SlideShare a Scribd company logo
11C.T. PanC.T. Pan 11
CIRCUIT
THEOREMS
22C.T. PanC.T. Pan
4.6 Superposition Theorem4.6 Superposition Theorem
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
4.8 Norton4.8 Norton’’s Theorems Theorem
4.9 Source Transformation4.9 Source Transformation
4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem
22
The relationship f (x) between cause x and effect yThe relationship f (x) between cause x and effect y
is linear if fis linear if f ((˙˙)) is both additive and homogeneous.is both additive and homogeneous.
definition of additive propertydefinition of additive property::
If f(xIf f(x11)=y)=y11 , f(x, f(x22)=y)=y22 then f(xthen f(x11+x+x22)=y)=y11+y+y22
definition of homogeneous propertydefinition of homogeneous property::
If f(x)=y andIf f(x)=y and αα is a real number then f(is a real number then f(ααx)=x)= ααyy
33C.T. PanC.T. Pan 33
4.6 Superposition Theorem4.6 Superposition Theorem
( )f g
xx
inputinput
yy
outputoutput
44C.T. PanC.T. Pan 44
4.6 Superposition Theorem4.6 Superposition Theorem
nn Example 4.6.1Example 4.6.1
AssumeAssume II00 = 1 A= 1 A and use linearity to find the actualand use linearity to find the actual
value ofvalue of II00 in the circuit in figin the circuit in figureure..
C.T. PanC.T. Pan 44
55C.T. PanC.T. Pan 55
4.6 Superposition Theorem4.6 Superposition Theorem
0 1 0
1
1 2 1 0
2
2 1 2 3
4 3 2
0 0
If 1A , then (3 5) 8V
2A , 3A
4
2 8 6 14V , 2A
7
5A 5A
1 5A , 3A 15A
S
S S
I V I
V
I I I I
V
V V I I
I I I I
I A I I I
= = + =
= = = + =
= + = + = = =
= + = ⇒ =
= → = = → =C.T. PanC.T. Pan 55
66C.T. PanC.T. Pan 66
4.6 Superposition Theorem4.6 Superposition Theorem
For a linear circuit N consisting of n inputs , namelyFor a linear circuit N consisting of n inputs , namely
uu11 , u, u22 ,, ………… , u, unn , then the output y can be calculated, then the output y can be calculated
as the sum of its componentsas the sum of its components::
y = yy = y11 + y+ y22 ++ ………… + y+ ynn
wherewhere
yyii=f(u=f(uii) , i=1,2,) , i=1,2,…………,n,n
C.T. PanC.T. Pan 66
77C.T. PanC.T. Pan 77
4.6 Superposition Theorem4.6 Superposition Theorem
ProofProof:: Consider the nodal equation of the correspondingConsider the nodal equation of the corresponding
circuit for the basic case as an examplecircuit for the basic case as an example
( )
11 12 1 11
21 22 2 2 2
1 2
n s
n s
nn n nn ns
G G G Ie
G G G e I
A
eG G G I
    
    
     =
    
    
    
L
L
LLL
MM O M M
L
[ ] ( )sG e I B= LLLLLLLLLLLL
Let GLet Gkk = [ G= [ Gk1k1 GGk2k2 …… GGknkn ]]TT
Then [G] = [ GThen [G] = [ G11 GG22 …… GGnn ]]C.T. PanC.T. Pan 77
88C.T. PanC.T. Pan 88
4.6 Superposition Theorem4.6 Superposition Theorem
LetLet
det A =det A = △△ ≠≠ 00
11 12 13 1 1
21 22 23 2 2
31 32 33 1 3
a a a x b
a a a x b
a a a x b
     
