SlideShare a Scribd company logo
 
FBW 20-10-2011 Wim Van Criekinge
Inhoud Lessen: Bioinformatica ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],NCBI  - The National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/ The National Center for Biotechnology Information (NCBI) at the National Library of Medicine (NLM), a part of the National Institutes of Health (NIH). ExPASy  -  Molecular Biology Server http://expasy.hcuge.ch/www/ Molecular biology WWW server of the Swiss Institute of Bioinformatics (SIB). This server is dedicated to the analysis of protein sequences and structures as well as 2-D PAGE EBI   - European Bioinformatics Institute http://www.ebi.ac.uk/
Anno 2002 Anno 2003
Anno 2004
Anno 2005
Anno 2006
Anno 2007
Anno 2009
Anno 2010 Anno 2010
Anno 2011
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Identity The extent to which two (nucleotide or amino acid)  sequences are invariant. Homology Similarity attributed to descent from a common ancestor. Definitions RBP:  26  RV K ENFDKARFS GTW YA MA KKDPEGLFLQDNIV A EFS V DE T GQMSATAKGRVRL L NN W D- 84 +  K  ++ +  +  GTW ++ MA +  L  +  A   V   T  +  + L +  W +  glycodelin:  23  QT K QDLELPKLA GTW HS MA MA-TNNISLMATLK A PLR V HI T SLLPTPEDNLEIV L HR W EN 81
Orthologous   Homologous sequences in different species  that arose from a common ancestral gene  during speciation; may or may not be responsible  for a similar function.   Paralogous   Homologous sequences within a single species  that arose by gene duplication.  Definitions
speciation duplication
fly  GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA  human  GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA  plant  GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA  bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA  yeast  GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA  archaeon  GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA  fly  KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST  human  KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST  plant  KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST  bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST  yeast  KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST  archaeon  KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST  fly  GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK  human  GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV  plant  GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA  bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA  yeast  GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV  archaeon  GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA  Multiple sequence alignment of glyceraldehyde- 3-phsophate dehydrogenases
[object Object],[object Object],[object Object],[object Object]
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],It is very important to realize, that all subsequent results depend critically on just how this is done and what model lies at the basis for the construction of a specific scoring matrix. A scoring matrix is a tool to quantify how well a certain model is represented in the alignment of two sequences, and any result obtained by its application is meaningful exclusively in the context of that model.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],G and C purine-pyrimidine A and T purine -pyrimidine
[object Object],[object Object],A  T  C  G A  0  5  5  1 T  5  0  1  5 C  5  1  0  5 G  1  5  5  0 ,[object Object]
[object Object],[object Object],[object Object],A  T  C  G A  0  5  5  1 T  5  0  1  5 C  5  1  0  5 G  1  5  5  0
The Genome Chose Its Alphabet With Care  ,[object Object],[object Object]
[object Object],The Genome Chose Its Alphabet With Care
[object Object],[object Object],[object Object],[object Object],The Genome Chose Its Alphabet With Care
[object Object],[object Object],[object Object],[object Object],The Genome Chose Its Alphabet With Care
[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
A  S  G  L  K  V  T  P  E  D  N  I  Q  R  F  Y  C  H  M  W  Z  B  X Ala  = A  O  1  1  2  2  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2  2  2  2 Ser  = S  1  O  1  1  2  2  1  1  2  2  1  1  2  1  1  1  1  2  2  1  2  2  2 Gly  = G  1  1  0  2  2  1  2  2  1  1  2  2  2  1  2  2  1  2  2  1  2  2  2 Leu  = L  2  1  2  0  2  1  2  1  2  2  2  1  1  1  1  2  2  1  1  1  2  2  2 Lys  = K  2  2  2  2  0  2  1  2  1  2  1  1  1  1  2  2  2  2  1  2  1  2  2 Val  = V  1  2  1  1  2  0  2  2  1  1  2  1  2  2  1  2  2  2  1  2  2  2  2 Thr  = T  1  1  2  2  1  2  0  1  2  2  1  1  2  1  2  2  2  2  1  2  2  2  2 Pro  = P  1  1  2  1  2  2  1  0  2  2  2  2  1  1  2  2  2  1  2  2  2  2  2 Glu  - E  1  2  1  2  1  1  2  2  0  1  2  2  1  2  2  2  2  2  2  2  1  2  2 Asp  = D  1  2  1  2  2  1  2  2  1  O  1  2  2  2  2  1  2  1  2  2  2  1  2 Asn  = N  2  1  2  2  1  2  1  2  2  1  O  1  2  2  2  1  2  1  2  2  2  1  2 Ile  = I  2  1  2  1  1  1  1  2  2  2  1  0  2  1  1  2  2  2  1  2  2  2  2 Gln  = Q  2  2  2  1  1  2  2  1  1  2  2  2  0  1  2  2  2  1  2  2  1  2  2 Arg  = R  2  1  1  1  1  2  1  1  2  2  2  1  1  0  2  2  1  1  1  1  2  2  2 Phe  = F  2  1  2  1  2  1  2  2  2  2  2  1  2  2  0  1  1  2  2  2  2  2  2 Tyr  = Y  2  1  2  2  2  2  2  2  2  1  1  2  2  2  1  O  1  1  3  2  2  1  2 Cys  = C  2  1  1  2  2  2  2  2  2  2  2  2  2  1  1  1  0  2  2  1  2  2  2 His  = H  2  2  2  1  2  2  2  1  2  1  1  2  1  1  2  1  2  0  2  2  2  1  2 Met  = M  2  2  2  1  1  1  1  2  2  2  2  1  2  1  2  3  2  2  0  2  2  2  2 Trp  = W  2  1  1  1  2  2  2  2  2  2  2  2  2  1  2  2  1  2  2  0  2  2  2 Glx  = Z  2  2  2  2  1  2  2  2  1  2  2  2  1  2  2  2  2  2  2  2  1  2  2 Asx  = B  2  2  2  2  2  2  2  2  2  1  1  2  2  2  2  1  2  1  2  2  2  1  2 ???  = X  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 The table is generated by calculating  the minimum number of base changes required to convert an amino acid in row i to an amino acid in column j.  Note Met->Tyr is the only change that requires all 3 codon positions to change. ,[object Object]
[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
All amino acids have the same general formula   ,[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Other similarity scoring matrices might be constructed from  any property of amino acids that can be quantified  - partition coefficients between hydrophobic and hydrophilic phases - charge - molecular volume Unfortunately, …
AAindex ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Protein Eng. 1996 Jan;9(1):27-36.
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
First step: finding “accepted mutations” ,[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Dayhoff’s PAM1 mutation probability matrix  (Transition Matrix)
PAM1:  Transition Matrix ,[object Object]
[object Object],[object Object],[object Object],[object Object],PAM1:  Transition Matrix
Second   step: Frequencies of Occurence ,[object Object],[object Object],[object Object]
Amino acid frequencies ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Second   step: Frequencies of Occurence
Third step: Relative Mutabilities ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Fourth step: Mutation Probability Matrix ,[object Object],M ij = The mutation probability matrix gives the probability, that an amino acid i will replace an amino acid of type j in a given evolutionary interval, in two related sequences ,[object Object],ADB ADA A  D  B A  D B i j
Fifth step: The Evolutionary Distance ,[object Object],[object Object]
6. Relatedness Odds ,[object Object],[object Object],[object Object],[object Object],[object Object]
Last step: the log-odds matrix ,[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Dayhoff’s PAM1 mutation probability matrix  (Transition Matrix)
Weighted Random Selection ,[object Object]
PAM-Simulator
PAM-Simulator
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
4 3 2 1 0 A brief history of time (BYA) Origin of life Origin of eukaryotes insects Fungi/animal Plant/animal Earliest fossils BYA
Margaret Dayhoff’s 34 protein superfamilies Protein PAMs per 100 million years Ig kappa chain 37 Kappa casein 33 Lactalbumin 27 Hemoglobin   12 Myoglobin 8.9 Insulin 4.4 Histone H4 0.10 Ubiquitin 0.00
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],BLOSUM: Blocks Substitution Matrix
BLOSUM ( BLO ck –  SUM ) scoring DDNAAV DNAVDD NNVAVV Block = ungapped alignent Eg. Amino Acids D N V A a  b  c  d  e  f 1 2 3 S = 3 sequences W = 6 aa N= (W*S*(S-1))/2 = 18 pairs
A. Observed pairs DDNAAV DNAVDD NNVAVV a  b  c  d  e  f 1 2 3 D  N  A  V  D  N A V  1  4 1 3  1 1 1  1 4  1  f f ij D  N  A  V  D  N A V  .056  .222 .056 .167 .056 .056 .056 .056 .222 .056  g ij /18 Relative frequency table Probability of obtaining a pair if randomly choosing pairs from block
B. Expected pairs A DDDDD NNNN AAAA VVVVV DDNAAV DNAVDD NNVAVV P i 5/18 4/18 4/18 5/18 P{Draw DN pair}= P{Draw D, then N or Draw M, then D} P{Draw DN pair}= P D P N  + P N P D  = 2 * (5/18)*(4/18) = .123 D  N  A  V  D  N A V  .077  .123 .154 .123 .049 .123 .099 .049 .123 .049  e ij Random rel. frequency table Probability of obtaining a pair of each amino acid drawn independently from block
C. Summary (A/B) ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
Rat versus  mouse RBP Rat versus  bacterial lipocalin
[object Object],[object Object],[object Object],[object Object],[object Object]
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Dotplots ,[object Object],[object Object],[object Object],[object Object]
Dot Plot References ,[object Object],[object Object],[object Object],[object Object]
Visual Alignments (Dot Plots) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Dotplot-simulator.pl ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],Window size = 1, stringency 100%
Noise in Dot Plots ,[object Object],[object Object],[object Object],[object Object],[object Object]
Reduction of Dot Plot Noise Self alignment of ACCTGAGCTCACCTGAGTTA
Dotplot-simulator.pl ,[object Object],[object Object],[object Object],[object Object],[object Object]
Chromosome Y self comparison
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Available Dot Plot Programs ,[object Object]
Available Dot Plot Programs ,[object Object]
Available Dot Plot Programs ,[object Object]
Weblems ,[object Object],[object Object],[object Object],[object Object]

