-2A (two-way slab)
= Live load intensity x (Lx/2)
= 2 kN/m2 x (3/2)m = 3 kN/m
2. Load from Slab A-B/2A-3 (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (3/2)m = 2.25 kN/m
3. Load from Slab B-C/2-2B (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (2.8/2)m x 2/3 = 1.4 kN/m
4. Load from Slab B-C/2B-3 (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m
Total Live Load on Beam B/2-2A
= (3 + 1.4) kN/m = 4.4 kN/m
Total Live Load on Beam B/2A-2B
= (2.25 + 1.4) kN/m = 3.65 kN/m
Total Live Load on Beam B/2B-3
= (2.25 + 1.5) kN/m = 3.75 kN/m
Ultimate Load
 Ultimate Load on Beam B/2-2A
= Ultimate Dead Load + Ultimate Live Load
= (18.75 kN/m x 1.4) + (4.4 kN/m x 1.6)
= 26.25 KN/m + 7.04 kN/m = 33.29 kN/m
 Ultimate Load on Beam B/2A-2B
= Ultimate Dead Load + Ultimate Live Load
= (10.2 kN/m x 1.4) + (3.65 kN/m x 1.6)
= 14.28 KN/m + 5.84 kN/m = 20.12 kN/m
 Ultimate Load on Beam B/2B-3
= Ultimate Dead Load + Ultimate Live Load
= (10.44 kN/m x 1.4) + (3.75 kN/m x 1.6)
= 14.62 KN/m + 6 kN/m = 20.62 kN/m
3
2.25 kN/m
3kN/m
3m
2A
1.2m
4.4kN/m
2B
1.6m
1.4kN/m
3.75kN/m
3.65kN/m
1.5kN/m
2
33.29kN/m
20.62kN/m
20.12kN/m
Point Load at point B/2A from beam A-B/2A
and point B/2B from beam B-C/2B
From calculation no.1;
 Point Load at Point B/2A = 44.51 kN
From calculation no. 2;
 Point Load at point B/2B = 46 kN
Reaction Force
1. Beam B/2-2A UDL to Point Load
= 33.29 kN/m x 1.2m = 39.95 kN
2. Beam B/2A-2B UDL to Point Load
= 20.12 kN/m x 1.6m = 32.19 kN
3. Beam B/2B-3 UDL to Point Load
= 20.62 kN/m x 3m = 61.86 kN
0 = ∑M2
0 = (39.95kN x 0.6m) + (44.51kN x 1.2m) +
(32.19kN x 2m) + (46kN x 2.8m) + (61.86kN x
4.3m) – (R3 x 5.8m)
R3 = 536.56kNm / 5.8m = 92.51 kN
∑Fy = (39.95 + 44.51 + 32.19 + 46 + 61.86) - (R2 +
92.51) = 0
R2 = 218.51 – 92.51 = 132 kN
Shear Force Diagram
Bending Moment Diagram
1. (132m + 92.05m)/2 x 1.2m = 134.43m2
2. (47.54m + 15.35m)/2 x 1.6m = 50.31m2
3. (30.65m + 92.51m)/2 x 3m = 184.70m2
2 3
3m
2A
1.2m
R3=92.51kN
44.51kN
61.86kN
20.62kN/m
20.12kN/m
2B
1.6m
44.51kN
46kN
R2=126.62kN
46kN
33.29kN/m
32.19kN39.95kN
132kN
184.74kNm
(92.05-44.51=47.54kN)
(-30.65-61.86= -92.51kN)
(184.74-184.70= +0.04)
(15.35-46= -30.65kN)
(132-39.95=92.05kN)
(47.54-32.19=15.35kN)
0
134.43 kNm
Slab D-F/1-2A
Ly/Lx = 4200/4000
= 1.05 < 2
(Two way slab)
Determine one way or two way slab:
Slab D-F/2A-3
Ly/Lx = 4600/4000
= 1.15 < 2
(Two way slab)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Brick Wall Load
= Wall density x (thickness x height)
= 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m
3. Load from Slab D-F/1-2A (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (4/2)m = 7.2 kN/m
= Load from Slab D-F/2A-3
4. Load from Slab F-G/2-2B (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m
5. Load from Slab F-G/2B-3 (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
Total Dead Load on Beam F/2-2A
= (1.44 + 8.55 + 7.2 + 3.36) kN/m
= 20.55 kN/m
Total Dead Load on Beam F/2A-2B
= (1.44 + 8.55 + 7.2 + 3.36) kN/m
= 20.55 kN/m
Total Dead Load on Beam F/2B-3
= (1.44 + 7.2 + 3.6) kN/m = 12.2 kN/m
6) First Floor Beam F/2-3
Slab F-G/2-2B
Ly/Lx = 3000/2800
= 1.07 < 2
(Two way slab)
Slab F-G/2B-3
Ly/Lx = 3000/3000
= 1 < 2
(Two way slab)
2 3
8.55 kN/m
1.44kN/m
3m
20.55kN/m
2A
1.2m
3.6kN/m
2B
1.6m
7.2 kN/m
12.2kN/m
20.55kN/m
3.36kN/m
Live Load
1. Load from Slab D-F/1-2A (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (4/2)m = 3 kN/m
= Load from Slab D-F/2A-3
2. Load from Slab F-G/2-2B (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 2 kN/m2 x (2.8/2)m x 2/3 = 1.87 kN/m
3. Load from Slab F-G/2B-3 (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m
Total Live Load on Beam B/2-2A
= (3 + 1.87) kN/m = 4.87 kN/m
Total Live Load on Beam B/2A-2B
= (3 + 1.87) kN/m = 4.87 kN/m
Total Live Load on Beam B/2B-3
= (3 + 1.5) kN/m = 4.5 kN/m
Ultimate Load
 Ultimate Load on Beam B/2-2A
= Ultimate Dead Load + Ultimate Live Load
= (20.55 kN/m x 1.4) + (4.87 kN/m x 1.6)
= 28.77 KN/m + 7.79 kN/m = 36.56 kN/m
 Ultimate Load on Beam B/2A-2B
= Ultimate Dead Load + Ultimate Live Load
= (20.55 kN/m x 1.4) + (4.87 kN/m x 1.6)
= 28.77 KN/m + 7.79 kN/m = 36.56 kN/m
 Ultimate Load on Beam B/2B-3
= Ultimate Dead Load + Ultimate Live Load
= (12.2 kN/m x 1.4) + (4.5 kN/m x 1.6)
= 17.08 KN/m + 7.2 kN/m = 24.28 kN/m
3
3m
2A
1.2m
4.87kN/m
2B
1.6m
1.87kN/m
4.5kN/m
4.87kN/m
1.5kN/m
2
36.56kN/m
24.28kN/m
36.56kN/m
3 kN/m
Point Load at point F/2A from beam D-F/2A
1. Concrete Beam Self-weight = 1.44 kN/m
2. Dead Load from Slab D-F/1-2A (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (4/2)m x 2/3 = 4.8 kN/m
=Load from slab D-F/2A-3
Total Dead Load on Beam D-F/2A
= (1.44 + 4.8 + 4.8)kN/m = 11.04 kN/m
3. Live Load from Slab D-F/1-2A (two-way slab)
= Live Load Intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (4/2)m x 2/3 = 2 kN/m
=Load from slab D-F/2A-3
Total Live Load on Beam D-F/2A
= (2 + 2)kN/m = 4 kN/m
Ultimate Load on Beam D-F/2A
= (11.04 kN/m x 1.4) + (4 kN/m x 1.6)
= 15.46 kN/m + 6.4kN/m = 21.86kN/m
Total Load on Beam D-F/2A
= Uniform Distributed Load x Beam Length
= 21.86 kN/m x 4m
= 87.44 kN
 Point Load at Point A/2A
Total Load is distributed equally to 2 points
= 87.44 kN / 2 = 43.72 kN
2 3
3m
2A
1.2m
36.56kN/m
36.56kN/m
2B
1.6m
43.71kN
36.56kN/m
Point Load at point F/2B from beam F-G/2B
1. Concrete Beam Self-weight = 1.44 kN/m
2. Brick Wall Load = 8.55 kN/m
3. Dead Load from Slab F-G/2-2B (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m
4. Dead Load from Slab F-G/2B-3 (two-way slab)
= Slab self-weight x (Lx/2) x2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
Total Dead Load on Beam F-G/2B
= (1.44 + 8.55 + 5.04 + 3.6)kN/m = 18.63 kN/m
5. Live Load from Slab F-G/2-2B (two-way slab)
= Live Load Intensity x (Lx/2)
= 2 kN/m2 x (2.8/2)m = 2.8 kN/m
6. Live Load from Slab F-G/2B-3 (two-way slab)
= Live Load Intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m
Total Live Load on Beam F-G/2B
= (2.8 + 1.5)kN/m = 4.3 kN/m
Ultimate Load on Beam F-G/2B
= (18.63 kN/m x 1.4) + (4.3 kN/m x 1.6)
= 26.08 kN/m + 6.88kN/m = 32.96kN/m
Total Load on Beam F-G/2B
= Uniform Distributed Load x Beam Length
= 32.96 kN/m x 3m
= 98.89 kN
 Point Load at Point A/2A
Total Load is distributed equally to 2 points
= 98.89 kN / 2 = 49.44 kN
2 3
3m
2A
1.2m
36.56kN/m
36.56kN/m
2B
1.6m
43.71kN
36.56kN/m
49.44kN
Reaction Force
1. Beam F/2-2A UDL to Point Load
= 36.56 kN/m x 1.2m = 43.87 kN
2. Beam F/2A-2B UDL to Point Load
= 36.56 kN/m x 1.6m = 58.5 kN
3. Beam F/2B-3 UDL to Point Load
= 24.28 kN/m x 3m = 72.84 kN
0 = ∑M2
0 = (43.87kN x 0.6m) + (43.71kN x 1.2m) +
(58.5kN x 2m) + (49.44kNx2.8m) + (72.84kN x
4.3m) – (R3 x 5.8m)
R3 = 647.42kNm / 5.8m = 111.62 kN
R2 = 218.51 – 92.51 = 156.74 kN
Shear Force Diagram
Bending Moment Diagram
1. (156.74m + 112.87m)/2 x 1.2m = 161.77m2
2. (69.16+10.66)/2 x 1.6m = 63.86m2
3. (38.78+111.62)/2 x 3m = 225.6m2
2 3
3m
2A
1.2m
R3=111.62kN
43.71kN
72.84kN
36.56kN/m
36.56kN/m
2B
1.6m
43.71kN
49.44kN
R2=156.74kN
49.44kN
36.56kN/m
58.5kN43.87kN
156.74kN
225.63kNm
(112.87-43.71=69.16kN)
(-38.78-72.84= -111.62kN)
(225.63-225.6= +0.03)
(10.66-49.44= -38.78kN)
(156.74-43.87=112.87kN)
(69.16-58.5=10.66kN)
0
161.77kNm
Roof Level
1. Dead Load from slab
= (5.9m x 4.4m) x 1.0 kN/m2
= 25.96kN
2. Dead Load from beam
= (4.4 + 4.4 + 3.9 + 3.9 + 1.5)m x
1.44 kN/m
= 26.78kN
Total dead load on roof level
= (25.96 + 26.78)kN = 52.74kN
3. Live Load from slab
= 25.96m2 x 0.5 kN/m2 = 12.98kN
7) Column D2
Capacity of the column:
Given, FCU= 30N/mm2
Fy = 460 N/mm2
Ac = 200mm x 200mm = 40000mm2
Assuming 2% steel reinforcement in concrete
Asc = 2% x 40000mm2 = 800mm2
N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc)
= (0.4 x 30 x 40000) + (0.8 x 460 x 800)
= 774400N = 774.4kN
First Level
1. Dead Load from slab
= {(3.9m x 2.9m)+(2m x 4.4m)} x 3.6 kN/m2
= 72.40kN
2. Dead Load from beam
= 18.6m x 1.44 kN/m = 26.78kN
3. Dead load from wall
= (1.5 + 1.7 + 1.2 + 2 + 2.9)m x 8.55 kN/m
= 79.52kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (72.40 + 26.78 + 79.52 + 2.88)kN
= 181.58kN
5. Live Load from slab (Bedroom + Corridor)
= 20.11m2 x 1.5 kN/m2 = 30.15kN
*Marked in red are walls
Ground Level
1. Dead Load from slab
= 25.96m2 x 3.6 kN/m2
= 93.46kN
2. Dead Load from beam
= (2.9 + 4.4 + 3.9 + 2)m x 1.44 kN/m
= 19kN
3. Dead load from wall
= (2.9 + 2 + 2.9)m x 8.55 kN/m = 66.69kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Ultimate Dead Load = Total dead load x 1.4 = (52.74kN + 181.58kN + 182.03kN) x 1.4
= 582.89kN
Ultimate Live Load = Total live load x 1.6 = (12.98kN + 30.15kN + 44.6kN) x 1.6
= 140.37kN
 Total Load acting on Column D2 = 723.26kN
*Marked in red are walls
Total dead load on ground level
= (93.46 + 19 + 66.69 + 2.88)kN
= 182.03kN
5. Live Load from slab (Dining)
= (3.9 x 2.9)m2 x 2 kN/m2 = 22.62kN
6. Live Load from slab (Garden + Bedroom)
= {(3.9 x 1.5) + (2 x 4.4)}m2 x 1.5 kN/m2
= 21.98kN
Total live load on ground level
= (22.62 + 21.98)kN
= 44.6kN
Roof Level
1. Dead Load from slab
= (5.4m x 4.4m) x 1.0 kN/m2 = 23.76kN
2. Dead Load from beam
= (5.4 + 4.4 + 3.9 + 4.4)m x 1.44 kN/m
= 26.06kN
Total dead load on roof level
= (23.76 + 26.06)kN = 49.82kN
3. Live Load from slab
= 23.76m2 x 0.5 kN/m2 = 11.88kN
8) Column B2
First Level
1. Dead Load from slab
= {(1.5m x 4.4m)+(3.9m x 2.9m)} x 3.6 kN/m2
= 64.48kN
2. Dead Load from beam
= 16.6m x 1.44 kN/m = 23.9kN
3. Dead load from wall
= (2.7 + 1.5 + 3.9 + 2.9)m x 8.55 kN/m
= 94.05kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (64.48 + 23.9 + 94.05 + 2.88)kN
= 172.41kN
5. Live Load from slab (Bath)
= (1.5 x 2.7)m2 x 2 kN/m2 = 8.1kN
6. Live Load from slab (Bedroom)
= 13.86m2 x 1.5 kN/m2 = 20.79kN
Total live load on first level
= (8.1 + 20.79)kN
= 28.89kN
*Marked in red are walls
Ground Level
1. Dead Load from slab
= 23.76m2 x 3.6 kN/m2
= 85.54kN
2. Dead Load from beam
= (4.4 + 1.5 + 3.9 + 2.9)m x 1.44 kN/m
= 18.29kN
3. Dead load from wall
= (4.4 + 1.5)m x 8.55 kN/m = 50.45kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (85.54 + 18.29 + 50.45 + 2.88)kN
= 157.16kN
5. Live Load from slab (Kitchen)
= (5.4 x 2.9)m2 x 2 kN/m2 = 31.32kN
6. Live Load from slab (Storage + Garden)
= (5.4 x 1.5)m2 x 1.5 kN/m2
= 12.15kN
Total live load on first level
= (31.32 + 12.15)kN
= 43.47kN
Ultimate Dead Load = Total dead load x 1.4 = (49.82kN + 172.41kN + 157.16kN) x 1.4
= 531.15kN
Ultimate Live Load = Total live load x 1.6 = (11.88kN + 28.89kN + 43.47kN) x 1.6
= 134.78kN
 Total Load acting on Column B2 = 665.93kN
*Marked in red are walls
Roof Level
1. Dead Load from slab
= (1.5m x 4.4m) x 1.0 kN/m2 = 6.6kN
2. Dead Load from beam
= (1.5 + 2.9 + 1.5)m x 1.44 kN/m
= 8.5kN
Total dead load on roof level
= (6.6 + 8.5)kN = 15.1kN
3. Live Load from slab
= 6.6m2 x 0.5 kN/m2 = 3.3kN
9) Column A2
First Level
1. Dead Load from slab
= 6.6m2 x 3.6 kN/m2
= 23.76kN
2. Dead Load from beam
= 5.9m x 1.44 kN/m = 8.5kN
3. Dead load from wall
= 5.9m x 8.55 kN/m
= 50.45kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (23.76 + 8.5 + 50.45 + 2.88)kN
= 85.59kN
5. Live Load from slab (Bath)
= (1.5 x 2.7)m2 x 2 kN/m2 = 8.1kN
6. Live Load from slab (Bedroom)
= (1.7 x 1.5)m2 x 1.5 kN/m2
= 3.83kN
Total live load on first level
= (8.1 + 3.83)kN
= 11.93kN
*Marked in red are walls
Ground Level
1. Dead Load from slab
= 6.6m2 x 3.6 kN/m2
= 23.76kN
2. Dead Load from beam
= 5.9m x 1.44 kN/m
= 8.5kN
3. Dead load from wall
= (4.4 + 1.5)m x 8.55 kN/m = 50.45kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (23.76 + 8.5 + 50.45 + 2.88)kN
= 85.59kN
5. Live Load from slab (Kitchen)
= (2.9 x 1.5)m2 x 2 kN/m2 = 8.7kN
6. Live Load from slab (Storage + Garden)
= (1.5 x 1.5)m2 x 1.5 kN/m2
= 3.38N
Total live load on first level
= (8.7 + 3.38)kN
= 12.08kN
Ultimate Dead Load = Total dead load x 1.4 = (15.1kN + 85.59kN + 85.59kN) x 1.4
= 260.79kN
Ultimate Live Load = Total live load x 1.6 = (3.3kN + 11.93kN + 12.08kN) x 1.6
= 43.7kN
 Total Load acting on Column B2 = 304.49kN
*Marked in red are walls
SCHOOL OF ARCHITECTURE, BUILDING &
DESIGN
Bachelor of Science (Honours) (Architecture)
Building Structures (ARC 2522/2523)
Project 2: Structural Analysis of a Bungalow
Individual Work:
LIM JOE ONN 0318679
37
Slab A-B/5-6
Ly/Lx = 4000/3000
= 1.333 < 2
(Two way slab)
Determine one way or two way slab:
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam A-5/6
Dead Load from Slab A-B/5-6
(two way slab)
= 1.0 kN/m3 x (3 x ½ )m
= 1.5 kN/m2
Total Dead Load
= (1.44 + 1.5) kN/m2
= 2.94 kN/m2
5 6
1.5kN/m
1.44kN/m
4.0m
2.94kN/m
Live Load
Live Load from Slab A-B/5-6
= 0.5 kN/m3 x (3 x ½ ) m2
= 0.75 kN/m
5 6
0.75 kN/m
0.75kN/m
4.0m
Total Live Load
= 0.75 kN/m2
Ultimate Load
= (2.94kN/m x 1.4) + (0.75kN/m2 x 1.6)
= 4.116 kN/m + 1.2 kN/m
= 5.316 kN/m
Load Diagram
Reaction Force
RA4 = RA6
= 5.316kN/m x 4m
2
= 10.632 kN
5.316kN/m
Shear Force
Diagram
10.632kN/m 10.632kN/m
9.75kN/m
-9.75kN/m
2 m 2 m
A1 = A2
= 9.75kN/m x 2 m x ½
= 9.75 kNm
9.75 kNm
2 m 2 m
Bending Moment
Diagram
Slab A-B/5-6
Ly/Lx = 4000/3000
= 1.333 < 2
(Two way slab)
Determine one way or two way slab:
Slab B-C/5-6