     =     
          
C.T. PanC.T. Pan 88
nn CramerCramer’’s Rule for solving Ax=bs Rule for solving Ax=b
Take n=3 as an example.Take n=3 as an example.
99C.T. PanC.T. Pan 99
4.6 Superposition Theorem4.6 Superposition Theorem
1 12 13
2 22 23
3 32 33
1
11 1 13
21 2 23
31 3 33
2
11 12 1
21 22 2
31 32 3
3
det
det
det
b a a
b a a
b a a
x
a b a
a b a
a b a
x
a a b
a a b
a a b
x
=
∆
=
∆
=
∆C.T. PanC.T. Pan 99
ThenThen
1010C.T. PanC.T. Pan 1010
4.6 Superposition Theorem4.6 Superposition Theorem
Suppose that the kth nodal voltageSuppose that the kth nodal voltage eekk is to be found.is to be found.
Then from CramerThen from Cramer’’s rule one hass rule one has
[ ]
[ ]
Δ
Δ
1 1 s n
k
n
jk
js
j= 1
k k1 k2 kn
det G G I G
e =
det G
= I
where det G
e = e + e + + e
  
∆
∴
∑
L L
@
L L
C.T. PanC.T. Pan 1010
1111C.T. PanC.T. Pan 1111
4.6 Superposition Theorem4.6 Superposition Theorem
1 1
Δ
,
Δ
Δ
,
Δ
1k
k1 s s
nk
kn ns ns
where
e I due to I only
e I due to I only
=
=
C.T. PanC.T. Pan 1111
1212C.T. PanC.T. Pan 1212
4.6 Superposition Theorem4.6 Superposition Theorem
nn Example 4.6.2Example 4.6.2
2 ?Find e =
Nodal EquationNodal Equation
GG33+G+G55+G+G66--GG55--GG66
--GG55GG22+G+G44+G+G55--GG44
--GG66--GG44GG11+G+G44+G+G66
ee33
ee22
ee11
=
II3S3S
II2S2S
II1S1S
GG33+G+G55+G+G66--GG55--GG66
--GG55GG22+G+G44+G+G55--GG44
--GG66--GG44GG11+G+G44+G+G66
GG33+G+G55+G+G66--GG55--GG66
--GG55GG22+G+G44+G+G55--GG44
--GG66--GG44GG11+G+G44+G+G66
ee33
ee22
ee11
ee33
ee22
ee11
=
II3S3S
II2S2S
II1S1S
II3S3S
II2S2S
II1S1S
C.T. PanC.T. Pan 1212
1313C.T. PanC.T. Pan 1313
4.6 Superposition Theorem4.6 Superposition Theorem
By using CramerBy using Cramer’’s rules rule
1 4 6 1 6
4 2 5
6 3 3 5 6
2
3212 22
1 2 3
21 22 23
det
S
S
S
S S S
G G G I G
G I G
G I G G G
e
I I I
e e e
+ + − 
 
− − 
 − + + =
∆
∆∆ ∆
= + +
∆ ∆ ∆
= + +
C.T. PanC.T. Pan 1313
1414C.T. PanC.T. Pan 1414
4.6 Superposition Theorem4.6 Superposition Theorem
Where eWhere e2121 is due to Iis due to I1S1S onlyonly,,II2S2S==II3S3S==00
GG33+G+G55+G+G66--GG55--GG66
--GG55GG22+G+G44+G+G55--GG44
--GG66--GG44GG11+G+G44+G+G66
ee3131
ee2121
ee1111
=
00
00
II1S1S
GG33+G+G55+G+G66--GG55--GG66
--GG55GG22+G+G44+G+G55--GG44
--GG66--GG44GG11+G+G44+G+G66
GG33+G+G55+G+G66--GG55--GG66
--GG55GG22+G+G44+G+G55--GG44
--GG66--GG44GG11+G+G44+G+G66
ee3131
ee2121
ee1111
ee3131
ee2121
ee1111
=
00
00
II1S1S
00
00
II1S1S
C.T. PanC.T. Pan 1414
1515C.T. PanC.T. Pan 1515
4.6 Superposition Theorem4.6 Superposition Theorem
GG33+G+G55+G+G66--GG55--GG66
--GG55GG22+G+G44+G+G55--GG44
--GG66--GG44GG11+G+G44+G+G66
ee3131
ee2121
ee1111
=
00
00
II1S1S
GG33+G+G55+G+G66--GG55--GG66
--GG55GG22+G+G44+G+G55--GG44
--GG66--GG44GG11+G+G44+G+G66
GG33+G+G55+G+G66--GG55--GG66
--GG55GG22+G+G44+G+G55--GG44
--GG66--GG44GG11+G+G44+G+G66
ee3131
ee2121
ee1111
ee3131
ee2121
ee1111
=
00
00
II1S1S
00
00
II1S1S
1 4 6 1 6
4 5
6 3 5 6
21
12
1 1
det 0
0
,
S
S S
G G G I G
G G
G G G G
e
I due to I only
+ + − 
 