More Related Content

What's hot

Protein database
Protein databaseProtein database
Protein database
Khalid Hakeem
 
Clustal W - Multiple Sequence alignment
Clustal W - Multiple Sequence alignment   Clustal W - Multiple Sequence alignment
Clustal W - Multiple Sequence alignment
The Oxford College Engineering
 
Sequence file formats
Sequence file formatsSequence file formats
Sequence file formats
Alphonsa Joseph
 
Dot matrix seminar
Dot matrix seminarDot matrix seminar
Dot matrix seminar
UthishAravind
 
sequence alignment
sequence alignmentsequence alignment
sequence alignment
ammar kareem
 
Microarray Analysis
Microarray AnalysisMicroarray Analysis
Microarray Analysis
James McInerney
 
Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins
Vijay Hemmadi
 
Genome annotation
Genome annotationGenome annotation
Genome annotation
Shifa Ansari
 
Needleman-Wunsch Algorithm
Needleman-Wunsch AlgorithmNeedleman-Wunsch Algorithm
Needleman-Wunsch Algorithm
ProshantaShil
 
Functional annotation.pptx
Functional annotation.pptxFunctional annotation.pptx
Functional annotation.pptx
Vimal Priya subramanian
 
Scoring matrices
Scoring matricesScoring matrices
Scoring matrices
Ashwini
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
Athira RG
 
Genome annotation 2013
Genome annotation 2013Genome annotation 2013
Genome annotation 2013
Karan Veer Singh
 