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam B/5-6
Dead Load from Slab A-B/5-6
(two way slab)
= 3.6kN/m3 x (3 x ½)m
= 5.4 kN/m2
Dead Load from Slab B-C/5-6
(two way slab)
= 3.6kN/m3 x (3 x ½)m
= 5.4 kN/m2
Total Dead Load
= (1.44 + 5.4 + 5.4) kN/m2
= 12.24kN/m2
C D
5.4kN/m
5.4kN/m
1.44kN/m
4.0 m
12.24kN/m
Live Load
Live Load from Slab A-B/5-6
= 0.5kN/m3 x (3 x ½ ) m2
= 3 kN/m
Live Load from Slab B-C/5-6
= 0.5kN/m3 x (3 x ½ ) m2
= 3 kN/m
C D
3kN/m
6kN/m
3kN/m
4.0m
Total Live Load
= (3 + 3) kN/m2
= 6 kN/m2
Ultimate Load
= (12.24kN/m x 1.4) + (6kN/m2 x 1.6)
= 17.136kN/m + 9.6kN/m
= 26.736kN/m
Load Diagram
Reaction Force
RB5 = RB6
= 26.736kN/m x 4m
2
= 53.472 kN
26.736kN/m
Shear Force
Diagram
53.472 kN/m 53.472 kN/m
53.472 kN/m
-53.472kN/m
2 m 2 m
A1 = A2
= 53.472kN/m x 2m x ½
= 53.472 kNm
53.472 kNm
2 m 2 m
Bending Moment
Diagram
Slab B-C/5-6
Ly/Lx = 4000/3900
= 1.026< 2
(Two way slab)
Determine one way or two way slab:
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam C-5/6
Dead Load from Slab A-B/5-6
(two way slab)
= 1.0 kN/m3 x (3.9 x ½ )m
= 1.95 kN/m2
Total Dead Load
= (1.44 + 1.95) kN/m2
= 3.39 kN/m2
5 6
1.95kN/m
1.44kN/m
4.0m
3.39kN/m
Live Load
Live Load from Slab A-B/5-6
= 0.5 kN/m3 x (3.9 x ½ ) m2
= 0.975 kN/m
5 6
0.975 kN/m
0.975kN/m
4.0m
Total Live Load
= 0.975 kN/m2
Ultimate Load
= (3.39kN/m x 1.4) + (0.975kN/m2 x 1.6)
= 4.746 kN/m + 1.56 kN/m
= 6.306 kN/m
Load Diagram
Reaction Force
RC5 = RC6
= 6.306kN/m x 4m
2
= 12.612 kN
6.306 kN/m
Shear Force
Diagram
12.612kN/m 12.612kN/m
12.612kN/m
-12.612kN/m
2 m 2 m
A1 = A2
= 12.612kN/m x 2 m x ½
= 12.612 kNm
12.612 kNm
2 m 2 m
Bending Moment
Diagram
Slab B-C/5-6
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Determine one way or two way slab:
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam A-C/6
Dead Load from Slab A-B/5-6
(two way slab)
= 1 kN/m3 x (3 x ½ x 2/3)m
= 1 kN/m2
Dead Load from Slab B-C/5-6
(two way slab)
= 1 kN/m3 x (3.9 x ½ x 2/3)m
= 1.3 kN/m2
A C
1 kN/m
1.44kN/m
3 m
1.3kN/m
Slab A-B/5-6
Ly/Lx = 4000/3000
= 1.33 < 2
(Two way slab)
B
3.9 m
Total Dead Load on A-B/6
= (1.44 + 1) kN/m2
= 2.44 kN/m2
Total Dead Load on B-C/6
= (1.44 + 1.3) kN/m2
= 2.74kN/m2
2.44 kN/m
2.74 kN/m
Live Load from Slab A-B/5-6
(two way slab)
= 0.5kN/m3 x (3 x ½ x 2/3)m
= 0.5 kN/m2
Live Load
0.5 kN/m
0.65kN/m
Live Load from Slab B-C/5-6
(two way slab)
= 0.5kN/m3 x (3.9 x ½ x 2/3)m
= 0.65 kN/m2
0.5 kN/m
0.65 kN/m
A B
3 m 3.9 m
Ultimate Load on Beam C/3-4
= (2.44kN/m x 1.4) + (0.5kN/m2 x 1.6)
= 3.416kN/m + 0.8kN/m
= 4.216kN/m
Ultimate Load on Beam C/4-5
= (2.74kN/m x 1.4) + (0.65kN/m2 x 1.6)
= 3.836kN/m + 1.04kN/m
= 5.116kN/m
C
Load Diagram
Point load from secondary beam, B6=44.328 kN
Take RA6 as centre, reaction force:
4.216 x 3 = 12.648kN
5.116 x 3.9 = 19.952kN
ΣM = 0
0 = 6.9RC6 – 19.952(4.95) – 44.328(3) –
12.648(1.5)
= 6.9RC6 – 98.762 – 132.984 – 18.972
= 6.9RC6 – 250.718
6.9RC6 = 250.718
RC6 = 36.336kN
ΣY = 0
0 = RA6 + RC6 – 12.648 – 44.328 – 19.952
= RA6 + 36.336 – 76.928
RA6 = 40.592kN
4.216kN/m
3 m 3.9 m
5.116kN/m
44.328kN/m
RA6 RC6
40.592kN
3 m 3.9 m
27.944kN
-16.384kN
-36.336kN
Shear Force Diagram
A1 = ½(40.592kN/m + 27.944kN/m) x 3
= 102.804 kNm
102.804 kNm
3 m 3.9 m
Bending Moment Diagram
A2 = ½(16.384kN/m + 36.336kN/m) x 3.9
= 102.804 kNm
Slab C-D/3-4
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Determine one way or two way slab:
Slab C-D/4-5
Ly/Lx = 3900/2000
= 1.95 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
Dead Load from Brick Wall Height
=0.15 x 3 x 19kN/m3
=8.55 kN/m
First Floor Beam D/3-5
Dead Load from Slab C-D/3-4
(two way slab)
= 3.6kN/m3 x (3 x ½ x 2/3)m
= 3.6 kN/m2
Dead Load from Slab D-E/3-4
(two way slab)
= 3.6kN/m3 x (3 x ½)m
= 5.4kN/m2
Total Dead Load for Beam D/3-4
= (1.44+8.55+3.6+5.4) kN/m2
= 18.99kN/m2
Slab D-E/3-5
Ly/Lx = 5000/3000
= 1.67 < 2
(Two way slab)
3 5
8.55kN/m
3.6kN/m
1.44kN/m
3 m
5.4kN/m
4
2 m
18.99kN/m
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
Dead Load from Brick Wall Height
=0.15 x 3 x 19kN/m3
=8.55 kN/m
Dead Load from Slab C-D/4-5
(two way slab)
= 3.6kN/m3 x (2 x ½ x 2/3)m
= 2.4 kN/m2
Dead Load from Slab D-E/4-5
(two way slab)
= 3.6kN/m3 x (3 x ½)m
= 5.4 kN/m2
Total Dead Load for Beam D/4-5
= (1.44+8.55+2.4+5.4) kN/m2
= 19.59kN/m2
3 5
8.55kN/m
1.44kN/m
3 m
4
2 m
2.4kN/m
5.4kN/m
17.79kN/m
18.99 kN/m
17.79 kN/m
Live Load
2kN/m
1.33 kN/m
Live Load from Slab C-D/3-4
(two way slab)
= 2kN/m3 x (3 x ½ x 2/3)m
= 2kN/m2
Live Load from Slab D-E/3-4
(two way slab)
= 2kN/m3 x (3 x ½)m
= 3 kN/m2
Live Load from Slab C-D/4-5
(two way slab)
= 2kN/m3 x (2 x ½ x 2/3)m
= 1.33 kN/m2
5 kN/m
4.33 kN/m
3 54
3 m 2 m
Total Live Load on D/3-4
= (2 + 3) kN/m2
= 5 kN/m2
Total Live Load on D/4-5
= (1.33 + 3) kN/m2
= 4.33 kN/m2
Ultimate Load on Beam D/3-4
= (18.99kN/m x 1.4) + (5kN/m2 x 1.6)
= 26.586kN/m + 8kN/m
= 34.586kN/m
Ultimate Load on Beam D/4-5
= (17.79kN/m x 1.4) + (4.33kN/m2 x 1.6)
= 24.906kN/m + 6.928kN/m
= 31.834kN/m
Live Load from Slab D-E/4-5
(two way slab)
= 2kN/m3 x (3 x ½ )m
= 3 kN/m2
3kN/m
3 kN/m
34.586 kN/m
31.834 kN/m
Load Diagram
Point load from secondary beam, D4=40.21 kN
Take RD3 as centre, reaction force:
34.586 x 3 = 103.758kN
31.834 x 2 = 63.668kN
ΣM = 0
0 = 5RD5 – 103.758(1.5) – 40.21(3) – 63.668(4)
= 5RD5 – 155.637 – 120.63 – 254.672
= 5RD5 – 530.939
5RD5 = 530.939
RD5 = 106.188kN
ΣY = 0
0 = RD3 + RD5 – 103.758 – 40.21 – 63.668
= RD3 + 106.188 – 207.636
RD3 = 101.448kN
34.586kN/m
3 m 2 m
31.834kN/m
40.21kN/m
RD3 RD5
101.448kN
3 m 2 m
-2.31kN
-42.52kN
-106.188kN
Shear Force Diagram
Ratio:
(101.448+(34.586x3-101.448)) = 101.448
3 a
103.758 a = 304.344
a = 2.933m2.933 m
A1 = 101.448 x 2.933 x ½
= 148.773kNm
A2 =½ (106.188 + 42.52)x2 +½(2.31 x (3 –
2.933))
= 148.785 kNm
148.773kNm
2.933 m 3 m
Bending Moment Diagram148.696kNm
Slab D-E/3-5
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Determine one way or two way slab:
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
Dead Load for Brick Wall Height
=0.15 x 3 x 19kN/m3
=8.55 kN/m
First Floor Beam C-E/5
Dead Load from Slab C-D/4-5
(two way slab)
= 3.6 kN/m3 x (2 x ½ )m
= 3.6 kN/m2
Dead Load from Slab D-E/3-5
(two way slab)
= 3.6 kN/m3 x (3 x ½ x 2/3)m
= 3.6 kN/m2
C E
3.6 kN/m
1.44kN/m
3.9 m
3.6kN/m
Slab C-D/4-5
Ly/Lx = 3900/2000
= 1.95 < 2
(Two way slab)
D
3 m
Total Dead Load on C-D/4-5
= (3.6+8.55+1.44) kN/m2
= 13.59 kN/m2
Total Dead Load on D-E/3-5
= (1.44 + 8.55 +3.6) kN/m2
= 13.59 kN/m2
13.59 kN/m
13.59 kN/m
8.55kN/m
Live Load from Slab C-D/4-5
(two way slab)
= 2.0kN/m3 x (2 x ½ )m
= 2 kN/m2
Live Load
2 kN/m
2 kN/m
Live Load from Slab D-E/3-5
(two way slab)
= 2.0kN/m3 x (3 x ½ x 2/3)m
= 2 kN/m2
2 kN/m
2 kN/m
C D
3.9 m 3 m
Ultimate Load on Beam A-B/5
= (13.59kN/m x 1.4) + (2kN/m2 x 1.6)
= 19.026kN/m + 3.2kN/m
= 22.226kN/m
Ultimate Load on Beam B-C/5
= (13.59kN/m x 1.4) + (2kN/m2 x 1.6)
= 19.026kN/m + 3.2kN/m
= 22.226kN/m
E
Load Diagram
Point load from secondary beam, D5=116.496 kN
Take RC5 as centre, reaction force:
22.226 x 3.9= 86.681kN
22.226 x 3 = 66.678kN
ΣM = 0
0 = 6.9RE5 – 86.681(1.95) – 116.496(3.9) –
66.678(5.4)
= 6.9RE5 – 169.028 – 454.334 – 360.061
= 6.9RE5 – 983.424
6.9RE5 = 983.424
RE5 = 142.525 kN
ΣY = 0
0 = RC5 + RE5 – 86.681 – 116.496 – 66.678
= RC5 + 142.525 – 269.855
RC5 = 127.33kN
22.226kN/m
3.9 m 3 m
22.226kN/m
116.496kN/m
RC5 RE5
127.33kN
3.9 m 3 m
40.649kN
-75.847kN
-142.525kN
Shear Force Diagram
A1 = ½(40.649kN/m + 127.33kN/m) x 3.9
= 327.55kNm
102.804 kNm
3 m 3.9 m
Bending Moment Diagram
A2 = ½(75.847kN/m + 142.525kN/m) x 3
= 327.55 kNm
Column C6
Dead Load Calculation
Ground Floor
Beam Self Weight
= 4000mm/2 x 1.44 + 6900mm/2 x 1.44
= 7.848 kN
Column Self Weight
= 0.2 x 0.2 x 3 x 24
= 2.88 kN
Brick Wall Self Weight
= 0 (no wall)
Concrete Slab Load
= 4000mm/2 x 6900mm/2 x 3.6
= 24.84 kN
Total Dead Load on Ground Floor
= 7.848 + 2.88 + 24.84
= 35.568 kN
Total Dead Load
= 35.568 + 14.748
= 50.316 kN
Capacity of the column:
Given, FCU= 30N/mm2
Fy = 460 N/mm2
Ac = 200mm x 200mm = 40000mm2
Assuming 2% steel reinforcement in concrete
Asc = 2% x 40000mm2 = 800mm2
N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc)
= (0.4 x 30 x 40000) + (0.8 x 460 x 800)
= 774400N = 774.4kN
Live Load Calculation
Ground Floor
Porch
= 1.5 kN/m x 4000mm/2 x 6900mm/2
= 10.35 kN
First Floor
Flat Roof
= 0.5 kN/m x 4000mm/2 x 6900mm/2
= 3.45 kN
Total Live Load
= 10.35 + 3.45
= 13.8 kN
Ultimate Load
= 50.316 x 1.4 + 13.8 x 1.6
= 92.523 kN
92.523 kN < 774.4kN, it is below the
column maximum load bearing capacity.
First Floor (Flat Roof)
Beam Self Weight
= 4000mm/2 x 1.44 + 6900mm/2 x 1.44
=7.848 kN
Column Self Weight
= 0 (no column)
Brick Wall Self Weight
= 0 (no wall)
Concrete Slab Load
= 4000mm/2 x 6900mm/2 x 1.0
= 6.9 kN
Total Dead Load on First Floor
= 7.848 + 6.9
=14.748 kN
55
Column A6
Dead Load Calculation
Ground Floor
Beam Self Weight
= 4000mm/2 x 1.44 = 6900mm/2 x 1.44
= 7.848 kN
Column Self Weight
= 0.2 x 0.2 x 3 x 24
= 2.88 kN
Brick Wall Self Weight
= 6900mm/2 x 8.55 + 4000mm/2 x 8.55
= 46. 598 kN
Concrete Slab Load
= 4000mm/2 x 6900mm/2 x 3.6
= 24.84 kN
Total Dead Load on Ground Floor
= 7.848 + 2.88 + 46.598 + 24.84
= 82.166 kN
First Floor (Flat Roof)
Beam Self Weight
= 4000mm/2 x 1.44 + 6900mm/2 x 1.44
= 7.848 kN
Column Self Weight
= 0 (no column)
Brick Wall Self Weight
= 0 (no wall)
Total Dead Load
=82.166 +14.748
= 96.914 kN
96.914 kN < 774.4kN, it is below the
column maximum load bearing capacity.
Concrete Slab Load
= 4000mm/2 x 6900mm/2 x 1.0
= 6.9 kN
Total Dead Load on Ground Floor
= 7.848 + 6.9
= 14.748 kN
56
Live Load Calculation
Ground Floor
Living Room
= 2.0 kN/m x 4000mm/2 x 6900mm/2
= 13.8 kN
First Floor
Flat Roof
= 0.5 kN/m x 4000mm/2 x 6900mm/2
= 3.45 kN
Total Live Load
= 13.8 + 3.45
= 17.25 kN
Ultimate Load
= 96.914 x 1.4 + 17.25 x 1.6
= 163.28 kN
57
Column E5
Dead Load Calculation
Ground Floor
Beam Self Weight
= 3000mm/2 x 1.44 + 5000mm/2 x 1.44
= 5.76 kN
Column Self Weight
= 0.2 x 0.2 x 3 x 24
= 2.88 kN
Brick Wall Self Weight
= no wall (0)
Concrete Slab Load
= 3000mm/2 x 5000mm/2 x 3.6
= 13. 5 kN
Total Dead Load on Ground Floor
= 5.76 + 2.88 + 13.5
= 22.14 kN
First Floor
Beam Self Weight
= 3000mm/2 x 1.44 + 5000mm/2 x 1.44
= 5.76 kN
Column Self Weight
= 0.2 x 0.2 x 3 x 24
= 2.88 kN
Brick Wall Self Weight
= 3000mm/2 x 8.55 + 5000mm/2 x 8.55
= 34.2 kN
Concrete Slab Load
= 3000mm/2 x 5000mm/2 x 3.6
= 13. 5 kN
Total Dead Load on First Floor
= 5.76 + 2.88 + 34.2 + 13.5
= 56.34 kN
58
Roof
Beam Self Weight
= 3000mm/2 x 1.44 + 5000mm/2 x 1.44
= 5.76 kN
Column Self Weight
= 0 (no column)
Brick Wall Self Weight
= 0 (no wall)
Concrete Slab Load
= 3000mm/2 x 5000mm/2 x 3.6
= 13. 5 kN
Total Dead Load on First Floor
= 5.76 +13.5
= 19.26 kN
Total Dead Load
= 22.14 + 56.34 + 19.26
= 97.74 kN
Live Load Calculation
Ground Floor
Porch
= 0.5 kN/m x 3000mm/2 x 5000mm/2
= 1.875 kN
First Floor
Family Area
= 2.0 kN/m x 3000mm/2 x 5000mm/2
= 7.5 kN
Roof
= 0.5 kN/m x 3000mm/2 x 5000mm/2
= 1.875 kN
154.836 kN < 774.4kN, it is
below the column maximum load
bearing capacity.
Total Live Load
= 1.875 + 7.5 + 1.875
= 11.25 kN
Ultimate Load
= 97.74 x 1.4 + 11.25 x 1.6
= 154.836 kN
59
SCHOOL OF ARCHITECTURE, BUILDING &
DESIGN
Bachelor of Science (Honours) (Architecture)
Building Structures (ARC 2522/2523)
Project 2: Structural Analysis of a Bungalow
Individual Work:
ONG SENG PENG 0319016
60
FAMILY AREA
Slab C-D/3-4
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Determine one way or two way slab:
Slab C-D/4-5
Ly/Lx = 3900/2000
= 1.95 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam C-D/4
Dead Load from Slab C-D/3-4
(two way slab)
= 3.6kN/m3 x (3 x ½)m
= 5.4 kN/m2
Dead Load from Slab C-D/4-5
(two way slab)
= 3.6kN/m3 x (2 x ½)m
= 3.6 kN/m2
Total Dead Load
= (1.44 + 5.4 + 3.6) kN/m2
= 10.44kN/m2
C D
5.4kN/m
3.6kN/m
1.44kN/m
3.9m
10.44kN/m
FAMILY AREA
Shear Force
Diagram
Bending Moment
Diagram
Live Load
Live Load from Slab C-D/3-4
= 2kN/m3 x (3 x ½ ) m2
= 3 kN/m
Live Load from Slab C-D/4-5
= 2kN/m3 x (2 x ½ ) m2
= 2 kN/m
C D
2kN/m
5kN/m
3kN/m
3.9m
Total Live Load
= (2 + 3) kN/m2
= 5 kN/m2
Ultimate Load
= (10.44kN/m x 1.4) + (5kN/m2 x 1.6)
= 14.616kN/m + 8kN/m
= 22.616kN/m
Load Diagram
Reaction Force
RC4 = RD4
= 22.616kN/m x 3.9m
2
= 44.10kN
22.616kN/m
Shear Force
Diagram
44.10kN 44.10kN
44.1kN
-44.1kN
1.95 m 1.95 m
A1 = A2
= 44.10kN x 1.95m x ½
= 43 kNm
43 kNm
1.95 m 1.95 m
3.9m
RC4 RD4
FAMILY AREA
Slab C-D/3-4
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Determine one way or two way slab:
Slab C-D/4-5
Ly/Lx = 3900/2000
= 1.95 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam C/3-5
Dead Load from Slab B1-C/3-5
(one way slab)
= 3.6kN/m3 x (2.3 x ½)m
= 4.14 kN/m2
Dead Load from Slab C-D/3-4
(two way slab)
= 3.6kN/m3 x (3 x ½ x 2/3)m
= 3.6 kN/m2
3 5
4.14kN/m
3.6kN/m
1.44kN/m
3 m
2.4kN/m
FAMILY AREA
FAMILY AREA
Slab B1-C/3-4
Ly/Lx = 5000/2300
= 2.17 > 2
(One way slab)
4
2 m
Dead Load from Slab C-D/4-5
(two way slab)
= 3.6kN/m3 x (2 x ½ x 2/3)m
= 2.4 kN/m2
Total Dead Load on C/3-4
= (1.44 + 4.14 + 3.6) kN/m2
= 9.18 kN/m2
Total Dead Load on C/4-5