− − 
 − + + ∴ =
∆
∆
=
∆
C.T. PanC.T. Pan 1515
1616C.T. PanC.T. Pan 1616
4.6 Superposition Theorem4.6 Superposition Theorem
SimilarlySimilarly
2
1 3 0
S
S S
Duo to I only
I I= =
3
1 2 0
S
S S
Duo to I only
I I= =
C.T. PanC.T. Pan 1616
1717C.T. PanC.T. Pan 1717
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
In high school, one finds the equivalentIn high school, one finds the equivalent
resistance of a two terminal resistive circuitresistance of a two terminal resistive circuit
without sources.without sources.
Now, we will find the equivalent circuit for twoNow, we will find the equivalent circuit for two
terminal resistive circuit with sources.terminal resistive circuit with sources.
C.T. PanC.T. Pan 1717
1818C.T. PanC.T. Pan 1818
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
TheveninThevenin’’s theorem states that a linear twos theorem states that a linear two--terminalterminal
circuit can be replaced by an equivalent circuitcircuit can be replaced by an equivalent circuit
consisting of a voltage source Vconsisting of a voltage source VTHTH in series with ain series with a
resistor Rresistor RTHTH where Vwhere VTHTH is the open circuit voltage atis the open circuit voltage at
the terminals and Rthe terminals and RTHTH is the input or equivalentis the input or equivalent
resistance at the terminals when the independentresistance at the terminals when the independent
sources are turned off .sources are turned off .
C.T. PanC.T. Pan 1818
1919C.T. PanC.T. Pan 1919
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 1919
Linear
two-terminal
circuit
Connected
circuit
+
V
-
a
b
I
2020C.T. PanC.T. Pan 2020
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
Equivalent circuit: same voltageEquivalent circuit: same voltage--current relation at thecurrent relation at the
terminals.terminals.
VVTHTH = V= VOCOC : Open circuit voltage at a: Open circuit voltage at a--bb
C.T. PanC.T. Pan 2020
VVTHTH = V= VOCOC
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 2121
RRTHTH = R= RININ : input resistance of the dead circuit: input resistance of the dead circuit
Turn off all independent sourcesTurn off all independent sources
RRTHTH = R= RININ
CASE 1CASE 1
If the network has no dependent sources:If the network has no dependent sources:
-- Turn off all independent source.Turn off all independent source.
-- RRTHTH :: input resistance of the network lookinginput resistance of the network looking
into ainto a--bb terminalsterminals
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 2222
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 2323
CASE 2CASE 2
If the network has dependent sourcesIf the network has dependent sources
--Turn off all independent sources.Turn off all independent sources.
--Apply a voltage source VApply a voltage source VOO at aat a--bb
O
TH
O
V
R =
I
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 2424
--Alternatively, apply a current source IAlternatively, apply a current source IOO at aat a--bb
If RIf RTHTH < 0, the circuit is supplying power.< 0, the circuit is supplying power.
O
TH
O
V
R =
I
Simplified circuitSimplified circuit
Voltage dividerVoltage divider
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 2525
TH
L
TH L
L
L L L TH
TH L
V
I =
R +R
R
V = R I = V
R +R
Proof : Consider the following linear two terminal circuitProof : Consider the following linear two terminal circuit
consisting of n+1 nodes and choose terminal b asconsisting of n+1 nodes and choose terminal b as
datum node and terminal a as node n .datum node and terminal a as node n .
L
11
1 1 1
2 2
1
s
n
s
n n n
n n s
IV
G G
V I
G G
V I
  