Pathway and network analysis
Pathway and network analysisPathway and network analysis
Pathway and network analysis
Manar Al-Eslam Mattar
 
Protein databases
Protein databasesProtein databases
Protein databases
bansalaman80
 
Multiple sequence alignment
Multiple sequence alignmentMultiple sequence alignment
Multiple sequence alignment
Subhranil Bhattacharjee
 
PIR- Protein Information Resource
PIR- Protein Information ResourcePIR- Protein Information Resource
Msa
MsaMsa
Protein Databases
Protein DatabasesProtein Databases
Protein sequence databases
Protein sequence databasesProtein sequence databases
Protein sequence databases
Vidya Kalaivani Rajkumar
 

What's hot (20)

Protein database
Protein databaseProtein database
Protein database
 
Clustal W - Multiple Sequence alignment
Clustal W - Multiple Sequence alignment   Clustal W - Multiple Sequence alignment
Clustal W - Multiple Sequence alignment
 
Sequence file formats
Sequence file formatsSequence file formats
Sequence file formats
 
Dot matrix seminar
Dot matrix seminarDot matrix seminar
Dot matrix seminar
 
sequence alignment
sequence alignmentsequence alignment
sequence alignment
 
Microarray Analysis
Microarray AnalysisMicroarray Analysis
Microarray Analysis
 
Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins
 
Genome annotation
Genome annotationGenome annotation
Genome annotation
 
Needleman-Wunsch Algorithm
Needleman-Wunsch AlgorithmNeedleman-Wunsch Algorithm
Needleman-Wunsch Algorithm
 
Functional annotation.pptx
Functional annotation.pptxFunctional annotation.pptx
Functional annotation.pptx
 
Scoring matrices
Scoring matricesScoring matrices
Scoring matrices
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
 
Genome annotation 2013
Genome annotation 2013Genome annotation 2013
Genome annotation 2013
 
Pathway and network analysis
Pathway and network analysisPathway and network analysis
Pathway and network analysis
 
Protein databases
Protein databasesProtein databases
Protein databases
 
Multiple sequence alignment
Multiple sequence alignmentMultiple sequence alignment
Multiple sequence alignment
 
PIR- Protein Information Resource
PIR- Protein Information ResourcePIR- Protein Information Resource
PIR- Protein Information Resource
 
Msa
MsaMsa
Msa
 
Protein Databases
Protein DatabasesProtein Databases
Protein Databases
 
Protein sequence databases
Protein sequence databasesProtein sequence databases
Protein sequence databases
 

Similar to Bioinformatica 20-10-2011-t3-scoring matrices

Computation and System Biology Assignment Help
Computation and System Biology Assignment HelpComputation and System Biology Assignment Help
Computation and System Biology Assignment Help
Nursing Assignment Help
 
Bioinformatica 08-12-2011-t8-go-hmm
Bioinformatica 08-12-2011-t8-go-hmmBioinformatica 08-12-2011-t8-go-hmm
Bioinformatica 08-12-2011-t8-go-hmm
Prof. Wim Van Criekinge
 
Pathema Burkholderia Annotation Jamboree: Prokaryotic Annotation Overview
Pathema Burkholderia Annotation Jamboree: Prokaryotic Annotation OverviewPathema Burkholderia Annotation Jamboree: Prokaryotic Annotation Overview
Pathema Burkholderia Annotation Jamboree: Prokaryotic Annotation Overview
Pathema
 
2015 bioinformatics score_matrices_wim_vancriekinge
2015 bioinformatics score_matrices_wim_vancriekinge2015 bioinformatics score_matrices_wim_vancriekinge
2015 bioinformatics score_matrices_wim_vancriekinge
Prof. Wim Van Criekinge
 
Prediction of protein function
Prediction of protein functionPrediction of protein function
Prediction of protein function
Lars Juhl Jensen
 