= (1.44 + 4.14 + 2.4) kN/m2
= 7.98 kN/m2
9.18 kN/m
7.98 kN/m
Live Load
2kN/m
1.33kN/m
2.3kN/m
Live Load from Slab B1-C/3-5
(one way slab)
= 2kN/m3 x (2.3 x ½)m
= 2.3 kN/m2
Live Load from Slab C-D/3-4
(two way slab)
= 2kN/m3 x (3 x ½ x 2/3)m
= 2 kN/m2
Live Load from Slab C-D/4-5
(two way slab)
= 2kN/m3 x (2 x ½ x 2/3)m
= 1.33 kN/m2
4.3 kN/m
3.36 kN/m
3 54
3 m 2 m
Total Live Load on C/3-4
= (2.3 + 2) kN/m2
= 4.3 kN/m2
Total Live Load on C/4-5
= (2.3 + 1.33) kN/m2
= 3.63 kN/m2
Ultimate Load on Beam C/3-4
= (9.18kN/m x 1.4) + (4.3kN/m2 x 1.6)
= 12.852kN/m + 8kN/m
= 22.616kN/m
Ultimate Load on Beam C/4-5
= (7.98kN/m x 1.4) + (3.63kN/m2 x 1.6)
= 11.172kN/m + 5.808kN/m
= 16.98kN/m
-39.72kN
Load Diagram
Point load from secondary beam, C4= 44.1 kN
Take RC3 as centre, reaction force:
22.616 x 3 = 67.848kN
16.98 x 2 = 33.96kN
ΣM = 0
0 = 5RC5 – 67.848(3/2) – 44.1(3) – 33.96(4)
= 5RC5 – 101.772 – 132.3 – 135.84
= 5RC5 – 369.912
5RC5 = 366.612
RC5 = 73.98kN
ΣY = 0
0 = RC3 + RC5 – 67.848 – 44.1 – 33.96
= RC3 + 73.98 – 146.208
RC3 = 72.228kN
22.616kN/m
3 m 2 m
16.98kN/m
44.1 kN
RC3 RC5
72.228kN
3 m 2 m
4.38kN
-73.98kN
Shear Force Diagram
Ratio:
(68.488 + 9.66) = 9.66
2 a
39.074 a = 9.66
a = 0.247
A1 = (72.228 + 4.38) x 3
2
= 114.912kNm
A2 = (39.72 + 73.98) x 2
2
= 113.7 kNm
114.912 kNm
3 m
Bending Moment Diagram
BEDROOM
Slab D-F/2-3
Ly/Lx = 5800/4000
= 1.45 < 2
(Two way slab)
Determine one way or two way slab:
Slab D-E/3-5
Ly/Lx = 5000/3000
= 1.67 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam E/3-5
3 5
8.55kN/m
5.4kN/m
1.44kN/m
5m
15.39kN/m
FAMILY AREA
Dead Load from brick wall
= 19kN/m3 x (0.15 x 3)m2
= 8.55 kN/m
Dead Load from Slab D-E/3-5
(two way slab)
= 3.6kN/m3 x (3 x ½)m
= 5.4 kN/m2
Total Dead Load
= (1.44 + 8.55 + 5.4) kN/m
= 15.39kN/m
Live Load
Live Load from Slab D-E/3-5
= 2kN/m3 x (3 x ½ ) m2
= 3 kN/m
C D
3kN/m
5m
Ultimate Load
= (15.39kN/m x 1.4) + (3kN/m2 x 1.6)
= 21.546kN/m + 4.8kN/m
= 26.346kN/m
Load Diagram
Reaction Force
RE3 = RE5
= 26.346kN/m x 3.9m
2
= 51.375 kN
26.346kN/m
Shear Force Diagram
51.375 kN 51.375 kN
51.375 kN
- 51.375 kN
2.5 m 2.5 m
A1 = A2
= 26.346kN/m x 2.5m x ½
= 32.9325 kNm
32.9325 kNm
2.5 m 2.5 m
Bending Moment
Diagram
5mRE3 RE5
Dead Load from Slab D-E/3-5
(two way slab)
= 3.6kN/m3 x (3 x ½) x 2/3 m
= 3.6 kN/m2
BEDROOM
Slab D-F/2-3
Ly/Lx = 5800/4000
= 1.45 < 2
(Two way slab)
Determine one way or two way slab:
Slab D-E/3-5
Ly/Lx = 5000/3000
= 1.67 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam D-F/3
D F
8.55kN/m
3.6kN/m
1.44kN/m
3m
18.39kN/m
FAMILY AREA
Dead Load from brick wall
= 19kN/m3 x (0.15 x 3)m2
= 8.55 kN/m
Total Dead Load on Beam D-E/3
= (1.44 + 8.55 + 4.8 + 3.6) kN/m
= 18.39kN/m
E
1m
4.8kN/m
14.79kN/m
Total Dead Load on Beam E-F/3
= (1.44 + 8.55 + 4.8) kN/m
= 14.79kN/m
Dead Load from Slab D-F/2-3
(two way slab)
= 3.6kN/m3 x (4 x ½) x 2/3
= 4.8 kN/m2
Live Load
2kN/m
2kN/m
Live Load from Slab D1-F/2-3
(two way slab)
= 1.5kN/m3 x (4 x ½)m x 2/3
= 2 kN/m2
Live Load from Slab D-E/3-5
(two way slab)
= 2kN/m3 x (3 x ½ x 2/3)m
= 2 kN/m2
4 kN/m
2 kN/m
D FE
3 m 1 m
Total Live Load on D-E/3
= (2 + 2) kN/m2
= 4 kN/m2
Ultimate Load on Beam D-E/3
= (18.39kN/m x 1.4) + (4kN/m2 x 1.6)
= 25.746kN/m + 6.4kN/m
= 32.146kN/m
Ultimate Load on Beam C/4-5
= (14.79kN/m x 1.4) + (2kN/m2 x 1.6)
= 20.706kN/m + 3.2kN/m
= 23.906kN/m
Total Live Load on E-F/3
= 2kN/m2
-21.198kN
Load Diagram
Point load from secondary beam, C4= 51.375 kN
Take RD3 as centre, reaction force:
32.146 x 3 = 96.438kN
16.98 x 1 = 16.98kN
ΣM = 0
0 = 4RF3 – 96.438(3/2) – 51.375(3) – 16.98(3.5)
= 4RF3 – 144.657 – 154.125 – 59.43
= 4RF3 – 358.212
4RF3 = 358.212
RF3 = 89.553kN
ΣY = 0
0 = RD3 + RF3 – 96.438 – 51.375 – 16.98
= RD3 + 89.553 – 164.793
RD3 = 75.24kN
32.146kN/m
3 m 1 m
16.98kN/m
51.375 kN
RD3 RF3
75.24kN
3 m 1 m -89.553kN
Shear Force Diagram
Ratio:
(75.24 + 21.198) = 21.198
3 a
32.146 a = 21.198
a = 0.66
A1 = 75.24 x 2.34 x ½
= 88.03kNm
88.03 kNm
3 m
Bending Moment
Diagram
-72.573kN
2.34 m 0.66 m
A2 = 21.198 x 0.66 x ½
= 7kNm
A2 = (72.573 + 89.553) x 1
2
= 81.063kNm
81.03 kNm
2.34 m
Void
Determine one way or two way slab:
Slab A-B1/4-5
Ly/Lx = 4600/2000
= 2.3 > 2
(One way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam A-B1/4
A
3.6kN/m
5.04kN/m
1.44kN/m
4.6m
1.5kN/m
Corridor
Dead Load from Slab A-B1/4-5
(one way slab)
= 3.6kN/m3 x (2 x ½)m
= 3.6 kN/m2
Total Dead Load
= (1.44 + 3.6) kN/m
= 5.04kN/m
B1
Live Load
Live Load from Slab A-B1/4-5
= 1.5 kN/m3 x (2 x ½ ) m2
= 1.5 kN/m
Ultimate Load
= (5.04kN/m x 1.4) + (1.5kN/m2 x 1.6)
= 21.546kN/m + 4.8kN/m
= 9.456kN/m
Load Diagram
Reaction Force
RA4 = RB1.4
= 9.456kN/m x 4.6m
2
= 21.749 kN
9.456 kN/m
Shear Force Diagram
21.749 kN 21.749 kN
21.749 kN
- 21.749 kN2.3 m 2.3 m
A1 = A2
= 21.749 kN/m x 2.3m x ½
= 25.011 kNm
25.011 kNm
2.3 m 2.3 m
Bending Moment
Diagram
4.6mRA4 RB1.4
Dead Load from brick wall
= 19kN/m3 x (0.15 x 3)m2
= 8.55 kN/m
Void
Determine one way or two way slab:
Slab A-B1/4-5
Ly/Lx = 4600/2000
= 2.3 > 2
(One way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam A/3-5
3 5
8.55kN/m
9.99kN/m
1.44kN/m
3m
Corridor
No Dead Load from Slab A-B1/4-5
(one way slab)
Total Dead Load
= (1.44 + 8.55) kN/m
= 9.99kN/m
Ultimate Load
= 9.99kN/m x 1.4
= 13.986kN/m
2m
4
No Live Load from Slab A-B1/4-5
(one way slab)
Live Load
-20.042kN
Load Diagram
Point load from secondary beam, A4= 21.749 kN
kN
Take RA3 as centre, reaction force:
13.986 x 3 = 41.958 kN
13.986 x 2 = 27.972 kN
ΣM = 0
0 = 5RA5 – 41.958(3/2) – 21.749(3) – 27.972(4)
= 5RA5 – 62.937 – 65.247 – 111.888
= 5RA5 – 240.072
5RA5 = 240.072
RA5 = 48.014kN
ΣY = 0
0 = RA3 + RA5 – 41.958 – 21.749 – 27.972
= RA3 + 48.014 – 91.679
RD3 = 43.665kN
13.986kN/m
3 m 2 m
13.986kN/m
21.749 kN
43.665kN
3 m 2 m -48.014kN
Shear Force Diagram
A1 = (43.665 +1.707) x 3
2
= 68.058kNm
68.058 kNm
3 m
Bending Moment
Diagram
A2 = (48.014 + 20.042) x 2
2
= 68.056kNm
2.34 m
43.665 kN 48.014 kN
RA3 RA5
1.707kN
Capacity of the column:
Given, FCU= 30N/mm2
Fy = 460 N/mm2
Ac = 200mm x 200mm = 40000mm2
Assuming 2% steel reinforcement in concrete
Asc = 2% x 40000mm2 = 800mm2
N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc)
= (0.4 x 30 x 40000) + (0.8 x 460 x 800)
= 774400N = 774.4kN
Column A3
Roof Level
1. Dead Load from slab
= (5.9m x 1.5m) x 1.0 kN/m2 = 8.1kN
2. Dead Load from beam
= 6.9m x 1.44 kN/m
= 9.936kN
Total dead load on roof level
= (8.1 + 9.936)kN = 18.036kN
3. Live Load from slab
= 8.1m2 x 0.5 kN/m2 = 4.05kN
First Level
1. Dead Load from slab
= (1.5m x 2.9m) x 3.6 kN/m2
= 8.1 kN
2. Dead Load from beam
= 4.5m x 1.44 kN/m
= 6.48kN
3. Dead load from wall
= 6.9m x 8.55 kN/m
= 58.995kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (8.1 + 6.48 + 58.995 + 2.88)kN
= 73.575kN
5. Live Load from slab
= (2.9 x 1.5) x 1.5 kN/m2
= 6.525kN
Ground Level
1. Dead Load from slab
= (5.4 x 1.5)m2 x 3.6 kN/m2
= 29.16kN
2. Dead Load from beam
= 4.5m x 1.44 kN/m
= 6.48kN
3. Dead load from wall
= 6.9m x 8.55 kN/m = 58.995kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on ground level
= (29.16 + 6.48 + 58.995 + 2.88)kN
= 97.515kN
5. Live Load from slab (Living room)
= (1.5 x 2.9)m2 x 2 kN/m2 = 8.7kN
6. Live Load from slab
= (1.5 x 2.5)m2 x 1.5 kN/m2
= 5.625kN
Total live load on ground level
= (8.7 + 5.625)kN
= 14.325kN
Ultimate Dead Load = Total dead load x 1.4 = (18.036kN + 73.575kN + 97.515kN) x 1.4
= 264.7764kN
Ultimate Live Load = Total live load x 1.6 = (4.05kN + 6.525kN + 14.325kN) x 1.6
= 39.84kN
 Total Load acting on Column A3 = 304.616kN
304.616kN < 774.4kN, it is below the column maximum load bearing capacity.
Column B3 Roof Level
1. Dead Load from slab
= (5.4m x 3.45m) x 1.0 kN/m2 = 18.63kN
2. Dead Load from beam
= 3.45m x 1.44 kN/m
= 4.968kN
Total dead load on roof level
= (18.63 + 4.968)kN = 23.598kN
3. Live Load from slab
= 18.63 m2 x 0.5 kN/m2 = 9.315kN
First Level
1. Dead Load from slab
= {(3m x 3.45m) + (0.45 x 2.4)} x 3.6 kN/m2
= 41.148 kN
2. Dead Load from beam
= 3.45m x 1.44 kN/m
= 4.968kN
3. Dead load from wall
= 3.45m x 8.55 kN/m
= 29.4975kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (41.148 + 4.968 + 29.4975 + 2.88)kN
= 78.4935kN
5. Live Load from slab
= 11.43 x 1.5 kN/m2
= 17.145kN
Ground Level
1. Dead Load from slab
= (5.4 x 3.45)m2 x 3.6 kN/m2
= 67.068kN
2. Dead Load from beam
= 3.45m x 1.44 kN/m
= 4.968kN
3. Dead load from wall
= 3.45m x 8.55 kN/m = 29.4975kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on ground level
= (67.068 + 4.968 + 29.4975 + 2.88)kN
= 104.4135kN
5. Live Load from slab
= 18.63m2 x 1.5 kN/m2
= 27.945kN
Ultimate Dead Load = Total dead load x 1.4 = (23.598kN + 78.4935+ 104.4135kN) x 1.4
= 289.107kN
Ultimate Live Load = Total live load x 1.6 = (9.315kN + 17.145kN + 27.945kN) x 1.6
= 87.048kN
 Total Load acting on Column A3 = 376.1kN
376.1kN < 774.4kN, it is below the column maximum load bearing capacity.
Column C3 Roof Level
1. Dead Load from slab
= (5.4m x 3.9m) x 1.0 kN/m2 = 21.06kN
2. Dead Load from beam
= (5.4 + 3.9)m x 1.44 kN/m
= 13.392kN
Total dead load on roof level
= (21.06 + 13.392)kN = 34.452kN
3. Live Load from slab
= 21.06m2 x 0.5 kN/m2 = 10.53kN
First Level
1. Dead Load from slab
= (3.9m x 5.4m) x 3.6 kN/m2
= 75.816 kN
2. Dead Load from beam
= 3.9m x 1.44 kN/m
= 13.392kN
3. Dead load from wall
= (1.95 +2.9)m x 8.55 kN/m
= 41.4675kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (75.816 + 13.392 + 41.4675 + 2.88)kN
= 133.5555kN
5. Live Load from slab (family area)
= (2.9 x 1.95) x 2 kN/m2
= 9.75kN
6. Live Load from slab (Bedroom and corridor)
=(3.9 x 2.9) + (1.95 x 2.5) x 1.5
=24.2775kN
Total dead load on first level
= (9.75+ 24.2775)kN
= 34.0275kNkN
Ground Level
1. Dead Load from slab
= (5.4 x 3.9)m2 x 3.6 kN/m2
= 75.816kN
2. Dead Load from beam
= (5.4 + 3.9)m x 1.44 kN/m
= 41.4675kN
3. Dead load from wall
= none
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on ground level
= (75.816 + 41.4675+ 2.88)kN
= 120.1635kN
5. Live Load from slab (Dry kitchen and dining)
= (3.9 x 2.9)m2 x 2 kN/m2 = 22.62kN
6. Live Load from slab
= (3.9 x 2.5)m2 x 1.5 kN/m2
= 14.625kN
Total live load on ground level
= (22.62 + 14.625)kN
= 37.245kN
Ultimate Dead Load = Total dead load x 1.4 = (34.452kN 133.5555kN + 120.1635kN) x 1.4
= 403.438kN
Ultimate Live Load = Total live load x 1.6 = (10.53kN + 24.2775kN + 37.245kN) x 1.6
= 130.884kN
 Total Load acting on Column A3 = 534.322kN
534.322kN < 774.4kN, it is below the column maximum load bearing capacity.
Conclusion
Based on the calculations we did on the load transfer of beams and columns,
we conclude that the proposed sizes and positioning of structural point is
sufficient to support both dead loads and live loads of the building and in the
same time, meeting the user’s living requirements. Through this exercise, we
learned how to design a building based on structural considerations and
propose practical building structures for future studio assignments.
81
The project has a big role to bring exposure about the technicality and
rationality about what and how to build buildings in real life. Designs and ideas
which can be realized won’t contribute to the society. With a better basic
understanding on how to know whether the structures of a building can
withstand through the time, not only to stand for a short amount of time, it
gives us an insight as how to make ideas real. Not only to understand the
importance of structures, the exercise also allows us to know exactly on the
points where the members are actually vulnerable in order for us to think of a
concrete solution. An extra measure of safety to ensure the structures are
able to withstand unpredicted events in the future or a sudden shock to
certain member is always better.
Last but not least, we would like to express our token of appreciation to our
lecturers for their patience and dedication in teaching us these technical skills.
References:
(2013) Uniform Building By-laws 1984 (G.N. 5178/85) (1st ed.). Petaling Jaya, Malaysia:
Penerbitan Akta (M) Sdn. Bhd
Ambrose, James. (1991). Building Structures (Second Ed.). US: John Wiley & Sons,
1993.
How to Calculate the Bending Moment Diagram of a Beam. (2013). Retrieved
from http://bendingmomentdiagram.com/tutorials/how-to-find-bending-moment-
diagrams/
Jalal, Asfar. (2013, 17 November). Types of Load. Retrieved from
http://www.engineeringintro.com/mechanics-of-structures/sfd-bmd/types-of-load/
LearnEngineering.org & Imajey Consulting Engineers Pvt. Ltd. (2011). Analysis of
Beams: Shear Force and Bending Moment Diagram. Retrieved from
http://www.learnengineering.org/2013/08/shear-force-bending-moment-
diagram.html
Learn to Engineer. Uniform Distributed Loads. Retrieved from
http://learntoengineer.com/note/Uniform_Distributed_Loads
The American Wood Council (AWC). 2005, January 6. Beam Design Formulas with
Shear and Moment Diagrams (2005 Ed.). Washington, DC: American Forest &
Paper Association, Inc.
http://bendingmomentdiagram.com/tutorials/how-to-find-bending-moment-
diagrams/
http://www.iitg.ac.in/kd/Lecture%20Notes/ME101-Lecture11-KD.pdf
82