    
     =         
   
K
M O M
M M
L
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 2626
Then nodal voltage VThen nodal voltage Vnn when awhen a--b terminals are openb terminals are open
can be found by using Cramercan be found by using Cramer’’s rule .s rule .
( )
1
1
A
n
n kn ks
k
V I
=
= ∆
∆
∑ L L L
is the determinant of [G] matrixis the determinant of [G] matrix∆
Now connect an external resistance RNow connect an external resistance Roo to ato a--b terminals .b terminals .
The new nodal voltages will be changed to eThe new nodal voltages will be changed to e11 , e, e22 ,, …… , e, enn
respectively .respectively .
is the corresponding cofactor of Gis the corresponding cofactor of Gknknku∆
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 2727
( )
111
11
2
2 2
1
0
0
. . . . . . . . . B
1
n
s
n
s
n nn n ns
o
GG
Ie
G
e I
G G e I
R
+ 
   
+    
    =
   
   +     
 
K
M
M M
M M
L
Nodal equationNodal equation
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 2828
[ ]
1 1111
2 21
1 1
0 0
0 0
det det det
1 1
1
n
n
n nn n
o o
nn
o
G GG
G G
G
G G G
R R
R
+   
   
+   
   = +
   
   +
  
  
= ∆ + ∆
K K
M
M M M M
L L
Note thatNote that
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 2929
Hence , eHence , enn can be obtained as follows .can be obtained as follows .
11 1
1 1 1
det 1
1 1 1
1
s
n n
kn ks kn ks
n ns k k o
n n
nn o TH
nn nn
o o o
G I
I I
G I R
e V
R R
R R R
= =
 
 
  ∆ ∆ 
∆ = = = =
∆ +∆ + ∆ ∆ + ∆ +
∆
∑ ∑
K
M O M
L
wherewhere THR nn∆
∆
@
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 3030
TH
n o
In other words , the linear circuit looking into terminals a-b can
be replaced by an equivalent circuit consisting of a voltage
source VTH in series with an equivalent resistance RTH , where
VTH is the open circuit voltage Vn and .
nn
THR
∆
=
∆
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 3131
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
Example 4.7.1Example 4.7.1
C.T. PanC.T. Pan 3232
1
4
Ω 1
6
Ω
1
2
Ω
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 3333
1
2
1
1
2
5 22 4 2
2 2 6 2
2 2
2 4 2 2 5
2 2 2 6 0
8 2
d et 6 4 8 5 6
4 8
x
x
x
VV
V V
V V
V
V
−+ −    
=    
− +     
=
+ + −     
=    
− − +    
− 
∆ = = − = 
− 
Example 4.7.1 (cont.)Example 4.7.1 (cont.)
Find open circuit voltage VFind open circuit voltage V22
2
22
8 5
det
4 0 20 5
56 56 14
8 1
56 7
TH
TH
V V V
R
 