Transcriptomics and lexico-syntactic analysis
Transcriptomics and lexico-syntactic analysisTranscriptomics and lexico-syntactic analysis
Transcriptomics and lexico-syntactic analysis
Lars Juhl Jensen
 
2016 bioinformatics i_score_matrices_wim_vancriekinge
2016 bioinformatics i_score_matrices_wim_vancriekinge2016 bioinformatics i_score_matrices_wim_vancriekinge
2016 bioinformatics i_score_matrices_wim_vancriekinge
Prof. Wim Van Criekinge
 
20100515 bioinformatics kapushesky_lecture07
20100515 bioinformatics kapushesky_lecture0720100515 bioinformatics kapushesky_lecture07
20100515 bioinformatics kapushesky_lecture07Computer Science Club
 
Increasingly Accurate Representation of Biochemistry (v2)
Increasingly Accurate Representation of Biochemistry (v2)Increasingly Accurate Representation of Biochemistry (v2)
Increasingly Accurate Representation of Biochemistry (v2)
Michel Dumontier
 
Bioinformatica t3-scoring matrices
Bioinformatica t3-scoring matricesBioinformatica t3-scoring matrices
Bioinformatica t3-scoring matrices
Prof. Wim Van Criekinge
 
Practical 7 dna, rna and the flow of genetic information5
Practical 7 dna, rna and the flow of genetic information5Practical 7 dna, rna and the flow of genetic information5
Practical 7 dna, rna and the flow of genetic information5Osama Barayan
 
Bioinformatics2015.pdf
Bioinformatics2015.pdfBioinformatics2015.pdf
Bioinformatics2015.pdf
AbdetaImi
 
Bioinformatics2015.pdf
Bioinformatics2015.pdfBioinformatics2015.pdf
Bioinformatics2015.pdf
AbdetaImi
 
Introduction to sequence alignment
Introduction to sequence alignmentIntroduction to sequence alignment
Introduction to sequence alignment
Kubuldinho
 
Bioinformatica t3-scoringmatrices v2014
Bioinformatica t3-scoringmatrices v2014Bioinformatica t3-scoringmatrices v2014
Bioinformatica t3-scoringmatrices v2014
Prof. Wim Van Criekinge
 
Hw1 Gen320fall07revised
Hw1 Gen320fall07revisedHw1 Gen320fall07revised
Hw1 Gen320fall07revisedariddlegirl
 
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
Prof. Wim Van Criekinge
 
Prediction of transcription factor binding to DNA using rule induction methods
Prediction of transcription factor binding to DNA using rule induction methodsPrediction of transcription factor binding to DNA using rule induction methods
Prediction of transcription factor binding to DNA using rule induction methods
ziggurat
 

Similar to Bioinformatica 20-10-2011-t3-scoring matrices (20)

Computation and System Biology Assignment Help
Computation and System Biology Assignment HelpComputation and System Biology Assignment Help
Computation and System Biology Assignment Help
 
Bioinformatica 27-10-2011-t4-alignments
Bioinformatica 27-10-2011-t4-alignmentsBioinformatica 27-10-2011-t4-alignments
Bioinformatica 27-10-2011-t4-alignments
 
Bioinformatica 08-12-2011-t8-go-hmm
Bioinformatica 08-12-2011-t8-go-hmmBioinformatica 08-12-2011-t8-go-hmm
Bioinformatica 08-12-2011-t8-go-hmm
 
Pathema Burkholderia Annotation Jamboree: Prokaryotic Annotation Overview
Pathema Burkholderia Annotation Jamboree: Prokaryotic Annotation OverviewPathema Burkholderia Annotation Jamboree: Prokaryotic Annotation Overview
Pathema Burkholderia Annotation Jamboree: Prokaryotic Annotation Overview
 
2015 bioinformatics score_matrices_wim_vancriekinge
2015 bioinformatics score_matrices_wim_vancriekinge2015 bioinformatics score_matrices_wim_vancriekinge
2015 bioinformatics score_matrices_wim_vancriekinge
 
Prediction of protein function
Prediction of protein functionPrediction of protein function
Prediction of protein function
 