More Related Content

What's hot

Building Structure Project 2
Building Structure Project 2Building Structure Project 2
Building Structure Project 2Ivy Yee
 
Hb structure
Hb structureHb structure
Hb structurehongbinng
 
Building Structure Project 2 report
Building Structure Project 2 reportBuilding Structure Project 2 report
Building Structure Project 2 reportTan Jaden
 
Final structure report
Final structure reportFinal structure report
Final structure reportTay Jit Ying
 
Building Structure Final report
Building Structure Final reportBuilding Structure Final report
Building Structure Final reportCanisius Bong
 
B structure
B structure B structure
B structure Andy Heng
 
Structural Analysis of a Bungalow Report
Structural Analysis of a Bungalow ReportStructural Analysis of a Bungalow Report
Structural Analysis of a Bungalow Reportdouglasloon
 
Building Structure Project 2
Building Structure Project 2 Building Structure Project 2
Building Structure Project 2 Ryan Kerry Jy
 
Building structure real
Building structure realBuilding structure real
Building structure realong93
 
Building Structures Final Compilation
Building Structures Final CompilationBuilding Structures Final Compilation
Building Structures Final Compilationjisunfoo
 
Structure extension jun
Structure extension junStructure extension jun
Structure extension junAh Jun
 
Individual Caluculation
Individual CaluculationIndividual Caluculation
Individual CaluculationPengeneee Peng
 
B structure final_c
B structure final_cB structure final_c
B structure final_cleejanett3
 
B structure final final
B structure final finalB structure final final
B structure final final杉 江紫
 
Beam and Column Analysis | Individual Component
Beam and Column Analysis | Individual ComponentBeam and Column Analysis | Individual Component
Beam and Column Analysis | Individual ComponentJoyce Wee
 
Building Structures Report (Group and Individual)
Building Structures Report (Group and Individual)Building Structures Report (Group and Individual)
Building Structures Report (Group and Individual)Patch Yuen
 
Individual calculation
Individual calculation Individual calculation
Individual calculation Jamie Lee
 
Structural Analysis of SIRI House
Structural Analysis of SIRI HouseStructural Analysis of SIRI House
Structural Analysis of SIRI HouseCarmen Chan
 
Assignement 2: Structural Analysis
Assignement 2: Structural AnalysisAssignement 2: Structural Analysis
Assignement 2: Structural AnalysisDavidJPCChai
 

What's hot (19)

Building Structure Project 2
Building Structure Project 2Building Structure Project 2
Building Structure Project 2
 
Hb structure
Hb structureHb structure
Hb structure
 
Building Structure Project 2 report
Building Structure Project 2 reportBuilding Structure Project 2 report
Building Structure Project 2 report
 
Final structure report
Final structure reportFinal structure report
Final structure report
 
Building Structure Final report
Building Structure Final reportBuilding Structure Final report
Building Structure Final report
 
B structure
B structure B structure
B structure
 
Structural Analysis of a Bungalow Report
Structural Analysis of a Bungalow ReportStructural Analysis of a Bungalow Report
Structural Analysis of a Bungalow Report
 
Building Structure Project 2
Building Structure Project 2 Building Structure Project 2
Building Structure Project 2
 
Building structure real
Building structure realBuilding structure real
Building structure real
 
Building Structures Final Compilation
Building Structures Final CompilationBuilding Structures Final Compilation
Building Structures Final Compilation
 
Structure extension jun
Structure extension junStructure extension jun
Structure extension jun
 
Individual Caluculation
Individual CaluculationIndividual Caluculation
Individual Caluculation
 
B structure final_c
B structure final_cB structure final_c
B structure final_c
 
B structure final final
B structure final finalB structure final final
B structure final final
 
Beam and Column Analysis | Individual Component
Beam and Column Analysis | Individual ComponentBeam and Column Analysis | Individual Component
Beam and Column Analysis | Individual Component
 
Building Structures Report (Group and Individual)
Building Structures Report (Group and Individual)Building Structures Report (Group and Individual)
Building Structures Report (Group and Individual)
 
Individual calculation
Individual calculation Individual calculation
Individual calculation
 
Structural Analysis of SIRI House
Structural Analysis of SIRI HouseStructural Analysis of SIRI House
Structural Analysis of SIRI House
 
Assignement 2: Structural Analysis
Assignement 2: Structural AnalysisAssignement 2: Structural Analysis
Assignement 2: Structural Analysis
 

Viewers also liked

Asian Architecture topic proposal
Asian Architecture topic proposalAsian Architecture topic proposal
Asian Architecture topic proposalJoe Onn Lim
 
BUILDING SERVICE PROJECT 2 FINAL REPORT
BUILDING SERVICE PROJECT 2 FINAL REPORTBUILDING SERVICE PROJECT 2 FINAL REPORT
BUILDING SERVICE PROJECT 2 FINAL REPORTDarshiini Vig
 
Asian Architecture- Redefining Malaysian Terrace Residential Architecture by...
Asian Architecture-  Redefining Malaysian Terrace Residential Architecture by...Asian Architecture-  Redefining Malaysian Terrace Residential Architecture by...
Asian Architecture- Redefining Malaysian Terrace Residential Architecture by...Joe Onn Lim
 
Asian Architecture Presentation on 15 nov 2016
Asian Architecture Presentation on 15 nov 2016Asian Architecture Presentation on 15 nov 2016
Asian Architecture Presentation on 15 nov 2016Joe Onn Lim
 
Asian Architecture [ARC2234]- Project 1: Case Study Paper Presentation
Asian Architecture [ARC2234]- Project 1:  Case Study Paper PresentationAsian Architecture [ARC2234]- Project 1:  Case Study Paper Presentation
Asian Architecture [ARC2234]- Project 1: Case Study Paper PresentationAngeline KH
 
Cambodia
CambodiaCambodia
CambodiaFAO
 
HAREDA Green Building
HAREDA Green BuildingHAREDA Green Building
HAREDA Green BuildingGRIHA India
 
A S W O T Analysis Of The Cambodian Economy.Pdf
A  S W O T  Analysis Of The  Cambodian  Economy.PdfA  S W O T  Analysis Of The  Cambodian  Economy.Pdf
A S W O T Analysis Of The Cambodian Economy.Pdftirk_tnot
 
Tales of Three Cities - Georgetown, Penang, Malaysia
Tales of Three Cities - Georgetown, Penang, MalaysiaTales of Three Cities - Georgetown, Penang, Malaysia
Tales of Three Cities - Georgetown, Penang, MalaysiaJoe Onn Lim
 
ASIAN ARCHITECTURE PROJECT 1 FINAL REPORT
ASIAN ARCHITECTURE PROJECT 1 FINAL REPORT ASIAN ARCHITECTURE PROJECT 1 FINAL REPORT
ASIAN ARCHITECTURE PROJECT 1 FINAL REPORT Darshiini Vig
 
Ppt on zero energy building
Ppt on zero energy buildingPpt on zero energy building
Ppt on zero energy buildingganesh sharma
 
Zeor energy buliding
Zeor energy bulidingZeor energy buliding
Zeor energy bulidingVrati Sharma
 
classroom observation and type of observers
classroom observation and type of observersclassroom observation and type of observers
classroom observation and type of observersSiwar Bdioui
 
Net zero energy building (ppt-2016)
Net zero energy building (ppt-2016)Net zero energy building (ppt-2016)
Net zero energy building (ppt-2016)niruma
 
Architecture Internship Report by Lim Joe Onn
Architecture Internship Report by Lim Joe OnnArchitecture Internship Report by Lim Joe Onn
Architecture Internship Report by Lim Joe OnnJoe Onn Lim
 
Report of Geographer Cafe (Methods of Documentation and Measured Drawings)
Report of Geographer Cafe (Methods of Documentation and Measured Drawings)Report of Geographer Cafe (Methods of Documentation and Measured Drawings)
Report of Geographer Cafe (Methods of Documentation and Measured Drawings)AlexSiv03
 

Viewers also liked (17)

Asian Architecture topic proposal
Asian Architecture topic proposalAsian Architecture topic proposal
Asian Architecture topic proposal
 
BUILDING SERVICE PROJECT 2 FINAL REPORT
BUILDING SERVICE PROJECT 2 FINAL REPORTBUILDING SERVICE PROJECT 2 FINAL REPORT
BUILDING SERVICE PROJECT 2 FINAL REPORT
 
Asian Architecture- Redefining Malaysian Terrace Residential Architecture by...
Asian Architecture-  Redefining Malaysian Terrace Residential Architecture by...Asian Architecture-  Redefining Malaysian Terrace Residential Architecture by...
Asian Architecture- Redefining Malaysian Terrace Residential Architecture by...
 
Asian Architecture Presentation on 15 nov 2016
Asian Architecture Presentation on 15 nov 2016Asian Architecture Presentation on 15 nov 2016
Asian Architecture Presentation on 15 nov 2016
 
Asian Architecture [ARC2234]- Project 1: Case Study Paper Presentation
Asian Architecture [ARC2234]- Project 1:  Case Study Paper PresentationAsian Architecture [ARC2234]- Project 1:  Case Study Paper Presentation
Asian Architecture [ARC2234]- Project 1: Case Study Paper Presentation
 
Cambodia
CambodiaCambodia
Cambodia
 
HAREDA Green Building
HAREDA Green BuildingHAREDA Green Building
HAREDA Green Building
 
A S W O T Analysis Of The Cambodian Economy.Pdf
A  S W O T  Analysis Of The  Cambodian  Economy.PdfA  S W O T  Analysis Of The  Cambodian  Economy.Pdf
A S W O T Analysis Of The Cambodian Economy.Pdf
 
Tales of Three Cities - Georgetown, Penang, Malaysia
Tales of Three Cities - Georgetown, Penang, MalaysiaTales of Three Cities - Georgetown, Penang, Malaysia
Tales of Three Cities - Georgetown, Penang, Malaysia
 
ASIAN ARCHITECTURE PROJECT 1 FINAL REPORT
ASIAN ARCHITECTURE PROJECT 1 FINAL REPORT ASIAN ARCHITECTURE PROJECT 1 FINAL REPORT
ASIAN ARCHITECTURE PROJECT 1 FINAL REPORT
 
Ppt on zero energy building
Ppt on zero energy buildingPpt on zero energy building
Ppt on zero energy building
 
Zeor energy buliding
Zeor energy bulidingZeor energy buliding
Zeor energy buliding
 
classroom observation and type of observers
classroom observation and type of observersclassroom observation and type of observers
classroom observation and type of observers
 
ZERO ENERGY BUILDING ENVELOPE COMPONENTS
ZERO ENERGY BUILDING ENVELOPE COMPONENTSZERO ENERGY BUILDING ENVELOPE COMPONENTS
ZERO ENERGY BUILDING ENVELOPE COMPONENTS
 
Net zero energy building (ppt-2016)
Net zero energy building (ppt-2016)Net zero energy building (ppt-2016)
Net zero energy building (ppt-2016)
 
Architecture Internship Report by Lim Joe Onn
Architecture Internship Report by Lim Joe OnnArchitecture Internship Report by Lim Joe Onn
Architecture Internship Report by Lim Joe Onn
 
Report of Geographer Cafe (Methods of Documentation and Measured Drawings)
Report of Geographer Cafe (Methods of Documentation and Measured Drawings)Report of Geographer Cafe (Methods of Documentation and Measured Drawings)
Report of Geographer Cafe (Methods of Documentation and Measured Drawings)
 

Similar to Building Structures Report

Building structures final
Building structures finalBuilding structures final
Building structures finalJamie Lee
 
Building Structure
Building Structure Building Structure
Building Structure Nicole Foo
 
B structure power point
B structure power pointB structure power point
B structure power pointAnderson Wong
 
Structural analysis of a bungalow report
Structural analysis of a bungalow reportStructural analysis of a bungalow report
Structural analysis of a bungalow reportChengWei Chia
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculationJy Chong
 
Building structure
Building structure Building structure
Building structure yenweizheng
 
Lamyu 2
Lamyu 2Lamyu 2
Lamyu 2Lam Yu
 
Structures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC BungalowStructures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC BungalowYee Len Wan
 
Yung Part, structure
Yung Part, structureYung Part, structure
Yung Part, structureYung Kai
 
BStructure calculation
BStructure calculationBStructure calculation
BStructure calculationSheau Hui Tan
 

Similar to Building Structures Report (11)

Building structures final
Building structures finalBuilding structures final
Building structures final
 
Building Structure
Building Structure Building Structure
Building Structure
 
Structures
StructuresStructures
Structures
 
B structure power point
B structure power pointB structure power point
B structure power point
 
Structural analysis of a bungalow report
Structural analysis of a bungalow reportStructural analysis of a bungalow report
Structural analysis of a bungalow report
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculation
 
Building structure
Building structure Building structure
Building structure
 
Lamyu 2
Lamyu 2Lamyu 2
Lamyu 2
 
Structures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC BungalowStructures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
 
Yung Part, structure
Yung Part, structureYung Part, structure
Yung Part, structure
 
BStructure calculation
BStructure calculationBStructure calculation
BStructure calculation
 

More from Joe Onn Lim

Enbe fp online tutorial (lim joe onn)
Enbe fp online tutorial (lim joe onn)Enbe fp online tutorial (lim joe onn)
Enbe fp online tutorial (lim joe onn)Joe Onn Lim
 
Building Technology 2 - BOMBA plans
Building Technology 2 - BOMBA plansBuilding Technology 2 - BOMBA plans
Building Technology 2 - BOMBA plansJoe Onn Lim
 
AYDA Final Presentation - Architecture Category
AYDA Final Presentation - Architecture CategoryAYDA Final Presentation - Architecture Category
AYDA Final Presentation - Architecture CategoryJoe Onn Lim
 
Studio Semester 6 Final Report
Studio Semester 6 Final ReportStudio Semester 6 Final Report
Studio Semester 6 Final ReportJoe Onn Lim
 
Project Management Documentation: Medium-Sized Project
Project Management Documentation: Medium-Sized ProjectProject Management Documentation: Medium-Sized Project
Project Management Documentation: Medium-Sized ProjectJoe Onn Lim
 
Project Management: Recreation District - A3 Orthographic Drawings
Project Management: Recreation District - A3 Orthographic DrawingsProject Management: Recreation District - A3 Orthographic Drawings
Project Management: Recreation District - A3 Orthographic DrawingsJoe Onn Lim
 
Project Management - Recreation District in Taylor's University Subang Jaya
Project Management - Recreation District in Taylor's University Subang JayaProject Management - Recreation District in Taylor's University Subang Jaya
Project Management - Recreation District in Taylor's University Subang JayaJoe Onn Lim
 
Ar Mun Inn's Group - Taman Tasik Titiwangsa Site Analysis
Ar Mun Inn's Group - Taman Tasik Titiwangsa Site AnalysisAr Mun Inn's Group - Taman Tasik Titiwangsa Site Analysis
Ar Mun Inn's Group - Taman Tasik Titiwangsa Site AnalysisJoe Onn Lim
 
Community Service Initiative Journal
Community Service Initiative JournalCommunity Service Initiative Journal
Community Service Initiative JournalJoe Onn Lim
 
Building science 2 project 2
Building science 2 project 2Building science 2 project 2
Building science 2 project 2Joe Onn Lim
 
Building Science 2 - Auditorium
Building Science 2 - AuditoriumBuilding Science 2 - Auditorium
Building Science 2 - AuditoriumJoe Onn Lim
 
Synopsis 2 - The Geometry of Feeling
Synopsis 2 - The Geometry of FeelingSynopsis 2 - The Geometry of Feeling
Synopsis 2 - The Geometry of FeelingJoe Onn Lim
 
Synopsis 1 - Learning From Las Vegas
Synopsis 1 - Learning From Las VegasSynopsis 1 - Learning From Las Vegas
Synopsis 1 - Learning From Las VegasJoe Onn Lim
 
Synopsis 3 - Towards Critical Regionalism
Synopsis 3 - Towards Critical RegionalismSynopsis 3 - Towards Critical Regionalism
Synopsis 3 - Towards Critical RegionalismJoe Onn Lim
 
ARC61303 Theories of Architecture and Urbanism Project Part II: Comparative A...
ARC61303 Theories of Architecture and Urbanism Project Part II: Comparative A...ARC61303 Theories of Architecture and Urbanism Project Part II: Comparative A...
ARC61303 Theories of Architecture and Urbanism Project Part II: Comparative A...Joe Onn Lim
 
Building Technology 1 Assignment 2 - Construction Solutions
Building Technology 1 Assignment 2 - Construction SolutionsBuilding Technology 1 Assignment 2 - Construction Solutions
Building Technology 1 Assignment 2 - Construction SolutionsJoe Onn Lim
 
In Adaptation - Italo Calvino's Invisible Cities: Bukit Bintang
In Adaptation - Italo Calvino's Invisible Cities: Bukit BintangIn Adaptation - Italo Calvino's Invisible Cities: Bukit Bintang
In Adaptation - Italo Calvino's Invisible Cities: Bukit BintangJoe Onn Lim
 
Asian Architecture - Redefining Malaysian Terrace Residential Architecture by...
Asian Architecture - Redefining Malaysian Terrace Residential Architecture by...Asian Architecture - Redefining Malaysian Terrace Residential Architecture by...
Asian Architecture - Redefining Malaysian Terrace Residential Architecture by...Joe Onn Lim
 
Mapping the Townscape - Central Market Petaling Street KL
Mapping the Townscape - Central Market Petaling Street KLMapping the Townscape - Central Market Petaling Street KL
Mapping the Townscape - Central Market Petaling Street KLJoe Onn Lim
 
Biodiversity in Malaysia - Zoo Negara report with 6 animals
Biodiversity in Malaysia - Zoo Negara report with 6 animalsBiodiversity in Malaysia - Zoo Negara report with 6 animals
Biodiversity in Malaysia - Zoo Negara report with 6 animalsJoe Onn Lim
 

More from Joe Onn Lim (20)

Enbe fp online tutorial (lim joe onn)
Enbe fp online tutorial (lim joe onn)Enbe fp online tutorial (lim joe onn)
Enbe fp online tutorial (lim joe onn)
 
Building Technology 2 - BOMBA plans
Building Technology 2 - BOMBA plansBuilding Technology 2 - BOMBA plans
Building Technology 2 - BOMBA plans
 
AYDA Final Presentation - Architecture Category
AYDA Final Presentation - Architecture CategoryAYDA Final Presentation - Architecture Category
AYDA Final Presentation - Architecture Category
 
Studio Semester 6 Final Report
Studio Semester 6 Final ReportStudio Semester 6 Final Report
Studio Semester 6 Final Report
 
Project Management Documentation: Medium-Sized Project
Project Management Documentation: Medium-Sized ProjectProject Management Documentation: Medium-Sized Project
Project Management Documentation: Medium-Sized Project
 
Project Management: Recreation District - A3 Orthographic Drawings
Project Management: Recreation District - A3 Orthographic DrawingsProject Management: Recreation District - A3 Orthographic Drawings
Project Management: Recreation District - A3 Orthographic Drawings
 
Project Management - Recreation District in Taylor's University Subang Jaya
Project Management - Recreation District in Taylor's University Subang JayaProject Management - Recreation District in Taylor's University Subang Jaya
Project Management - Recreation District in Taylor's University Subang Jaya
 
Ar Mun Inn's Group - Taman Tasik Titiwangsa Site Analysis
Ar Mun Inn's Group - Taman Tasik Titiwangsa Site AnalysisAr Mun Inn's Group - Taman Tasik Titiwangsa Site Analysis
Ar Mun Inn's Group - Taman Tasik Titiwangsa Site Analysis
 
Community Service Initiative Journal
Community Service Initiative JournalCommunity Service Initiative Journal
Community Service Initiative Journal
 
Building science 2 project 2
Building science 2 project 2Building science 2 project 2
Building science 2 project 2
 
Building Science 2 - Auditorium
Building Science 2 - AuditoriumBuilding Science 2 - Auditorium
Building Science 2 - Auditorium
 
Synopsis 2 - The Geometry of Feeling
Synopsis 2 - The Geometry of FeelingSynopsis 2 - The Geometry of Feeling
Synopsis 2 - The Geometry of Feeling
 
Synopsis 1 - Learning From Las Vegas
Synopsis 1 - Learning From Las VegasSynopsis 1 - Learning From Las Vegas
Synopsis 1 - Learning From Las Vegas
 
Synopsis 3 - Towards Critical Regionalism
Synopsis 3 - Towards Critical RegionalismSynopsis 3 - Towards Critical Regionalism
Synopsis 3 - Towards Critical Regionalism
 
ARC61303 Theories of Architecture and Urbanism Project Part II: Comparative A...
ARC61303 Theories of Architecture and Urbanism Project Part II: Comparative A...ARC61303 Theories of Architecture and Urbanism Project Part II: Comparative A...
ARC61303 Theories of Architecture and Urbanism Project Part II: Comparative A...
 