 
− ∴ = = = =
∆
= = = Ω
∆
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 3434
Example 4.7.1 (cont.)Example 4.7.1 (cont.)
a
b
5
14
V
1
7
Ω
∴∴ Ans.Ans.
10Ω 20Ω
10Ω
By voltage divider principle :By voltage divider principle :
open circuit voltage Vopen circuit voltage VTHTH=10V=10V
Let independent source be zeroLet independent source be zero
Example 4.7.2Example 4.7.2
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 3535
10 20
a
b
10 RTH=5+20=25 Ω
nn Find the TheveninFind the Thevenin’’ss equivalent circuit of the circuitequivalent circuit of the circuit
shown below, to the left of the terminals ashown below, to the left of the terminals a--b. Thenb. Then
find the current throughfind the current through RRLL == 6,6, 16,16, and 36and 36 ΩΩ..
Example 4.7.3Example 4.7.3
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 3636
TH
TH
R : 32V voltage source short
2A current source open
4 12
R = 4 12 +1= 1 4
16
→
→
×
+ = ΩP
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 3737
Example 4.7.3 (cont.)Example 4.7.3 (cont.)
RTH
VTH
VTH
analysisanalysisMeshMesh
::THTHVV
−−====−−++++−− AA22,,00))((1212443232 22221111 iiiiiiii
AA55..0011 ==∴∴ii
VV3030))00..2255..00((1212))((1212 2211THTH ==++==−−== iiiiVV
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 3838
Example 4.7.3 (cont.)Example 4.7.3 (cont.)
::getgetToTo LLii
LLLL
LL
RRRRRR
VV
ii
++
==
++
==
44
3030
THTH
THTH
66==LLRR AA331010//3030 ====LLII
1616==LLRR AA55..112020//3030 ====LLII
3636==LLRR AA7575..004040//3030 ====LLII
→→
→→
→→
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 3939
Example 4.7.3 (cont.)Example 4.7.3 (cont.)
Find the TheveninFind the Thevenin’’ss equivalent of theequivalent of the followingfollowing
circuitcircuit with terminals awith terminals a--b.b.
4040
Example 4.7.4Example 4.7.4
C.T. PanC.T. Pan
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 4040
(independent + dependent source case)(independent + dependent source case)
To find RTo find RTHTH from Fig.(a)from Fig.(a)
independent sourceindependent source →→ 00
dependent sourcedependent source →→ unchangedunchanged
ApplyApply
4141
1
1 , o
o TH
o o
v
v V R
i i
= = =
Example 4.7.4 (cont.)Example 4.7.4 (cont.)
C.T. PanC.T. Pan
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 4141
For loop 1 ,For loop 1 ,
2 1 24 xi v i i− = = −
4242
ButBut
1 2 1 2-2 2( ) 0 =x xv i i or v i i+ − = −
1 23i i∴ = −
C.T. PanC.T. Pan
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 4242
Example 4.7.4 (cont.)Example 4.7.4 (cont.)
4343
2 2 1 2 3
3 2 3
Loop 2 and 3:
4 2( ) 6( ) 0
6( ) 2 1 0
i i i i i
i i i
+ − + − =
− + + =
Solving these equations givesSolving these equations gives
C.T. PanC.T. PanC.T. PanC.T. Pan 4343
Example 4.7.4 (cont.)Example 4.7.4 (cont.)
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
3
3
1
6
1
But
6
1
6
o
TH
o
i A
i i A
V
R
i
= −
= − =
∴ = = Ω
51
=i
⇒=−+− 0)(22 23 iivx 23 iivx
−=
4444C.T. PanC.T. PanC.T. PanC.T. Pan 4444
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
Example 4.7.4 (cont.)Example 4.7.4 (cont.)
⇒=+−+− 06)(2)(4 23212 iiiii 02412 312
=−− iii
To find VTo find VTHTH from Fig.(b)from Fig.(b)
Mesh analysisMesh analysis
vviiii ))((44ButBut xx2211
..33//101022 ==∴∴ii
VV202066 22THTH ====== iivvVV ococ
==−−
C.T. PanC.T. Pan 4545C.T. PanC.T. Pan 4545
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
Example 4.7.4 (cont.)Example 4.7.4 (cont.)
Determine the TheveninDetermine the Thevenin’’ss
equivalent circuit :equivalent circuit :
SolutionSolution::
(dependent source only)(dependent source only)
Example 4.7.5Example 4.7.5
4646
0 , o
TH TH
o
v
V R
i
= =
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
4646C.T. PanC.T. Pan
2
4
o
o x x
v
i i i+ = +
Nodal analysisNodal analysis
4747
ThusThus
ButBut
4o
TH
o
v
R
i
= = − Ω
0
2 2
4 2 4 4
4
o o
x
o o o o
o x
o o
v v
i
v v v v
i i
or v i
−
= = −
= + = − + = −
= −
C.T. PanC.T. Pan
4.7 Thevenin4.7 Thevenin’’s Theorems Theorem
C.T. PanC.T. Pan 4747
Example 4.7.5 (cont.)Example 4.7.5 (cont.)
: Supplying Power !: Supplying Power !
nn NortonNorton’’s theorems theorem states that a linear two-terminal
circuit can be replaced by an equivalent circuit
consisting of a current source IN in parallel with a
resistor RN where IN is the short-circuit current
through the terminals and RN is the input or
equivalent resistance at the terminals when the
independent sources are turned off.
4848C.T. PanC.T. Pan
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 4848
4949C.T. PanC.T. Pan
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 4949
Linear
two-terminal
circuit
a
b
(a)
ProofProof::
By using Mesh Analysis as an exampleBy using Mesh Analysis as an example
Assume the linear two terminal circuit isAssume the linear two terminal circuit is
a planar circuit and there are n meshesa planar circuit and there are n meshes
when a b terminals are short circuited.when a b terminals are short circuited.
5050C.T. PanC.T. Pan
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 5050
[ ]
1111 1
2 2
1
1
1
1
=det
Sn
S
n nn n ns
n
n kn ks
k
ik
kn
Mesh equation for case as an example
VIR R
I V
R R I V
Hence the short circuit cuurent
I V
where R
=
……    
   