Transcriptomics and lexico-syntactic analysis
Transcriptomics and lexico-syntactic analysisTranscriptomics and lexico-syntactic analysis
Transcriptomics and lexico-syntactic analysis
 
2016 bioinformatics i_score_matrices_wim_vancriekinge
2016 bioinformatics i_score_matrices_wim_vancriekinge2016 bioinformatics i_score_matrices_wim_vancriekinge
2016 bioinformatics i_score_matrices_wim_vancriekinge
 
Sequence alignment belgaum
Sequence alignment belgaumSequence alignment belgaum
Sequence alignment belgaum
 
20100515 bioinformatics kapushesky_lecture07
20100515 bioinformatics kapushesky_lecture0720100515 bioinformatics kapushesky_lecture07
20100515 bioinformatics kapushesky_lecture07
 
Increasingly Accurate Representation of Biochemistry (v2)
Increasingly Accurate Representation of Biochemistry (v2)Increasingly Accurate Representation of Biochemistry (v2)
Increasingly Accurate Representation of Biochemistry (v2)
 
Bioinformatica t3-scoring matrices
Bioinformatica t3-scoring matricesBioinformatica t3-scoring matrices
Bioinformatica t3-scoring matrices
 
Practical 7 dna, rna and the flow of genetic information5
Practical 7 dna, rna and the flow of genetic information5Practical 7 dna, rna and the flow of genetic information5
Practical 7 dna, rna and the flow of genetic information5
 
Bioinformatics2015.pdf
Bioinformatics2015.pdfBioinformatics2015.pdf
Bioinformatics2015.pdf
 
Bioinformatics2015.pdf
Bioinformatics2015.pdfBioinformatics2015.pdf
Bioinformatics2015.pdf
 
Introduction to sequence alignment
Introduction to sequence alignmentIntroduction to sequence alignment
Introduction to sequence alignment
 
Bioinformatica t3-scoringmatrices v2014
Bioinformatica t3-scoringmatrices v2014Bioinformatica t3-scoringmatrices v2014
Bioinformatica t3-scoringmatrices v2014
 
Hw1 Gen320fall07revised
Hw1 Gen320fall07revisedHw1 Gen320fall07revised
Hw1 Gen320fall07revised
 
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
 
Prediction of transcription factor binding to DNA using rule induction methods
Prediction of transcription factor binding to DNA using rule induction methodsPrediction of transcription factor binding to DNA using rule induction methods
Prediction of transcription factor binding to DNA using rule induction methods
 

More from Prof. Wim Van Criekinge

2020 02 11_biological_databases_part1
2020 02 11_biological_databases_part12020 02 11_biological_databases_part1
2020 02 11_biological_databases_part1
Prof. Wim Van Criekinge
 
2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_upload2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_upload
Prof. Wim Van Criekinge
 
2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_upload2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_upload2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_upload
Prof. Wim Van Criekinge
 
2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_upload2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload
Prof. Wim Van Criekinge
 
P7 2018 biopython3
P7 2018 biopython3P7 2018 biopython3
P7 2018 biopython3
Prof. Wim Van Criekinge
 
P6 2018 biopython2b
P6 2018 biopython2bP6 2018 biopython2b
P6 2018 biopython2b
Prof. Wim Van Criekinge
 
P4 2018 io_functions
P4 2018 io_functionsP4 2018 io_functions
P4 2018 io_functions
Prof. Wim Van Criekinge
 
P3 2018 python_regexes
P3 2018 python_regexesP3 2018 python_regexes
P3 2018 python_regexes
Prof. Wim Van Criekinge
 
T1 2018 bioinformatics
T1 2018 bioinformaticsT1 2018 bioinformatics
T1 2018 bioinformatics
Prof. Wim Van Criekinge
 
P1 2018 python
P1 2018 pythonP1 2018 python
P1 2018 python
Prof. Wim Van Criekinge
 
Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]
Prof. Wim Van Criekinge
 
2018 05 08_biological_databases_no_sql
2018 05 08_biological_databases_no_sql2018 05 08_biological_databases_no_sql
2018 05 08_biological_databases_no_sql
Prof. Wim Van Criekinge
 
2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_upload2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
2018 03 20_biological_databases_part3
2018 03 20_biological_databases_part32018 03 20_biological_databases_part3
2018 03 20_biological_databases_part3
Prof. Wim Van Criekinge
 
2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_upload2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_upload2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_upload
Prof. Wim Van Criekinge
 
P7 2017 biopython3
P7 2017 biopython3P7 2017 biopython3
P7 2017 biopython3
Prof. Wim Van Criekinge
 
P6 2017 biopython2
P6 2017 biopython2P6 2017 biopython2
P6 2017 biopython2
Prof. Wim Van Criekinge
 

More from Prof. Wim Van Criekinge (20)

2020 02 11_biological_databases_part1
2020 02 11_biological_databases_part12020 02 11_biological_databases_part1
2020 02 11_biological_databases_part1
 
2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_upload2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_upload
 
2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_upload2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_upload
 
2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_upload2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_upload
 
2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_upload2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_upload
 
2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload
 
P7 2018 biopython3
P7 2018 biopython3P7 2018 biopython3
P7 2018 biopython3
 
P6 2018 biopython2b
P6 2018 biopython2bP6 2018 biopython2b
P6 2018 biopython2b
 
P4 2018 io_functions
P4 2018 io_functionsP4 2018 io_functions
P4 2018 io_functions
 
P3 2018 python_regexes
P3 2018 python_regexesP3 2018 python_regexes
P3 2018 python_regexes
 
T1 2018 bioinformatics
T1 2018 bioinformaticsT1 2018 bioinformatics
T1 2018 bioinformatics
 
P1 2018 python
P1 2018 pythonP1 2018 python
P1 2018 python
 
Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]
 
2018 05 08_biological_databases_no_sql
2018 05 08_biological_databases_no_sql2018 05 08_biological_databases_no_sql
2018 05 08_biological_databases_no_sql
 
2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_upload2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_upload
 
2018 03 20_biological_databases_part3
2018 03 20_biological_databases_part32018 03 20_biological_databases_part3
2018 03 20_biological_databases_part3
 
2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_upload2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_upload
 
2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_upload2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_upload
 
P7 2017 biopython3
P7 2017 biopython3P7 2017 biopython3
P7 2017 biopython3
 
P6 2017 biopython2
P6 2017 biopython2P6 2017 biopython2
P6 2017 biopython2
 

Recently uploaded

UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
DianaGray10
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
Pierluigi Pugliese
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
Matthew Sinclair
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
James Anderson
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
Neo4j
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...
ThomasParaiso2
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
Uni Systems S.M.S.A.
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Paige Cruz
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 
Elizabeth Buie - Older adults: Are we really designing for our future selves?
Elizabeth Buie - Older adults: Are we really designing for our future selves?Elizabeth Buie - Older adults: Are we really designing for our future selves?
Elizabeth Buie - Older adults: Are we really designing for our future selves?
Nexer Digital
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
Neo4j
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems S.M.S.A.
 

Recently uploaded (20)

UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 
Elizabeth Buie - Older adults: Are we really designing for our future selves?
Elizabeth Buie - Older adults: Are we really designing for our future selves?Elizabeth Buie - Older adults: Are we really designing for our future selves?
Elizabeth Buie - Older adults: Are we really designing for our future selves?
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
 