Building Technology 1 Assignment 2 - Construction Solutions
Building Technology 1 Assignment 2 - Construction SolutionsBuilding Technology 1 Assignment 2 - Construction Solutions
Building Technology 1 Assignment 2 - Construction Solutions
 
In Adaptation - Italo Calvino's Invisible Cities: Bukit Bintang
In Adaptation - Italo Calvino's Invisible Cities: Bukit BintangIn Adaptation - Italo Calvino's Invisible Cities: Bukit Bintang
In Adaptation - Italo Calvino's Invisible Cities: Bukit Bintang
 
Asian Architecture - Redefining Malaysian Terrace Residential Architecture by...
Asian Architecture - Redefining Malaysian Terrace Residential Architecture by...Asian Architecture - Redefining Malaysian Terrace Residential Architecture by...
Asian Architecture - Redefining Malaysian Terrace Residential Architecture by...
 
Mapping the Townscape - Central Market Petaling Street KL
Mapping the Townscape - Central Market Petaling Street KLMapping the Townscape - Central Market Petaling Street KL
Mapping the Townscape - Central Market Petaling Street KL
 
Biodiversity in Malaysia - Zoo Negara report with 6 animals
Biodiversity in Malaysia - Zoo Negara report with 6 animalsBiodiversity in Malaysia - Zoo Negara report with 6 animals
Biodiversity in Malaysia - Zoo Negara report with 6 animals
 

Recently uploaded

Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxpritamlangde
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesChandrakantDivate1
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...josephjonse
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...ppkakm
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)ChandrakantDivate1
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...ronahami
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdfKamal Acharya
 

Recently uploaded (20)

Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 

Building Structures Report

  • 1. SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Bachelor of Science (Honours) (Architecture) Building Structures (ARC 2522/2523) Project 2: Structural Analysis of a Bungalow Tutor: Mr Azim Sulaiman Team Members: EVELIN DEVINA 0322176 LIM JOE ONN 0318679 ONG SENG PENG 0319016 1
  • 2. TABLE OF CONTENTS Introduction to Bungalow Floor Plans • Ground Floor • First Floor Structural Plans • Foundation Plan • Ground Floor Plan • First Floor Plan • Roof Plan Structural 3D model Design Brief • Assumed Material Weight • Assumed Live Load Beam Analysis Report • Load Distribution Plans • Load Diagram • Bending Moment Diagram • Shear Force Diagram Column Analysis Report • Load Distribution Plans for Column Design • Estimation of Column Load • Suggested Column Size Conclusion 2
  • 3. The proposed bungalow is built to accommodate the needs of a family. With an estimated total built up area of 450 square meters, its interior spaces include a living hall, a dining area, two kitchens, a guest room, three bathrooms, a master bedroom, two bedrooms and a storage space. Typical to modern day residential houses, its structure consists of basic key components of columns and beams which functions to support its own weight. Basic procedures of building structure design are recognized, executed and implemented. A structural proposal is produced to ensure the bungalow’s structural integrity, guaranteeing the safety of its inhabitants. INTRODUCTION TO BUNGALOW 3
  • 11. Dead Loads of Structure (Constant) Density of concrete = 24 kN/m3 Density of brick = 19 kN/m3 Dead load of roof = 1.0 kN/m2 (According to UBBL) Dead load factor = 1.4 Structure Self-weight Calculation Concrete beam self-weight Cross-sectional area = width x height of the beam = 0.2m x 0.3m = 0.06m2 Beam self-weight per meter length = cross-sectional area x density of concrete = 0.06m2 x 24 kN/m3 = 1.44 kN/m Brick wall self- weight Wall self-weight per meter length = thickness x height x density of brick wall = 0.15m x 3.0m x 19 kN/m2 = 8.55 kN/m Floor slab self- weight Floor slab self-weight per meter square = slab thickness x density of concrete = 0.15m x 24 kN/m3 = 3.6kN/m2 Live Loads of Rooms according to its function (Constant) Live load factor = 1.6 Room Live Load per meter square area (kN/m2) Bedroom 1.5 Dining Area 2.0 Living Area 2.0 Bathroom 2.0 Corridor 1.5 Kitchen 2.0 Roof 0.5 Design Brief: 11
  • 12. SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Bachelor of Science (Honours) (Architecture) Building Structures (ARC 2522/2523) Project 2: Structural Analysis of a Bungalow Individual Work: EVELIN DEVINA 0322176 12
  • 13. Slab A-B/1-2A Ly/Lx = 4200/3000 = 1.4 < 2 (Two way slab) Determine one way or two way slab: Slab A-B/2A-3 Ly/Lx = 4600/3000 = 1.53 < 2 (Two way slab) Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Brick Wall Load = Wall density x (thickness x height) = 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m 3. Load from Slab A-B/1-2A (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (3/2)m = 5.4 kN/m 4. Load from Slab A-B/2A-3 (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (3/2)m = 5.4 kN/m Total Dead Load on Beam A/2-2A = (1.44 + 8.55 + 5.4) kN/m = 15.39 kN/m Total Dead Load on Beam A/2A-3 = (1.44 + 8.55 + 5.4) kN/m = 15.39 kN/m 1) First Floor Beam A/2-3 Slab self-weight = Slab thickness x concrete density = 0.15m x 24 kN/m3 = 3.6 kN/m2 2 3 8.55 kN/m 5.4kN/m 1.44kN/m 4.6m 5.4kN/m 2A 1.2m 15.39kN/m 15.39
  • 14. Live Load 1. Load from Slab A-B/1-2A (two-way slab) = Live load intensity x (Lx/2) = 2 kN/m2 x (3/2)m = 3 kN/m 2. Load from Slab A-B/2A-3 (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (3/2)m = 2.25 kN/m Ultimate Load  Ultimate Load on Beam A/2-2A = Ultimate Dead Load + Ultimate Live Load = (15.39 kN/m x 1.4) + (3 kN/m x 1.6) = 21.55 KN/m + 4.8 kN/m = 26.35 kN/m  Ultimate Load on Beam A/2A-3 = Ultimate Dead Load + Ultimate Live Load = (15.39 kN/m x 1.4) + (2.25 kN/m x 1.6) = 21.55 KN/m + 3.6 kN/m = 25.15 kN/m Point Load at point A/2A from beam A-B/2A 1. Concrete Beam Self-weight = 1.44 kN/m 2. Brick Wall Load = 8.55 kN/m 3. Dead Load from Slab A-B/1-2A (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m 4. Dead Load from Slab A-B/2A-3 (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m Total Dead Load on Beam A-B/2A = (1.44 + 8.55 + 3.6 + 3.6)kN/m = 17.19 kN/m 5. Live Load from Slab A-B/1-2A (two-way slab) = Live Load Intensity x (Lx/2) x 2/3 = 2 kN/m2 x (3/2)m x 2/3 = 2 kN/m 6. Live Load from Slab A-B/2A-3 (two-way slab) = Live Load Intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m Total Live Load on Beam A-B/2A = (2 + 1.5)kN/m = 3.5 kN/m 2 3 4.6m 2A 1.2m 3kN/m 2.25kN/m 25.15kN/m 26.35kN/m
  • 15. Ultimate Load on Beam A-B/2A = (17.19 kN/m x 1.4) + (3.5 kN/m x 1.6) = 29.67 kN/m Total Load on Beam A-B/2A = Uniform Distributed Load x Beam Length = 29.67 kN/m x 3m = 89.01 kN  Point Load at Point A/2A Total Load is distributed equally to 2 points = 89.01 kN / 2 = 44.51 kN Reaction Force 1. Beam A/2-2A UDL to Point Load = 26.35 kN/m x 1.2m = 31.62 kN 2. Beam A/2A-3 UDL to Point Load = 25.15 kN/m x 4.6m = 115.69 kN 0 = ∑M2 0 = (31.62kN x 0.6m) + (44.51kN x 1.2m) + (115.69kN x 3.5m) – (R3 x 5.8m) R3 = 477.3kNm / 5.8m = 82.30 kN ∑Fy = (31.62 + 44.51 + 115.69) - (R2 + 82.30) = 0 R2 = 191.82 – 82.30 = 109.52 kN Shear Force Diagram 33.39 : X = 82.30 : (4.6 - X) 82.3 X = 33.39 (4.6 – X) X = 153.59/115.69 = 1.33m Bending Moment Diagram 1. (109.52m + 77.9m)/2 x 1.2m = 112.45m2 2. (33.39m x1.33m)/2 = 21.70m2 3. (82.30m x 3.27m)/2 = 134.56m2 2 3 4.6m 2A 1.2m 25.15kN/m 26.35kN/m 44.51kN R3=82.30kN 31.62kN 44.51kN R2=109.52kN 115.69kN x (4.6 – x) 82.30 33.39 4.6m1.2m 109.52kN 134.65kNm (109.52-31.62= 77.9kN) (77.9-44.51= 33.39kN) 0 (33.39-115.69= -82.30kN) 112.45kNm (134.65-134.56= +0.9)
  • 16. Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Load from Slab B-C/2-2B (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m 3. Load from Slab B-C/2B-3 (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (3/2)m = 5.4 kN/m Total Dead Load on Beam B-C/2B = (1.44 + 5.04 + 5.4) kN/m = 11.88 kN/m Slab B-C/2-2B Ly/Lx = 3900/2800 = 1.39 < 2 (Two way slab) Determine one way or two way slab: Slab B-C/2B-3 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) 2) First Floor Beam B-C/2B Slab self-weight = Slab thickness x concrete density = 0.15m x 24 kN/m3 = 3.6 kN/m2 Live Load 1. Load from Slab B-C/2-2B (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (2.8/2)m = 2.1 kN/m 2. Load from Slab B-C/2B-3 (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (3/2)m = 2.25 kN/m Total Live Load on Beam B-C/2B = (2.1 + 2.25) kN/m = 4.35 kN/m B C 5.04 kN/m 1.44kN/m 3.9m 5.4 kN/m 11.88 kN/m 2.1 kN/m 2.25 kN/m 4.35 kN/m
  • 17. Ultimate Load  Ultimate Load on Beam B-C/2B = Ultimate Dead Load + Ultimate Live Load = (11.88 kN/m x 1.4) + (4.35 kN/m x 1.6) = 16.63 KN/m + 6.96 kN/m = 23.59 kN/m Reaction Force Beam B-C/2B UDL to Point Load = 23.59 kN/m x 3.9m = 92 kN RB = RC ∑Fy = 92 - (RB + RC) = 0 RB = 46 kN RC = 46 kN Shear Force Diagram Bending Moment Diagram (46m x 1.95m)/2 = 89.7 m2 B C 3.9m RC=46 kN 92 kN 23.59kN/m RB=46 kN 46kN 1.95 m 1.95 m 0 - 46kN 89.7 kNm 0 (89.7-89.7 = 0)
  • 18. Slab B-C/2-2B = C-D/2/2B Ly/Lx = 3900/2800 = 1.39 < 2 (Two way slab) Determine one way or two way slab: Slab B-C/2-2B = C-D/2B-3 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Brick Wall Load = Wall density x (thickness x height) = 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m 3. Load from Slab B-C/2-2B (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m = Load from Slab C-D/2-2B 4. Load from Slab B-C/2B-3 (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m = Load from Slab C-D/2B-3 Total Dead Load on Beam C/2-2B = (1.44 + 8.55 + 3.36 + 3.36) kN/m = 16.71 kN/m Total Dead Load on Beam C/2B-3 = (1.44 + 8.55 + 3.6 + 3.6) kN/m = 17.19 kN/m 3) First Floor Beam C/2-3 Slab self-weight = Slab thickness x concrete density = 0.15m x 24 kN/m3 = 3.6 kN/m2 2 3 8.55 kN/m 3.36kN/m 1.44kN/m 3m 3.6kN/m 17.19kN/m 16.71kN/m 2B 2.8m
  • 19. Live Load 1. Load from Slab B-C/2-2B (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (2.8/2)m x 2/3 = 1.4 kN/m = Load from Slab C-D/2-2B 2. Load from Slab B-C/2B-3 (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m = Load from Slab C-D/2B-3 Total Live Load on Beam C/2-2B = (1.4 + 1.4) kN/m = 2.8 kN/m Total Dead Load on Beam C/2B-3 = (1.5 + 1.5) kN/m = 3 kN/m Ultimate Load  Ultimate Load on Beam C/2-2B = Ultimate Dead Load + Ultimate Live Load = (16.71 kN/m x 1.4) + (2.8 kN/m x 1.6) = 23.39 KN/m + 4.48 kN/m = 27.87 kN/m  Ultimate Load on Beam C/2B-3 = Ultimate Dead Load + Ultimate Live Load = (17.19 kN/m x 1.4) + (3 kN/m x 1.6) = 24.07 KN/m + 4.8 kN/m = 28.87 kN/m Point Load at point C/2B from beam B-C/2B and beam C-D/2B From calculation no.2; 1. Point Load from beam B-C/2B = 46kN 2. Point Load from beam C-D/2B = 46kN  Point Load at Point C/2B = 92kN 2 3 1.4kN/m 3m 1.5kN/m 3kN/m2.8kN/m 2B 2.8m 28.87kN/m27.87kN/m 92kN/m 28.87kN/m27.87kN/m
  • 20. Reaction Force 1. Beam C/2-2B UDL to Point Load = 27.87 kN/m x 2.8m = 78.04 kN 2. Beam C/2B-3 UDL to Point Load = 28.87 kN/m x 3m = 86.6 kN 0 = ∑M2 0 = (78.04kN x 1.4m) + (92kN x 2.8m) + (86.6kN x 4.3m) – (R3 x 5.8m) R3 = 739.24kNm / 5.8m = 127.45 kN ∑Fy = (78.04 + 92 + 86.6) - (R2 + 127.45) = 0 R2 = 256.64 –127.45 = 129.19 kN Shear Force Diagram Bending Moment Diagram 1. (129.19m + 51.15m)/2 x 2.8m = 252.48m2 2. (40.85m + 127.45m)/2 x 3m = 252.45m2 R3=127.45kN 92kN 86.6kN 2 3 3m 2B 2.8m R2=129.19kN 78.04kN 20 129.19kN 252.48kNm (129.19-78.04= 51.15kN) 0 (-40.85-86.6= -127.45kN) (252.48-252.45= +0.03) (51.15-92= -40.85kN) 0
  • 21. Slab B-C/2-2B Ly/Lx = 3900/2800 = 1.39 < 2 (Two way slab) Determine one way or two way slab: Slab C-D/2/2B Ly/Lx = 3900/2800 = 1.39 < 2 (Two way slab) Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Brick Wall Load = Wall density x (thickness x height) = 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m 3. Load from Slab B-C/2-2B (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m = Load from Slab C-D/2-2B Total Dead Load on Beam B-C/2 = (1.44 + 8.55 + 5.04) kN/m = 15.03 kN/m Total Dead Load on Beam C-D/2 = (1.44 + 5.04) kN/m = 6.48 kN/m 4) First Floor Beam B-D/2 Slab self-weight = Slab thickness x concrete density = 0.15m x 24 kN/m3 = 3.6 kN/m2 Live Load Load from Slab B-C/2-2B (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (2.8/2)m = 2.1 kN/m = Load from Slab C-D/2-2B B D 8.55 kN/m 1.44kN/m 3.9m C 3.9m 6.48kN/m 15.03kN/m 5.04 kN/m 2.1 kN/m
  • 22. Ultimate Load  Ultimate Load on Beam B-C/2 = Ultimate Dead Load + Ultimate Live Load = (15.03 kN/m x 1.4) + (2.1 kN/m x 1.6) = 21.04 KN/m + 3.36 kN/m = 24.40 kN/m  Ultimate Load on Beam C-D/2 = Ultimate Dead Load + Ultimate Live Load = (6.48 kN/m x 1.4) + (2.1 kN/m x 1.6) = 9.07KN/m + 3.36 kN/m = 12.43 kN/m Point Load at point C/2 from beam C/2-3 From calculation no.3;  Point Load at Point C/2B = 129.19kN Reaction Force 1. Beam B-C/2 UDL to Point Load = 24.40 kN/m x 3.9m = 95.16 kN 2. Beam C-D/2 UDL to Point Load =12.43 kN/m x 3.9m = 48.47 kN 0 = ∑MB 0 = (95.16kN x 1.95m) + (129.19kN x 3.9m) + (48.47kN x 5.85m) – (RD x 7.8m) RD = 972.95kNm / 7.8m = 124.74 kN ∑Fy = (95.16 + 129.19 + 48.47) - (R2 + 124.74) = 0 RB = 272.82 –124.74 = 148.08 kN Shear Force Diagram Bending Moment Diagram 1. (148.08m + 52.92m)/2 x 3.9m = 391.95m2 2. (76.27m + 124.74m)/2 x 3.9m = 391.97m2 B D 3.9m C 3.9m 12.43kN/m 24.40kN/m RD=124.74kN 129.19kN 48.47kN RB=148.08kN 95.16kN 12.43kN/m 24.40kN/m 129.19kN 22 148.08kN 391.95Nm (148.08-95.16= 52.92kN) 0 (-76.27-48.47= -124.74) (391.95-391.97= -0.02) (52.92-129.19= -76.27) 0
  • 23. Slab A-B/1-2A Ly/Lx = 4200/3000 = 1.4 < 2 (Two way slab) Determine one way or two way slab: Slab A-B/2A-3 Ly/Lx = 4600/3000 = 1.53 < 2 (Two way slab) Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Brick Wall Load = Wall density x (thickness x height) = 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m 3. Load from Slab A-B/1-2A (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (3/2)m = 5.4 kN/m = Load from Slab A-B/2A-3 4. Load from Slab B-C/2-2B (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m 5. Load from Slab B-C/2B-3 (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m Total Dead Load on Beam B/2-2A = (1.44 + 8.55 + 5.4 + 3.36) kN/m = 18.75 kN/m Total Dead Load on Beam B/2A-2B = (1.44 + 5.4 + 3.36) kN/m = 10.2 kN/m Total Dead Load on Beam B/2B-3 = (1.44 + 5.4 + 3.6) kN/m = 10.44 kN/m 5) First Floor Beam B/2-3 Slab self-weight = Slab thickness x concrete density = 0.15m x 24 kN/m3 = 3.6 kN/m2 Slab B-C/2-2B Ly/Lx = 3900/2800 = 1.39 < 2 (Two way slab) Slab B-C/2B-3 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) 2 3 8.55 kN/m 1.44kN/m 3m 18.75kN/m 2A 1.2m 3.6kN/m 2B 1.6m 5.4 kN/m 10.44kN/m 10.2kN/m 3.36kN/m
  • 24. Live Load 1. Load from Slab A-B/1-2A (two-way slab) = Live load intensity x (Lx/2) = 2 kN/m2 x (3/2)m = 3 kN/m 2. Load from Slab A-B/2A-3 (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (3/2)m = 2.25 kN/m 3. Load from Slab B-C/2-2B (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (2.8/2)m x 2/3 = 1.4 kN/m 4. Load from Slab B-C/2B-3 (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m Total Live Load on Beam B/2-2A = (3 + 1.4) kN/m = 4.4 kN/m Total Live Load on Beam B/2A-2B = (2.25 + 1.4) kN/m = 3.65 kN/m Total Live Load on Beam B/2B-3 = (2.25 + 1.5) kN/m = 3.75 kN/m Ultimate Load  Ultimate Load on Beam B/2-2A = Ultimate Dead Load + Ultimate Live Load = (18.75 kN/m x 1.4) + (4.4 kN/m x 1.6) = 26.25 KN/m + 7.04 kN/m = 33.29 kN/m  Ultimate Load on Beam B/2A-2B = Ultimate Dead Load + Ultimate Live Load = (10.2 kN/m x 1.4) + (3.65 kN/m x 1.6) = 14.28 KN/m + 5.84 kN/m = 20.12 kN/m  Ultimate Load on Beam B/2B-3 = Ultimate Dead Load + Ultimate Live Load = (10.44 kN/m x 1.4) + (3.75 kN/m x 1.6) = 14.62 KN/m + 6 kN/m = 20.62 kN/m 3 2.25 kN/m 3kN/m 3m 2A 1.2m 4.4kN/m 2B 1.6m 1.4kN/m 3.75kN/m 3.65kN/m 1.5kN/m 2 33.29kN/m 20.62kN/m 20.12kN/m
  • 25. Point Load at point B/2A from beam A-B/2A and point B/2B from beam B-C/2B From calculation no.1;  Point Load at Point B/2A = 44.51 kN From calculation no. 2;  Point Load at point B/2B = 46 kN Reaction Force 1. Beam B/2-2A UDL to Point Load = 33.29 kN/m x 1.2m = 39.95 kN 2. Beam B/2A-2B UDL to Point Load = 20.12 kN/m x 1.6m = 32.19 kN 3. Beam B/2B-3 UDL to Point Load = 20.62 kN/m x 3m = 61.86 kN 0 = ∑M2 0 = (39.95kN x 0.6m) + (44.51kN x 1.2m) + (32.19kN x 2m) + (46kN x 2.8m) + (61.86kN x 4.3m) – (R3 x 5.8m) R3 = 536.56kNm / 5.8m = 92.51 kN ∑Fy = (39.95 + 44.51 + 32.19 + 46 + 61.86) - (R2 + 92.51) = 0 R2 = 218.51 – 92.51 = 132 kN Shear Force Diagram Bending Moment Diagram 1. (132m + 92.05m)/2 x 1.2m = 134.43m2 2. (47.54m + 15.35m)/2 x 1.6m = 50.31m2 3. (30.65m + 92.51m)/2 x 3m = 184.70m2 2 3 3m 2A 1.2m R3=92.51kN 44.51kN 61.86kN 20.62kN/m 20.12kN/m 2B 1.6m 44.51kN 46kN R2=126.62kN 46kN 33.29kN/m 32.19kN39.95kN 132kN 184.74kNm (92.05-44.51=47.54kN) (-30.65-61.86= -92.51kN) (184.74-184.70= +0.04) (15.35-46= -30.65kN) (132-39.95=92.05kN) (47.54-32.19=15.35kN) 0 134.43 kNm
  • 26. Slab D-F/1-2A Ly/Lx = 4200/4000 = 1.05 < 2 (Two way slab) Determine one way or two way slab: Slab D-F/2A-3 Ly/Lx = 4600/4000 = 1.15 < 2 (Two way slab) Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Brick Wall Load = Wall density x (thickness x height) = 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m 3. Load from Slab D-F/1-2A (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (4/2)m = 7.2 kN/m = Load from Slab D-F/2A-3 4. Load from Slab F-G/2-2B (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m 5. Load from Slab F-G/2B-3 (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m Total Dead Load on Beam F/2-2A = (1.44 + 8.55 + 7.2 + 3.36) kN/m = 20.55 kN/m Total Dead Load on Beam F/2A-2B = (1.44 + 8.55 + 7.2 + 3.36) kN/m = 20.55 kN/m Total Dead Load on Beam F/2B-3 = (1.44 + 7.2 + 3.6) kN/m = 12.2 kN/m 6) First Floor Beam F/2-3 Slab F-G/2-2B Ly/Lx = 3000/2800 = 1.07 < 2 (Two way slab) Slab F-G/2B-3 Ly/Lx = 3000/3000 = 1 < 2 (Two way slab) 2 3 8.55 kN/m 1.44kN/m 3m 20.55kN/m 2A 1.2m 3.6kN/m 2B 1.6m 7.2 kN/m 12.2kN/m 20.55kN/m 3.36kN/m
  • 27. Live Load 1. Load from Slab D-F/1-2A (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (4/2)m = 3 kN/m = Load from Slab D-F/2A-3 2. Load from Slab F-G/2-2B (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 2 kN/m2 x (2.8/2)m x 2/3 = 1.87 kN/m 3. Load from Slab F-G/2B-3 (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m Total Live Load on Beam B/2-2A = (3 + 1.87) kN/m = 4.87 kN/m Total Live Load on Beam B/2A-2B = (3 + 1.87) kN/m = 4.87 kN/m Total Live Load on Beam B/2B-3 = (3 + 1.5) kN/m = 4.5 kN/m Ultimate Load  Ultimate Load on Beam B/2-2A = Ultimate Dead Load + Ultimate Live Load = (20.55 kN/m x 1.4) + (4.87 kN/m x 1.6) = 28.77 KN/m + 7.79 kN/m = 36.56 kN/m  Ultimate Load on Beam B/2A-2B = Ultimate Dead Load + Ultimate Live Load = (20.55 kN/m x 1.4) + (4.87 kN/m x 1.6) = 28.77 KN/m + 7.79 kN/m = 36.56 kN/m  Ultimate Load on Beam B/2B-3 = Ultimate Dead Load + Ultimate Live Load = (12.2 kN/m x 1.4) + (4.5 kN/m x 1.6) = 17.08 KN/m + 7.2 kN/m = 24.28 kN/m 3 3m 2A 1.2m 4.87kN/m 2B 1.6m 1.87kN/m 4.5kN/m 4.87kN/m 1.5kN/m 2 36.56kN/m 24.28kN/m 36.56kN/m 3 kN/m