    =
   
   
    
= ∆
∆
∆
∆
∑
M M
O
M M M M
LL
knis the cofactor of R
5151C.T. PanC.T. Pan
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 5151
Now connect an external resistance RNow connect an external resistance Roo to a , bto a , b
terminals , then all the mesh currents will beterminals , then all the mesh currents will be
changed to Jchanged to J11, J, J22,, ‥‥ ‥‥ JJnn,,respectively.respectively.
1111 1
2 2 2
1
11 1 11
2
11
0
0
0 0
0
det det
Sn
n S
nn nn o ns
n
n
n on nn o
VJR R
R J V
JR R R V
Note that
R R R
R
R RR R R
…… +    
    
+     =
    
    
+     
…… +   
   
+   = ∆ +
   
   
+   
M
O
M MM M
LL
K
M M M
O O
M M MM
LLL
o nnR= ∆ + ∆ 5252C.T. PanC.T. Pan
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 5252
11 1
1 1
1
det
1
1
s
n
kn ks
n ns k
n
o nn o nn
n
kn ks
k
nn
o
R V
V
R V
J
R R
V
R
=
=
… 
 
  ∆ 
 = =
∆ + ∆ ∆ + ∆
∆
∆
=
∆
+
∆
∑
∑
M O M
L
Hence, one hasHence, one has
5353
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 5353
1
n
nn
o
N
n
o N
I
R
R
I
R R
=
∆
+
∆
=
+
5454
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 5454
,N N n
nn
where R I I
∆
= =
∆
Example 4.8.1 By using the above formulaExample 4.8.1 By using the above formula
4Ω
3Ω 3Ω
3Ω
Find the short circuit current IFind the short circuit current I33
3+33+3--33--33
--333+3+43+3+4--33
--33--333+33+3
II33
II22
II11
=
00
00
10V10V
C.T. PanC.T. Pan 5555
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 5555
3+33+3--33--33
--333+3+43+3+4--33
--33--333+33+3
II33
II22
II11
=
00
00
10V10V
[ ]
( )3
33
det 360 27 27 27 90 54 54 108
6 3 10
1 10 390 65
det 3 10 0 39
108 108 108 18
3 3 0
108 36
60 9 17
ik
N
N
R
I A I
R
= − − − − − − =
− 
 