Bioinformatica 20-10-2011-t3-scoring matrices

  • 1.  
  • 2. FBW 20-10-2011 Wim Van Criekinge
  • 3.
  • 4.
  • 5.
  • 14.
  • 15. Identity The extent to which two (nucleotide or amino acid) sequences are invariant. Homology Similarity attributed to descent from a common ancestor. Definitions RBP: 26 RV K ENFDKARFS GTW YA MA KKDPEGLFLQDNIV A EFS V DE T GQMSATAKGRVRL L NN W D- 84 + K ++ + + GTW ++ MA + L + A V T + + L + W + glycodelin: 23 QT K QDLELPKLA GTW HS MA MA-TNNISLMATLK A PLR V HI T SLLPTPEDNLEIV L HR W EN 81
  • 16. Orthologous Homologous sequences in different species that arose from a common ancestral gene during speciation; may or may not be responsible for a similar function. Paralogous Homologous sequences within a single species that arose by gene duplication. Definitions
  • 18. fly GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA human GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA plant GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA yeast GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA archaeon GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA fly KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST human KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST plant KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST yeast KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST archaeon KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST fly GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK human GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV plant GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA yeast GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV archaeon GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA Multiple sequence alignment of glyceraldehyde- 3-phsophate dehydrogenases
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54. Other similarity scoring matrices might be constructed from any property of amino acids that can be quantified - partition coefficients between hydrophobic and hydrophilic phases - charge - molecular volume Unfortunately, …
  • 55.
  • 56. Protein Eng. 1996 Jan;9(1):27-36.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65. Dayhoff’s PAM1 mutation probability matrix (Transition Matrix)
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83. Dayhoff’s PAM1 mutation probability matrix (Transition Matrix)
  • 84.
  • 87.
  • 88.
  • 89.  
  • 90.
  • 91. 4 3 2 1 0 A brief history of time (BYA) Origin of life Origin of eukaryotes insects Fungi/animal Plant/animal Earliest fossils BYA
  • 92. Margaret Dayhoff’s 34 protein superfamilies Protein PAMs per 100 million years Ig kappa chain 37 Kappa casein 33 Lactalbumin 27 Hemoglobin  12 Myoglobin 8.9 Insulin 4.4 Histone H4 0.10 Ubiquitin 0.00
  • 93.
  • 94.
  • 95.
  • 96. BLOSUM ( BLO ck – SUM ) scoring DDNAAV DNAVDD NNVAVV Block = ungapped alignent Eg. Amino Acids D N V A a b c d e f 1 2 3 S = 3 sequences W = 6 aa N= (W*S*(S-1))/2 = 18 pairs
  • 97. A. Observed pairs DDNAAV DNAVDD NNVAVV a b c d e f 1 2 3 D N A V D N A V 1 4 1 3 1 1 1 1 4 1 f f ij D N A V D N A V .056 .222 .056 .167 .056 .056 .056 .056 .222 .056 g ij /18 Relative frequency table Probability of obtaining a pair if randomly choosing pairs from block
  • 98. B. Expected pairs A DDDDD NNNN AAAA VVVVV DDNAAV DNAVDD NNVAVV P i 5/18 4/18 4/18 5/18 P{Draw DN pair}= P{Draw D, then N or Draw M, then D} P{Draw DN pair}= P D P N + P N P D = 2 * (5/18)*(4/18) = .123 D N A V D N A V .077 .123 .154 .123 .049 .123 .099 .049 .123 .049 e ij Random rel. frequency table Probability of obtaining a pair of each amino acid drawn independently from block
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105. Rat versus mouse RBP Rat versus bacterial lipocalin
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114. Reduction of Dot Plot Noise Self alignment of ACCTGAGCTCACCTGAGTTA
  • 115.
  • 116. Chromosome Y self comparison
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.

Editor's Notes

  1. Mutation probability matrix for the evolutionary distance of 1 PAM (i.e., one Accepted Point Mutation per 100 amino acids). An element of this matrix, [Mij], gives the probability that the amino acid in column j will be replaced by the amino acid in row i after a given evolutionary interval, in this case 1 PAM. Thus, there is a 0.56% probability that Asp will be replaced by Glu. To simplify the appearance, the elements are shown multiplied by 10,000. (Adapted from Figure 82. Atlas of Protein Sequence and Structure, Suppl 3, 1978, M.O. Dayhoff, ed. National Biomedical Research Foundation, 1979.)