  • 28. Point Load at point F/2A from beam D-F/2A 1. Concrete Beam Self-weight = 1.44 kN/m 2. Dead Load from Slab D-F/1-2A (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (4/2)m x 2/3 = 4.8 kN/m =Load from slab D-F/2A-3 Total Dead Load on Beam D-F/2A = (1.44 + 4.8 + 4.8)kN/m = 11.04 kN/m 3. Live Load from Slab D-F/1-2A (two-way slab) = Live Load Intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (4/2)m x 2/3 = 2 kN/m =Load from slab D-F/2A-3 Total Live Load on Beam D-F/2A = (2 + 2)kN/m = 4 kN/m Ultimate Load on Beam D-F/2A = (11.04 kN/m x 1.4) + (4 kN/m x 1.6) = 15.46 kN/m + 6.4kN/m = 21.86kN/m Total Load on Beam D-F/2A = Uniform Distributed Load x Beam Length = 21.86 kN/m x 4m = 87.44 kN  Point Load at Point A/2A Total Load is distributed equally to 2 points = 87.44 kN / 2 = 43.72 kN 2 3 3m 2A 1.2m 36.56kN/m 36.56kN/m 2B 1.6m 43.71kN 36.56kN/m
  • 29. Point Load at point F/2B from beam F-G/2B 1. Concrete Beam Self-weight = 1.44 kN/m 2. Brick Wall Load = 8.55 kN/m 3. Dead Load from Slab F-G/2-2B (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m 4. Dead Load from Slab F-G/2B-3 (two-way slab) = Slab self-weight x (Lx/2) x2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m Total Dead Load on Beam F-G/2B = (1.44 + 8.55 + 5.04 + 3.6)kN/m = 18.63 kN/m 5. Live Load from Slab F-G/2-2B (two-way slab) = Live Load Intensity x (Lx/2) = 2 kN/m2 x (2.8/2)m = 2.8 kN/m 6. Live Load from Slab F-G/2B-3 (two-way slab) = Live Load Intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m Total Live Load on Beam F-G/2B = (2.8 + 1.5)kN/m = 4.3 kN/m Ultimate Load on Beam F-G/2B = (18.63 kN/m x 1.4) + (4.3 kN/m x 1.6) = 26.08 kN/m + 6.88kN/m = 32.96kN/m Total Load on Beam F-G/2B = Uniform Distributed Load x Beam Length = 32.96 kN/m x 3m = 98.89 kN  Point Load at Point A/2A Total Load is distributed equally to 2 points = 98.89 kN / 2 = 49.44 kN 2 3 3m 2A 1.2m 36.56kN/m 36.56kN/m 2B 1.6m 43.71kN 36.56kN/m 49.44kN
  • 30. Reaction Force 1. Beam F/2-2A UDL to Point Load = 36.56 kN/m x 1.2m = 43.87 kN 2. Beam F/2A-2B UDL to Point Load = 36.56 kN/m x 1.6m = 58.5 kN 3. Beam F/2B-3 UDL to Point Load = 24.28 kN/m x 3m = 72.84 kN 0 = ∑M2 0 = (43.87kN x 0.6m) + (43.71kN x 1.2m) + (58.5kN x 2m) + (49.44kNx2.8m) + (72.84kN x 4.3m) – (R3 x 5.8m) R3 = 647.42kNm / 5.8m = 111.62 kN R2 = 218.51 – 92.51 = 156.74 kN Shear Force Diagram Bending Moment Diagram 1. (156.74m + 112.87m)/2 x 1.2m = 161.77m2 2. (69.16+10.66)/2 x 1.6m = 63.86m2 3. (38.78+111.62)/2 x 3m = 225.6m2 2 3 3m 2A 1.2m R3=111.62kN 43.71kN 72.84kN 36.56kN/m 36.56kN/m 2B 1.6m 43.71kN 49.44kN R2=156.74kN 49.44kN 36.56kN/m 58.5kN43.87kN 156.74kN 225.63kNm (112.87-43.71=69.16kN) (-38.78-72.84= -111.62kN) (225.63-225.6= +0.03) (10.66-49.44= -38.78kN) (156.74-43.87=112.87kN) (69.16-58.5=10.66kN) 0 161.77kNm
  • 31. Roof Level 1. Dead Load from slab = (5.9m x 4.4m) x 1.0 kN/m2 = 25.96kN 2. Dead Load from beam = (4.4 + 4.4 + 3.9 + 3.9 + 1.5)m x 1.44 kN/m = 26.78kN Total dead load on roof level = (25.96 + 26.78)kN = 52.74kN 3. Live Load from slab = 25.96m2 x 0.5 kN/m2 = 12.98kN 7) Column D2 Capacity of the column: Given, FCU= 30N/mm2 Fy = 460 N/mm2 Ac = 200mm x 200mm = 40000mm2 Assuming 2% steel reinforcement in concrete Asc = 2% x 40000mm2 = 800mm2 N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc) = (0.4 x 30 x 40000) + (0.8 x 460 x 800) = 774400N = 774.4kN First Level 1. Dead Load from slab = {(3.9m x 2.9m)+(2m x 4.4m)} x 3.6 kN/m2 = 72.40kN 2. Dead Load from beam = 18.6m x 1.44 kN/m = 26.78kN 3. Dead load from wall = (1.5 + 1.7 + 1.2 + 2 + 2.9)m x 8.55 kN/m = 79.52kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (72.40 + 26.78 + 79.52 + 2.88)kN = 181.58kN 5. Live Load from slab (Bedroom + Corridor) = 20.11m2 x 1.5 kN/m2 = 30.15kN *Marked in red are walls
  • 32. Ground Level 1. Dead Load from slab = 25.96m2 x 3.6 kN/m2 = 93.46kN 2. Dead Load from beam = (2.9 + 4.4 + 3.9 + 2)m x 1.44 kN/m = 19kN 3. Dead load from wall = (2.9 + 2 + 2.9)m x 8.55 kN/m = 66.69kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Ultimate Dead Load = Total dead load x 1.4 = (52.74kN + 181.58kN + 182.03kN) x 1.4 = 582.89kN Ultimate Live Load = Total live load x 1.6 = (12.98kN + 30.15kN + 44.6kN) x 1.6 = 140.37kN  Total Load acting on Column D2 = 723.26kN *Marked in red are walls Total dead load on ground level = (93.46 + 19 + 66.69 + 2.88)kN = 182.03kN 5. Live Load from slab (Dining) = (3.9 x 2.9)m2 x 2 kN/m2 = 22.62kN 6. Live Load from slab (Garden + Bedroom) = {(3.9 x 1.5) + (2 x 4.4)}m2 x 1.5 kN/m2 = 21.98kN Total live load on ground level = (22.62 + 21.98)kN = 44.6kN
  • 33. Roof Level 1. Dead Load from slab = (5.4m x 4.4m) x 1.0 kN/m2 = 23.76kN 2. Dead Load from beam = (5.4 + 4.4 + 3.9 + 4.4)m x 1.44 kN/m = 26.06kN Total dead load on roof level = (23.76 + 26.06)kN = 49.82kN 3. Live Load from slab = 23.76m2 x 0.5 kN/m2 = 11.88kN 8) Column B2 First Level 1. Dead Load from slab = {(1.5m x 4.4m)+(3.9m x 2.9m)} x 3.6 kN/m2 = 64.48kN 2. Dead Load from beam = 16.6m x 1.44 kN/m = 23.9kN 3. Dead load from wall = (2.7 + 1.5 + 3.9 + 2.9)m x 8.55 kN/m = 94.05kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (64.48 + 23.9 + 94.05 + 2.88)kN = 172.41kN 5. Live Load from slab (Bath) = (1.5 x 2.7)m2 x 2 kN/m2 = 8.1kN 6. Live Load from slab (Bedroom) = 13.86m2 x 1.5 kN/m2 = 20.79kN Total live load on first level = (8.1 + 20.79)kN = 28.89kN *Marked in red are walls
  • 34. Ground Level 1. Dead Load from slab = 23.76m2 x 3.6 kN/m2 = 85.54kN 2. Dead Load from beam = (4.4 + 1.5 + 3.9 + 2.9)m x 1.44 kN/m = 18.29kN 3. Dead load from wall = (4.4 + 1.5)m x 8.55 kN/m = 50.45kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (85.54 + 18.29 + 50.45 + 2.88)kN = 157.16kN 5. Live Load from slab (Kitchen) = (5.4 x 2.9)m2 x 2 kN/m2 = 31.32kN 6. Live Load from slab (Storage + Garden) = (5.4 x 1.5)m2 x 1.5 kN/m2 = 12.15kN Total live load on first level = (31.32 + 12.15)kN = 43.47kN Ultimate Dead Load = Total dead load x 1.4 = (49.82kN + 172.41kN + 157.16kN) x 1.4 = 531.15kN Ultimate Live Load = Total live load x 1.6 = (11.88kN + 28.89kN + 43.47kN) x 1.6 = 134.78kN  Total Load acting on Column B2 = 665.93kN *Marked in red are walls
  • 35. Roof Level 1. Dead Load from slab = (1.5m x 4.4m) x 1.0 kN/m2 = 6.6kN 2. Dead Load from beam = (1.5 + 2.9 + 1.5)m x 1.44 kN/m = 8.5kN Total dead load on roof level = (6.6 + 8.5)kN = 15.1kN 3. Live Load from slab = 6.6m2 x 0.5 kN/m2 = 3.3kN 9) Column A2 First Level 1. Dead Load from slab = 6.6m2 x 3.6 kN/m2 = 23.76kN 2. Dead Load from beam = 5.9m x 1.44 kN/m = 8.5kN 3. Dead load from wall = 5.9m x 8.55 kN/m = 50.45kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (23.76 + 8.5 + 50.45 + 2.88)kN = 85.59kN 5. Live Load from slab (Bath) = (1.5 x 2.7)m2 x 2 kN/m2 = 8.1kN 6. Live Load from slab (Bedroom) = (1.7 x 1.5)m2 x 1.5 kN/m2 = 3.83kN Total live load on first level = (8.1 + 3.83)kN = 11.93kN *Marked in red are walls
  • 36. Ground Level 1. Dead Load from slab = 6.6m2 x 3.6 kN/m2 = 23.76kN 2. Dead Load from beam = 5.9m x 1.44 kN/m = 8.5kN 3. Dead load from wall = (4.4 + 1.5)m x 8.55 kN/m = 50.45kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (23.76 + 8.5 + 50.45 + 2.88)kN = 85.59kN 5. Live Load from slab (Kitchen) = (2.9 x 1.5)m2 x 2 kN/m2 = 8.7kN 6. Live Load from slab (Storage + Garden) = (1.5 x 1.5)m2 x 1.5 kN/m2 = 3.38N Total live load on first level = (8.7 + 3.38)kN = 12.08kN Ultimate Dead Load = Total dead load x 1.4 = (15.1kN + 85.59kN + 85.59kN) x 1.4 = 260.79kN Ultimate Live Load = Total live load x 1.6 = (3.3kN + 11.93kN + 12.08kN) x 1.6 = 43.7kN  Total Load acting on Column B2 = 304.49kN *Marked in red are walls
  • 37. SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Bachelor of Science (Honours) (Architecture) Building Structures (ARC 2522/2523) Project 2: Structural Analysis of a Bungalow Individual Work: LIM JOE ONN 0318679 37
  • 38. Slab A-B/5-6 Ly/Lx = 4000/3000 = 1.333 < 2 (Two way slab) Determine one way or two way slab: Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam A-5/6 Dead Load from Slab A-B/5-6 (two way slab) = 1.0 kN/m3 x (3 x ½ )m = 1.5 kN/m2 Total Dead Load = (1.44 + 1.5) kN/m2 = 2.94 kN/m2 5 6 1.5kN/m 1.44kN/m 4.0m 2.94kN/m
  • 39. Live Load Live Load from Slab A-B/5-6 = 0.5 kN/m3 x (3 x ½ ) m2 = 0.75 kN/m 5 6 0.75 kN/m 0.75kN/m 4.0m Total Live Load = 0.75 kN/m2 Ultimate Load = (2.94kN/m x 1.4) + (0.75kN/m2 x 1.6) = 4.116 kN/m + 1.2 kN/m = 5.316 kN/m Load Diagram Reaction Force RA4 = RA6 = 5.316kN/m x 4m 2 = 10.632 kN 5.316kN/m Shear Force Diagram 10.632kN/m 10.632kN/m 9.75kN/m -9.75kN/m 2 m 2 m A1 = A2 = 9.75kN/m x 2 m x ½ = 9.75 kNm 9.75 kNm 2 m 2 m Bending Moment Diagram
  • 40. Slab A-B/5-6 Ly/Lx = 4000/3000 = 1.333 < 2 (Two way slab) Determine one way or two way slab: Slab B-C/5-6 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam B/5-6 Dead Load from Slab A-B/5-6 (two way slab) = 3.6kN/m3 x (3 x ½)m = 5.4 kN/m2 Dead Load from Slab B-C/5-6 (two way slab) = 3.6kN/m3 x (3 x ½)m = 5.4 kN/m2 Total Dead Load = (1.44 + 5.4 + 5.4) kN/m2 = 12.24kN/m2 C D 5.4kN/m 5.4kN/m 1.44kN/m 4.0 m 12.24kN/m
  • 41. Live Load Live Load from Slab A-B/5-6 = 0.5kN/m3 x (3 x ½ ) m2 = 3 kN/m Live Load from Slab B-C/5-6 = 0.5kN/m3 x (3 x ½ ) m2 = 3 kN/m C D 3kN/m 6kN/m 3kN/m 4.0m Total Live Load = (3 + 3) kN/m2 = 6 kN/m2 Ultimate Load = (12.24kN/m x 1.4) + (6kN/m2 x 1.6) = 17.136kN/m + 9.6kN/m = 26.736kN/m Load Diagram Reaction Force RB5 = RB6 = 26.736kN/m x 4m 2 = 53.472 kN 26.736kN/m Shear Force Diagram 53.472 kN/m 53.472 kN/m 53.472 kN/m -53.472kN/m 2 m 2 m A1 = A2 = 53.472kN/m x 2m x ½ = 53.472 kNm 53.472 kNm 2 m 2 m Bending Moment Diagram
  • 42. Slab B-C/5-6 Ly/Lx = 4000/3900 = 1.026< 2 (Two way slab) Determine one way or two way slab: Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam C-5/6 Dead Load from Slab A-B/5-6 (two way slab) = 1.0 kN/m3 x (3.9 x ½ )m = 1.95 kN/m2 Total Dead Load = (1.44 + 1.95) kN/m2 = 3.39 kN/m2 5 6 1.95kN/m 1.44kN/m 4.0m 3.39kN/m
  • 43. Live Load Live Load from Slab A-B/5-6 = 0.5 kN/m3 x (3.9 x ½ ) m2 = 0.975 kN/m 5 6 0.975 kN/m 0.975kN/m 4.0m Total Live Load = 0.975 kN/m2 Ultimate Load = (3.39kN/m x 1.4) + (0.975kN/m2 x 1.6) = 4.746 kN/m + 1.56 kN/m = 6.306 kN/m Load Diagram Reaction Force RC5 = RC6 = 6.306kN/m x 4m 2 = 12.612 kN 6.306 kN/m Shear Force Diagram 12.612kN/m 12.612kN/m 12.612kN/m -12.612kN/m 2 m 2 m A1 = A2 = 12.612kN/m x 2 m x ½ = 12.612 kNm 12.612 kNm 2 m 2 m Bending Moment Diagram
  • 44. Slab B-C/5-6 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Determine one way or two way slab: Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam A-C/6 Dead Load from Slab A-B/5-6 (two way slab) = 1 kN/m3 x (3 x ½ x 2/3)m = 1 kN/m2 Dead Load from Slab B-C/5-6 (two way slab) = 1 kN/m3 x (3.9 x ½ x 2/3)m = 1.3 kN/m2 A C 1 kN/m 1.44kN/m 3 m 1.3kN/m Slab A-B/5-6 Ly/Lx = 4000/3000 = 1.33 < 2 (Two way slab) B 3.9 m Total Dead Load on A-B/6 = (1.44 + 1) kN/m2 = 2.44 kN/m2 Total Dead Load on B-C/6 = (1.44 + 1.3) kN/m2 = 2.74kN/m2 2.44 kN/m 2.74 kN/m
  • 45. Live Load from Slab A-B/5-6 (two way slab) = 0.5kN/m3 x (3 x ½ x 2/3)m = 0.5 kN/m2 Live Load 0.5 kN/m 0.65kN/m Live Load from Slab B-C/5-6 (two way slab) = 0.5kN/m3 x (3.9 x ½ x 2/3)m = 0.65 kN/m2 0.5 kN/m 0.65 kN/m A B 3 m 3.9 m Ultimate Load on Beam C/3-4 = (2.44kN/m x 1.4) + (0.5kN/m2 x 1.6) = 3.416kN/m + 0.8kN/m = 4.216kN/m Ultimate Load on Beam C/4-5 = (2.74kN/m x 1.4) + (0.65kN/m2 x 1.6) = 3.836kN/m + 1.04kN/m = 5.116kN/m C
  • 46. Load Diagram Point load from secondary beam, B6=44.328 kN Take RA6 as centre, reaction force: 4.216 x 3 = 12.648kN 5.116 x 3.9 = 19.952kN ΣM = 0 0 = 6.9RC6 – 19.952(4.95) – 44.328(3) – 12.648(1.5) = 6.9RC6 – 98.762 – 132.984 – 18.972 = 6.9RC6 – 250.718 6.9RC6 = 250.718 RC6 = 36.336kN ΣY = 0 0 = RA6 + RC6 – 12.648 – 44.328 – 19.952 = RA6 + 36.336 – 76.928 RA6 = 40.592kN 4.216kN/m 3 m 3.9 m 5.116kN/m 44.328kN/m RA6 RC6 40.592kN 3 m 3.9 m 27.944kN -16.384kN -36.336kN Shear Force Diagram A1 = ½(40.592kN/m + 27.944kN/m) x 3 = 102.804 kNm 102.804 kNm 3 m 3.9 m Bending Moment Diagram A2 = ½(16.384kN/m + 36.336kN/m) x 3.9 = 102.804 kNm
  • 47. Slab C-D/3-4 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Determine one way or two way slab: Slab C-D/4-5 Ly/Lx = 3900/2000 = 1.95 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m Dead Load from Brick Wall Height =0.15 x 3 x 19kN/m3 =8.55 kN/m First Floor Beam D/3-5 Dead Load from Slab C-D/3-4 (two way slab) = 3.6kN/m3 x (3 x ½ x 2/3)m = 3.6 kN/m2 Dead Load from Slab D-E/3-4 (two way slab) = 3.6kN/m3 x (3 x ½)m = 5.4kN/m2 Total Dead Load for Beam D/3-4 = (1.44+8.55+3.6+5.4) kN/m2 = 18.99kN/m2 Slab D-E/3-5 Ly/Lx = 5000/3000 = 1.67 < 2 (Two way slab) 3 5 8.55kN/m 3.6kN/m 1.44kN/m 3 m 5.4kN/m 4 2 m 18.99kN/m
  • 48. Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m Dead Load from Brick Wall Height =0.15 x 3 x 19kN/m3 =8.55 kN/m Dead Load from Slab C-D/4-5 (two way slab) = 3.6kN/m3 x (2 x ½ x 2/3)m = 2.4 kN/m2 Dead Load from Slab D-E/4-5 (two way slab) = 3.6kN/m3 x (3 x ½)m = 5.4 kN/m2 Total Dead Load for Beam D/4-5 = (1.44+8.55+2.4+5.4) kN/m2 = 19.59kN/m2 3 5 8.55kN/m 1.44kN/m 3 m 4 2 m 2.4kN/m 5.4kN/m 17.79kN/m 18.99 kN/m 17.79 kN/m
  • 49. Live Load 2kN/m 1.33 kN/m Live Load from Slab C-D/3-4 (two way slab) = 2kN/m3 x (3 x ½ x 2/3)m = 2kN/m2 Live Load from Slab D-E/3-4 (two way slab) = 2kN/m3 x (3 x ½)m = 3 kN/m2 Live Load from Slab C-D/4-5 (two way slab) = 2kN/m3 x (2 x ½ x 2/3)m = 1.33 kN/m2 5 kN/m 4.33 kN/m 3 54 3 m 2 m Total Live Load on D/3-4 = (2 + 3) kN/m2 = 5 kN/m2 Total Live Load on D/4-5 = (1.33 + 3) kN/m2 = 4.33 kN/m2 Ultimate Load on Beam D/3-4 = (18.99kN/m x 1.4) + (5kN/m2 x 1.6) = 26.586kN/m + 8kN/m = 34.586kN/m Ultimate Load on Beam D/4-5 = (17.79kN/m x 1.4) + (4.33kN/m2 x 1.6) = 24.906kN/m + 6.928kN/m = 31.834kN/m Live Load from Slab D-E/4-5 (two way slab) = 2kN/m3 x (3 x ½ )m = 3 kN/m2 3kN/m 3 kN/m 34.586 kN/m 31.834 kN/m
  • 50. Load Diagram Point load from secondary beam, D4=40.21 kN Take RD3 as centre, reaction force: 34.586 x 3 = 103.758kN 31.834 x 2 = 63.668kN ΣM = 0 0 = 5RD5 – 103.758(1.5) – 40.21(3) – 63.668(4) = 5RD5 – 155.637 – 120.63 – 254.672 = 5RD5 – 530.939 5RD5 = 530.939 RD5 = 106.188kN ΣY = 0 0 = RD3 + RD5 – 103.758 – 40.21 – 63.668 = RD3 + 106.188 – 207.636 RD3 = 101.448kN 34.586kN/m 3 m 2 m 31.834kN/m 40.21kN/m RD3 RD5 101.448kN 3 m 2 m -2.31kN -42.52kN -106.188kN Shear Force Diagram Ratio: (101.448+(34.586x3-101.448)) = 101.448 3 a 103.758 a = 304.344 a = 2.933m2.933 m A1 = 101.448 x 2.933 x ½ = 148.773kNm A2 =½ (106.188 + 42.52)x2 +½(2.31 x (3 – 2.933)) = 148.785 kNm 148.773kNm 2.933 m 3 m Bending Moment Diagram148.696kNm
  • 51. Slab D-E/3-5 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Determine one way or two way slab: Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m Dead Load for Brick Wall Height =0.15 x 3 x 19kN/m3 =8.55 kN/m First Floor Beam C-E/5 Dead Load from Slab C-D/4-5 (two way slab) = 3.6 kN/m3 x (2 x ½ )m = 3.6 kN/m2 Dead Load from Slab D-E/3-5 (two way slab) = 3.6 kN/m3 x (3 x ½ x 2/3)m = 3.6 kN/m2 C E 3.6 kN/m 1.44kN/m 3.9 m 3.6kN/m Slab C-D/4-5 Ly/Lx = 3900/2000 = 1.95 < 2 (Two way slab) D 3 m Total Dead Load on C-D/4-5 = (3.6+8.55+1.44) kN/m2 = 13.59 kN/m2 Total Dead Load on D-E/3-5 = (1.44 + 8.55 +3.6) kN/m2 = 13.59 kN/m2 13.59 kN/m 13.59 kN/m 8.55kN/m
  • 52. Live Load from Slab C-D/4-5 (two way slab) = 2.0kN/m3 x (2 x ½ )m = 2 kN/m2 Live Load 2 kN/m 2 kN/m Live Load from Slab D-E/3-5 (two way slab) = 2.0kN/m3 x (3 x ½ x 2/3)m = 2 kN/m2 2 kN/m 2 kN/m C D 3.9 m 3 m Ultimate Load on Beam A-B/5 = (13.59kN/m x 1.4) + (2kN/m2 x 1.6) = 19.026kN/m + 3.2kN/m = 22.226kN/m Ultimate Load on Beam B-C/5 = (13.59kN/m x 1.4) + (2kN/m2 x 1.6) = 19.026kN/m + 3.2kN/m = 22.226kN/m E
  • 53. Load Diagram Point load from secondary beam, D5=116.496 kN Take RC5 as centre, reaction force: 22.226 x 3.9= 86.681kN 22.226 x 3 = 66.678kN ΣM = 0 0 = 6.9RE5 – 86.681(1.95) – 116.496(3.9) – 66.678(5.4) = 6.9RE5 – 169.028 – 454.334 – 360.061 = 6.9RE5 – 983.424 6.9RE5 = 983.424 RE5 = 142.525 kN ΣY = 0 0 = RC5 + RE5 – 86.681 – 116.496 – 66.678 = RC5 + 142.525 – 269.855 RC5 = 127.33kN 22.226kN/m 3.9 m 3 m 22.226kN/m 116.496kN/m RC5 RE5 127.33kN 3.9 m 3 m 40.649kN -75.847kN -142.525kN Shear Force Diagram A1 = ½(40.649kN/m + 127.33kN/m) x 3.9 = 327.55kNm 102.804 kNm 3 m 3.9 m Bending Moment Diagram A2 = ½(75.847kN/m + 142.525kN/m) x 3 = 327.55 kNm
  • 54. Column C6 Dead Load Calculation Ground Floor Beam Self Weight = 4000mm/2 x 1.44 + 6900mm/2 x 1.44 = 7.848 kN Column Self Weight = 0.2 x 0.2 x 3 x 24 = 2.88 kN Brick Wall Self Weight = 0 (no wall) Concrete Slab Load = 4000mm/2 x 6900mm/2 x 3.6 = 24.84 kN Total Dead Load on Ground Floor = 7.848 + 2.88 + 24.84 = 35.568 kN Total Dead Load = 35.568 + 14.748 = 50.316 kN Capacity of the column: Given, FCU= 30N/mm2 Fy = 460 N/mm2 Ac = 200mm x 200mm = 40000mm2 Assuming 2% steel reinforcement in concrete Asc = 2% x 40000mm2 = 800mm2 N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc) = (0.4 x 30 x 40000) + (0.8 x 460 x 800) = 774400N = 774.4kN
  • 55. Live Load Calculation Ground Floor Porch = 1.5 kN/m x 4000mm/2 x 6900mm/2 = 10.35 kN First Floor Flat Roof = 0.5 kN/m x 4000mm/2 x 6900mm/2 = 3.45 kN Total Live Load = 10.35 + 3.45 = 13.8 kN Ultimate Load = 50.316 x 1.4 + 13.8 x 1.6 = 92.523 kN 92.523 kN < 774.4kN, it is below the column maximum load bearing capacity. First Floor (Flat Roof) Beam Self Weight = 4000mm/2 x 1.44 + 6900mm/2 x 1.44 =7.848 kN Column Self Weight = 0 (no column) Brick Wall Self Weight = 0 (no wall) Concrete Slab Load = 4000mm/2 x 6900mm/2 x 1.0 = 6.9 kN Total Dead Load on First Floor = 7.848 + 6.9 =14.748 kN 55
  • 56. Column A6 Dead Load Calculation Ground Floor Beam Self Weight = 4000mm/2 x 1.44 = 6900mm/2 x 1.44 = 7.848 kN Column Self Weight = 0.2 x 0.2 x 3 x 24 = 2.88 kN Brick Wall Self Weight = 6900mm/2 x 8.55 + 4000mm/2 x 8.55 = 46. 598 kN Concrete Slab Load = 4000mm/2 x 6900mm/2 x 3.6 = 24.84 kN Total Dead Load on Ground Floor = 7.848 + 2.88 + 46.598 + 24.84 = 82.166 kN First Floor (Flat Roof) Beam Self Weight = 4000mm/2 x 1.44 + 6900mm/2 x 1.44 = 7.848 kN Column Self Weight = 0 (no column) Brick Wall Self Weight = 0 (no wall) Total Dead Load =82.166 +14.748 = 96.914 kN 96.914 kN < 774.4kN, it is below the column maximum load bearing capacity. Concrete Slab Load = 4000mm/2 x 6900mm/2 x 1.0 = 6.9 kN Total Dead Load on Ground Floor = 7.848 + 6.9 = 14.748 kN 56
  • 57. Live Load Calculation Ground Floor Living Room = 2.0 kN/m x 4000mm/2 x 6900mm/2 = 13.8 kN First Floor Flat Roof = 0.5 kN/m x 4000mm/2 x 6900mm/2 = 3.45 kN Total Live Load = 13.8 + 3.45 = 17.25 kN Ultimate Load = 96.914 x 1.4 + 17.25 x 1.6 = 163.28 kN 57
  • 58. Column E5 Dead Load Calculation Ground Floor Beam Self Weight = 3000mm/2 x 1.44 + 5000mm/2 x 1.44 = 5.76 kN Column Self Weight = 0.2 x 0.2 x 3 x 24 = 2.88 kN Brick Wall Self Weight = no wall (0) Concrete Slab Load = 3000mm/2 x 5000mm/2 x 3.6 = 13. 5 kN Total Dead Load on Ground Floor = 5.76 + 2.88 + 13.5 = 22.14 kN First Floor Beam Self Weight = 3000mm/2 x 1.44 + 5000mm/2 x 1.44 = 5.76 kN Column Self Weight = 0.2 x 0.2 x 3 x 24 = 2.88 kN Brick Wall Self Weight = 3000mm/2 x 8.55 + 5000mm/2 x 8.55 = 34.2 kN Concrete Slab Load = 3000mm/2 x 5000mm/2 x 3.6 = 13. 5 kN Total Dead Load on First Floor = 5.76 + 2.88 + 34.2 + 13.5 = 56.34 kN 58
  • 59. Roof Beam Self Weight = 3000mm/2 x 1.44 + 5000mm/2 x 1.44 = 5.76 kN Column Self Weight = 0 (no column) Brick Wall Self Weight = 0 (no wall) Concrete Slab Load = 3000mm/2 x 5000mm/2 x 3.6 = 13. 5 kN Total Dead Load on First Floor = 5.76 +13.5 = 19.26 kN Total Dead Load = 22.14 + 56.34 + 19.26 = 97.74 kN Live Load Calculation Ground Floor Porch = 0.5 kN/m x 3000mm/2 x 5000mm/2 = 1.875 kN First Floor Family Area = 2.0 kN/m x 3000mm/2 x 5000mm/2 = 7.5 kN Roof = 0.5 kN/m x 3000mm/2 x 5000mm/2 = 1.875 kN 154.836 kN < 774.4kN, it is below the column maximum load bearing capacity. Total Live Load = 1.875 + 7.5 + 1.875 = 11.25 kN Ultimate Load = 97.74 x 1.4 + 11.25 x 1.6 = 154.836 kN 59
  • 60. SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Bachelor of Science (Honours) (Architecture) Building Structures (ARC 2522/2523) Project 2: Structural Analysis of a Bungalow Individual Work: ONG SENG PENG 0319016 60
  • 61. FAMILY AREA Slab C-D/3-4 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Determine one way or two way slab: Slab C-D/4-5 Ly/Lx = 3900/2000 = 1.95 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam C-D/4 Dead Load from Slab C-D/3-4 (two way slab) = 3.6kN/m3 x (3 x ½)m = 5.4 kN/m2 Dead Load from Slab C-D/4-5 (two way slab) = 3.6kN/m3 x (2 x ½)m = 3.6 kN/m2 Total Dead Load = (1.44 + 5.4 + 3.6) kN/m2 = 10.44kN/m2 C D 5.4kN/m 3.6kN/m 1.44kN/m 3.9m 10.44kN/m FAMILY AREA Shear Force Diagram
  • 62. Bending Moment Diagram Live Load Live Load from Slab C-D/3-4 = 2kN/m3 x (3 x ½ ) m2 = 3 kN/m Live Load from Slab C-D/4-5 = 2kN/m3 x (2 x ½ ) m2 = 2 kN/m C D 2kN/m 5kN/m 3kN/m 3.9m Total Live Load = (2 + 3) kN/m2 = 5 kN/m2 Ultimate Load = (10.44kN/m x 1.4) + (5kN/m2 x 1.6) = 14.616kN/m + 8kN/m = 22.616kN/m Load Diagram Reaction Force RC4 = RD4 = 22.616kN/m x 3.9m 2 = 44.10kN 22.616kN/m Shear Force Diagram 44.10kN 44.10kN 44.1kN -44.1kN 1.95 m 1.95 m A1 = A2 = 44.10kN x 1.95m x ½ = 43 kNm 43 kNm 1.95 m 1.95 m 3.9m RC4 RD4
  • 63. FAMILY AREA Slab C-D/3-4 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Determine one way or two way slab: Slab C-D/4-5 Ly/Lx = 3900/2000 = 1.95 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam C/3-5 Dead Load from Slab B1-C/3-5 (one way slab) = 3.6kN/m3 x (2.3 x ½)m = 4.14 kN/m2 Dead Load from Slab C-D/3-4 (two way slab) = 3.6kN/m3 x (3 x ½ x 2/3)m = 3.6 kN/m2 3 5 4.14kN/m 3.6kN/m 1.44kN/m 3 m 2.4kN/m FAMILY AREA FAMILY AREA Slab B1-C/3-4 Ly/Lx = 5000/2300 = 2.17 > 2 (One way slab) 4 2 m Dead Load from Slab C-D/4-5 (two way slab) = 3.6kN/m3 x (2 x ½ x 2/3)m = 2.4 kN/m2 Total Dead Load on C/3-4 = (1.44 + 4.14 + 3.6) kN/m2 = 9.18 kN/m2 Total Dead Load on C/4-5 = (1.44 + 4.14 + 2.4) kN/m2 = 7.98 kN/m2 9.18 kN/m 7.98 kN/m
  • 64. Live Load 2kN/m 1.33kN/m 2.3kN/m Live Load from Slab B1-C/3-5 (one way slab) = 2kN/m3 x (2.3 x ½)m = 2.3 kN/m2 Live Load from Slab C-D/3-4 (two way slab) = 2kN/m3 x (3 x ½ x 2/3)m = 2 kN/m2 Live Load from Slab C-D/4-5 (two way slab) = 2kN/m3 x (2 x ½ x 2/3)m = 1.33 kN/m2 4.3 kN/m 3.36 kN/m 3 54 3 m 2 m Total Live Load on C/3-4 = (2.3 + 2) kN/m2 = 4.3 kN/m2 Total Live Load on C/4-5 = (2.3 + 1.33) kN/m2 = 3.63 kN/m2 Ultimate Load on Beam C/3-4 = (9.18kN/m x 1.4) + (4.3kN/m2 x 1.6) = 12.852kN/m + 8kN/m = 22.616kN/m Ultimate Load on Beam C/4-5 = (7.98kN/m x 1.4) + (3.63kN/m2 x 1.6) = 11.172kN/m + 5.808kN/m = 16.98kN/m
  • 65. -39.72kN Load Diagram Point load from secondary beam, C4= 44.1 kN Take RC3 as centre, reaction force: 22.616 x 3 = 67.848kN 16.98 x 2 = 33.96kN ΣM = 0 0 = 5RC5 – 67.848(3/2) – 44.1(3) – 33.96(4) = 5RC5 – 101.772 – 132.3 – 135.84 = 5RC5 – 369.912 5RC5 = 366.612 RC5 = 73.98kN ΣY = 0 0 = RC3 + RC5 – 67.848 – 44.1 – 33.96 = RC3 + 73.98 – 146.208 RC3 = 72.228kN 22.616kN/m 3 m 2 m 16.98kN/m 44.1 kN RC3 RC5 72.228kN 3 m 2 m 4.38kN -73.98kN Shear Force Diagram Ratio: (68.488 + 9.66) = 9.66 2 a 39.074 a = 9.66 a = 0.247 A1 = (72.228 + 4.38) x 3 2 = 114.912kNm A2 = (39.72 + 73.98) x 2 2 = 113.7 kNm 114.912 kNm 3 m Bending Moment Diagram
  • 66. BEDROOM Slab D-F/2-3 Ly/Lx = 5800/4000 = 1.45 < 2 (Two way slab) Determine one way or two way slab: Slab D-E/3-5 Ly/Lx = 5000/3000 = 1.67 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam E/3-5 3 5 8.55kN/m 5.4kN/m 1.44kN/m 5m 15.39kN/m FAMILY AREA Dead Load from brick wall = 19kN/m3 x (0.15 x 3)m2 = 8.55 kN/m Dead Load from Slab D-E/3-5 (two way slab) = 3.6kN/m3 x (3 x ½)m = 5.4 kN/m2 Total Dead Load = (1.44 + 8.55 + 5.4) kN/m = 15.39kN/m
  • 67. Live Load Live Load from Slab D-E/3-5 = 2kN/m3 x (3 x ½ ) m2 = 3 kN/m C D 3kN/m 5m Ultimate Load = (15.39kN/m x 1.4) + (3kN/m2 x 1.6) = 21.546kN/m + 4.8kN/m = 26.346kN/m Load Diagram Reaction Force RE3 = RE5 = 26.346kN/m x 3.9m 2 = 51.375 kN 26.346kN/m Shear Force Diagram 51.375 kN 51.375 kN 51.375 kN - 51.375 kN 2.5 m 2.5 m A1 = A2 = 26.346kN/m x 2.5m x ½ = 32.9325 kNm 32.9325 kNm 2.5 m 2.5 m Bending Moment Diagram 5mRE3 RE5
  • 68. Dead Load from Slab D-E/3-5 (two way slab) = 3.6kN/m3 x (3 x ½) x 2/3 m = 3.6 kN/m2 BEDROOM Slab D-F/2-3 Ly/Lx = 5800/4000 = 1.45 < 2 (Two way slab) Determine one way or two way slab: Slab D-E/3-5 Ly/Lx = 5000/3000 = 1.67 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam D-F/3 D F 8.55kN/m 3.6kN/m 1.44kN/m 3m 18.39kN/m FAMILY AREA Dead Load from brick wall = 19kN/m3 x (0.15 x 3)m2 = 8.55 kN/m Total Dead Load on Beam D-E/3 = (1.44 + 8.55 + 4.8 + 3.6) kN/m = 18.39kN/m E 1m 4.8kN/m 14.79kN/m Total Dead Load on Beam E-F/3 = (1.44 + 8.55 + 4.8) kN/m = 14.79kN/m Dead Load from Slab D-F/2-3 (two way slab) = 3.6kN/m3 x (4 x ½) x 2/3 = 4.8 kN/m2
  • 69. Live Load 2kN/m 2kN/m Live Load from Slab D1-F/2-3 (two way slab) = 1.5kN/m3 x (4 x ½)m x 2/3 = 2 kN/m2 Live Load from Slab D-E/3-5 (two way slab) = 2kN/m3 x (3 x ½ x 2/3)m = 2 kN/m2 4 kN/m 2 kN/m D FE 3 m 1 m Total Live Load on D-E/3 = (2 + 2) kN/m2 = 4 kN/m2 Ultimate Load on Beam D-E/3 = (18.39kN/m x 1.4) + (4kN/m2 x 1.6) = 25.746kN/m + 6.4kN/m = 32.146kN/m Ultimate Load on Beam C/4-5 = (14.79kN/m x 1.4) + (2kN/m2 x 1.6) = 20.706kN/m + 3.2kN/m = 23.906kN/m Total Live Load on E-F/3 = 2kN/m2
  • 70. -21.198kN Load Diagram Point load from secondary beam, C4= 51.375 kN Take RD3 as centre, reaction force: 32.146 x 3 = 96.438kN 16.98 x 1 = 16.98kN ΣM = 0 0 = 4RF3 – 96.438(3/2) – 51.375(3) – 16.98(3.5) = 4RF3 – 144.657 – 154.125 – 59.43 = 4RF3 – 358.212 4RF3 = 358.212 RF3 = 89.553kN ΣY = 0 0 = RD3 + RF3 – 96.438 – 51.375 – 16.98 = RD3 + 89.553 – 164.793 RD3 = 75.24kN 32.146kN/m 3 m 1 m 16.98kN/m 51.375 kN RD3 RF3 75.24kN 3 m 1 m -89.553kN Shear Force Diagram Ratio: (75.24 + 21.198) = 21.198 3 a 32.146 a = 21.198 a = 0.66 A1 = 75.24 x 2.34 x ½ = 88.03kNm 88.03 kNm 3 m Bending Moment Diagram -72.573kN 2.34 m 0.66 m A2 = 21.198 x 0.66 x ½ = 7kNm A2 = (72.573 + 89.553) x 1 2 = 81.063kNm 81.03 kNm 2.34 m
  • 71. Void Determine one way or two way slab: Slab A-B1/4-5 Ly/Lx = 4600/2000 = 2.3 > 2 (One way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam A-B1/4 A 3.6kN/m 5.04kN/m 1.44kN/m 4.6m 1.5kN/m Corridor Dead Load from Slab A-B1/4-5 (one way slab) = 3.6kN/m3 x (2 x ½)m = 3.6 kN/m2 Total Dead Load = (1.44 + 3.6) kN/m = 5.04kN/m B1 Live Load Live Load from Slab A-B1/4-5 = 1.5 kN/m3 x (2 x ½ ) m2 = 1.5 kN/m Ultimate Load = (5.04kN/m x 1.4) + (1.5kN/m2 x 1.6) = 21.546kN/m + 4.8kN/m = 9.456kN/m
  • 72. Load Diagram Reaction Force RA4 = RB1.4 = 9.456kN/m x 4.6m 2 = 21.749 kN 9.456 kN/m Shear Force Diagram 21.749 kN 21.749 kN 21.749 kN - 21.749 kN2.3 m 2.3 m A1 = A2 = 21.749 kN/m x 2.3m x ½ = 25.011 kNm 25.011 kNm 2.3 m 2.3 m Bending Moment Diagram 4.6mRA4 RB1.4
  • 73. Dead Load from brick wall = 19kN/m3 x (0.15 x 3)m2 = 8.55 kN/m Void Determine one way or two way slab: Slab A-B1/4-5 Ly/Lx = 4600/2000 = 2.3 > 2 (One way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam A/3-5 3 5 8.55kN/m 9.99kN/m 1.44kN/m 3m Corridor No Dead Load from Slab A-B1/4-5 (one way slab) Total Dead Load = (1.44 + 8.55) kN/m = 9.99kN/m Ultimate Load = 9.99kN/m x 1.4 = 13.986kN/m 2m 4 No Live Load from Slab A-B1/4-5 (one way slab) Live Load
  • 74. -20.042kN Load Diagram Point load from secondary beam, A4= 21.749 kN kN Take RA3 as centre, reaction force: 13.986 x 3 = 41.958 kN 13.986 x 2 = 27.972 kN ΣM = 0 0 = 5RA5 – 41.958(3/2) – 21.749(3) – 27.972(4) = 5RA5 – 62.937 – 65.247 – 111.888 = 5RA5 – 240.072 5RA5 = 240.072 RA5 = 48.014kN ΣY = 0 0 = RA3 + RA5 – 41.958 – 21.749 – 27.972 = RA3 + 48.014 – 91.679 RD3 = 43.665kN 13.986kN/m 3 m 2 m 13.986kN/m 21.749 kN 43.665kN 3 m 2 m -48.014kN Shear Force Diagram A1 = (43.665 +1.707) x 3 2 = 68.058kNm 68.058 kNm 3 m Bending Moment Diagram A2 = (48.014 + 20.042) x 2 2 = 68.056kNm 2.34 m 43.665 kN 48.014 kN RA3 RA5 1.707kN
  • 75. Capacity of the column: Given, FCU= 30N/mm2 Fy = 460 N/mm2 Ac = 200mm x 200mm = 40000mm2 Assuming 2% steel reinforcement in concrete Asc = 2% x 40000mm2 = 800mm2 N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc) = (0.4 x 30 x 40000) + (0.8 x 460 x 800) = 774400N = 774.4kN Column A3 Roof Level 1. Dead Load from slab = (5.9m x 1.5m) x 1.0 kN/m2 = 8.1kN 2. Dead Load from beam = 6.9m x 1.44 kN/m = 9.936kN Total dead load on roof level = (8.1 + 9.936)kN = 18.036kN 3. Live Load from slab = 8.1m2 x 0.5 kN/m2 = 4.05kN First Level 1. Dead Load from slab = (1.5m x 2.9m) x 3.6 kN/m2 = 8.1 kN 2. Dead Load from beam = 4.5m x 1.44 kN/m = 6.48kN 3. Dead load from wall = 6.9m x 8.55 kN/m = 58.995kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (8.1 + 6.48 + 58.995 + 2.88)kN = 73.575kN 5. Live Load from slab = (2.9 x 1.5) x 1.5 kN/m2 = 6.525kN
  • 76. Ground Level 1. Dead Load from slab = (5.4 x 1.5)m2 x 3.6 kN/m2 = 29.16kN 2. Dead Load from beam = 4.5m x 1.44 kN/m = 6.48kN 3. Dead load from wall = 6.9m x 8.55 kN/m = 58.995kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on ground level = (29.16 + 6.48 + 58.995 + 2.88)kN = 97.515kN 5. Live Load from slab (Living room) = (1.5 x 2.9)m2 x 2 kN/m2 = 8.7kN 6. Live Load from slab = (1.5 x 2.5)m2 x 1.5 kN/m2 = 5.625kN Total live load on ground level = (8.7 + 5.625)kN = 14.325kN Ultimate Dead Load = Total dead load x 1.4 = (18.036kN + 73.575kN + 97.515kN) x 1.4 = 264.7764kN Ultimate Live Load = Total live load x 1.6 = (4.05kN + 6.525kN + 14.325kN) x 1.6 = 39.84kN  Total Load acting on Column A3 = 304.616kN 304.616kN < 774.4kN, it is below the column maximum load bearing capacity.
  • 77. Column B3 Roof Level 1. Dead Load from slab = (5.4m x 3.45m) x 1.0 kN/m2 = 18.63kN 2. Dead Load from beam = 3.45m x 1.44 kN/m = 4.968kN Total dead load on roof level = (18.63 + 4.968)kN = 23.598kN 3. Live Load from slab = 18.63 m2 x 0.5 kN/m2 = 9.315kN First Level 1. Dead Load from slab = {(3m x 3.45m) + (0.45 x 2.4)} x 3.6 kN/m2 = 41.148 kN 2. Dead Load from beam = 3.45m x 1.44 kN/m = 4.968kN 3. Dead load from wall = 3.45m x 8.55 kN/m = 29.4975kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (41.148 + 4.968 + 29.4975 + 2.88)kN = 78.4935kN 5. Live Load from slab = 11.43 x 1.5 kN/m2 = 17.145kN
  • 78. Ground Level 1. Dead Load from slab = (5.4 x 3.45)m2 x 3.6 kN/m2 = 67.068kN 2. Dead Load from beam = 3.45m x 1.44 kN/m = 4.968kN 3. Dead load from wall = 3.45m x 8.55 kN/m = 29.4975kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on ground level = (67.068 + 4.968 + 29.4975 + 2.88)kN = 104.4135kN 5. Live Load from slab = 18.63m2 x 1.5 kN/m2 = 27.945kN Ultimate Dead Load = Total dead load x 1.4 = (23.598kN + 78.4935+ 104.4135kN) x 1.4 = 289.107kN Ultimate Live Load = Total live load x 1.6 = (9.315kN + 17.145kN + 27.945kN) x 1.6 = 87.048kN  Total Load acting on Column A3 = 376.1kN 376.1kN < 774.4kN, it is below the column maximum load bearing capacity.
  • 79. Column C3 Roof Level 1. Dead Load from slab = (5.4m x 3.9m) x 1.0 kN/m2 = 21.06kN 2. Dead Load from beam = (5.4 + 3.9)m x 1.44 kN/m = 13.392kN Total dead load on roof level = (21.06 + 13.392)kN = 34.452kN 3. Live Load from slab = 21.06m2 x 0.5 kN/m2 = 10.53kN First Level 1. Dead Load from slab = (3.9m x 5.4m) x 3.6 kN/m2 = 75.816 kN 2. Dead Load from beam = 3.9m x 1.44 kN/m = 13.392kN 3. Dead load from wall = (1.95 +2.9)m x 8.55 kN/m = 41.4675kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (75.816 + 13.392 + 41.4675 + 2.88)kN = 133.5555kN 5. Live Load from slab (family area) = (2.9 x 1.95) x 2 kN/m2 = 9.75kN 6. Live Load from slab (Bedroom and corridor) =(3.9 x 2.9) + (1.95 x 2.5) x 1.5 =24.2775kN Total dead load on first level = (9.75+ 24.2775)kN = 34.0275kNkN
  • 80. Ground Level 1. Dead Load from slab = (5.4 x 3.9)m2 x 3.6 kN/m2 = 75.816kN 2. Dead Load from beam = (5.4 + 3.9)m x 1.44 kN/m = 41.4675kN 3. Dead load from wall = none 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on ground level = (75.816 + 41.4675+ 2.88)kN = 120.1635kN 5. Live Load from slab (Dry kitchen and dining) = (3.9 x 2.9)m2 x 2 kN/m2 = 22.62kN 6. Live Load from slab = (3.9 x 2.5)m2 x 1.5 kN/m2 = 14.625kN Total live load on ground level = (22.62 + 14.625)kN = 37.245kN Ultimate Dead Load = Total dead load x 1.4 = (34.452kN 133.5555kN + 120.1635kN) x 1.4 = 403.438kN Ultimate Live Load = Total live load x 1.6 = (10.53kN + 24.2775kN + 37.245kN) x 1.6 = 130.884kN  Total Load acting on Column A3 = 534.322kN 534.322kN < 774.4kN, it is below the column maximum load bearing capacity.
  • 81. Conclusion Based on the calculations we did on the load transfer of beams and columns, we conclude that the proposed sizes and positioning of structural point is sufficient to support both dead loads and live loads of the building and in the same time, meeting the user’s living requirements. Through this exercise, we learned how to design a building based on structural considerations and propose practical building structures for future studio assignments. 81 The project has a big role to bring exposure about the technicality and rationality about what and how to build buildings in real life. Designs and ideas which can be realized won’t contribute to the society. With a better basic understanding on how to know whether the structures of a building can withstand through the time, not only to stand for a short amount of time, it gives us an insight as how to make ideas real. Not only to understand the importance of structures, the exercise also allows us to know exactly on the points where the members are actually vulnerable in order for us to think of a concrete solution. An extra measure of safety to ensure the structures are able to withstand unpredicted events in the future or a sudden shock to certain member is always better. Last but not least, we would like to express our token of appreciation to our lecturers for their patience and dedication in teaching us these technical skills.
  • 82. References: (2013) Uniform Building By-laws 1984 (G.N. 5178/85) (1st ed.). Petaling Jaya, Malaysia: Penerbitan Akta (M) Sdn. Bhd Ambrose, James. (1991). Building Structures (Second Ed.). US: John Wiley & Sons, 1993. How to Calculate the Bending Moment Diagram of a Beam. (2013). Retrieved from http://bendingmomentdiagram.com/tutorials/how-to-find-bending-moment- diagrams/ Jalal, Asfar. (2013, 17 November). Types of Load. Retrieved from http://www.engineeringintro.com/mechanics-of-structures/sfd-bmd/types-of-load/ LearnEngineering.org & Imajey Consulting Engineers Pvt. Ltd. (2011). Analysis of Beams: Shear Force and Bending Moment Diagram. Retrieved from http://www.learnengineering.org/2013/08/shear-force-bending-moment- diagram.html Learn to Engineer. Uniform Distributed Loads. Retrieved from http://learntoengineer.com/note/Uniform_Distributed_Loads The American Wood Council (AWC). 2005, January 6. Beam Design Formulas with Shear and Moment Diagrams (2005 Ed.). Washington, DC: American Forest & Paper Association, Inc. http://bendingmomentdiagram.com/tutorials/how-to-find-bending-moment- diagrams/ http://www.iitg.ac.in/kd/Lecture%20Notes/ME101-Lecture11-KD.pdf 82