= − = = = = 
 − − 
∆
= = = Ω
∆ −
5656C.T. PanC.T. Pan
Example 4.8.1 (cont.)Example 4.8.1 (cont.)
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 5656
Example 4.8.2Example 4.8.2
Find the Norton equivalent circuit ofFind the Norton equivalent circuit of thethe followingfollowing circuitcircuit
5757
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 5757
5||(8 4 8)
20 5
5|| 20 4
25
NR = + +
×
= = = Ω
5858C.T. PanC.T. Pan
Example 4.8.2 (cont.)Example 4.8.2 (cont.)
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 5858
To find RTo find RNN from Fig.(a)from Fig.(a)
5959C.T. PanC.T. Pan
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 5959
Example 4.8.2 (cont.)Example 4.8.2 (cont.)
To find ITo find INN from Fig.(b)from Fig.(b)
shortshort--circuit terminal a and bcircuit terminal a and b
Mesh Analysis:Mesh Analysis:
ii11 = 2A= 2A
20i20i22 -- 4i4i11 –– 12 = 012 = 0
∴∴ ii22 = 1A = I= 1A = INN
2A
4Ω
8Ω
8Ω
5Ω
12V
iSC
=IN
a
b
(b)
i1
i2
TH
N N
TH
V
Alternative method for I : I =
R
voltagevoltagecircuitcircuitopenopen:: −−THTHVV bbaa andandterminalsterminalsacrossacross
::analysisanalysisMeshMesh
6060C.T. PanC.T. Pan
3 4 3
4
4
2 , 25 4 12 0
0.8
5 4oc TH
i A i i
i A
v V i V
= − − =
∴ =
∴ = = =
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 6060
Example 4.8.2 (cont.)Example 4.8.2 (cont.)
2A
4Ω
8Ω
8Ω
5Ω
12V
VTH=vSC
a
b
(b)
i3 i4
,,HenceHence AA1144//44 ======
THTH
THTH
NN
RR
VV
II
6161C.T. PanC.T. Pan
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 6161
Example 4.8.2 (cont.)Example 4.8.2 (cont.)
nn Using NortonUsing Norton’’ss theorem, findtheorem, find RRNN andand IINN of theof the
followingfollowing circuit.circuit.
6262C.T. PanC.T. Pan
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 6262
Example 4.8.3Example 4.8.3
HenceHence ,,
6363C.T. PanC.T. Pan
1
0.2
5 5
o
o
v
i A= = =
1
5
0.2
o
N
o
v
R
i
∴ = = = Ω
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 6363
Example 4.8.3 (cont.)Example 4.8.3 (cont.)
To find RTo find RNN from Fig.(a)from Fig.(a)
6464C.T. PanC.T. Pan
4.8 Norton4.8 Norton’’s Theorems Theorem
C.T. PanC.T. Pan 6464
Example 4.8.3 (cont.)Example 4.8.3 (cont.)
To find ITo find INN from Fig.(b)from Fig.(b)
10
2.5
4
10
2
5
10
= 2(2.5) 7
5
7
x
N x
N
i A
V
I i
A
I A
= =
= +
Ω
+ =
∴ =
NvVs
a
b
iR
6565C.T. PanC.T. Pan 6565
4.9 Source Transformation4.9 Source Transformation
The current through resistor R can be obtainedThe current through resistor R can be obtained
as follows :as follows :
S S
S
V v V v v
i I
R R R R
−
= = − −@
6666C.T. PanC.T. Pan 6666
4.9 Source Transformation4.9 Source Transformation
From KCL, one can obtain the followingFrom KCL, one can obtain the following
equivalent circuitequivalent circuit
S
S
V
where I
R
@
6767C.T. PanC.T. Pan 6767
4.9 Source Transformation4.9 Source Transformation
The voltage across resistor R can be obtained asThe voltage across resistor R can be obtained as
follows :follows :
( )S S Sv I i R I R iR V iR= − = − −@
6868C.T. PanC.T. Pan 6868
4.9 Source Transformation4.9 Source Transformation
From KVL, one can obtain the followingFrom KVL, one can obtain the following
equivalent circuitequivalent circuit
S Swhere V R I@
6969C.T. PanC.T. Pan 6969
4.9 Source Transformation4.9 Source Transformation
Example 4.9.1Example 4.9.1
3Ω
a
b
10A 30V
a
b
3Ω
7070C.T. PanC.T. Pan 7070
4.9 Source Transformation4.9 Source Transformation
Example 4.9.2Example 4.9.2
nn Find the TheveninFind the Thevenin’’s equivalents equivalent
7171C.T. PanC.T. Pan 7171
4.9 Source Transformation4.9 Source Transformation
Example 4.9.2 (cont.)Example 4.9.2 (cont.)
4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem
nn Problem : Given a linear resistive circuit NProblem : Given a linear resistive circuit N
shown as above, find the value ofshown as above, find the value of
RRLL that permits maximum powerthat permits maximum power
delivery to Rdelivery to RL .L .
7272C.T. PanC.T. Pan
a
b
RL
7373C.T. PanC.T. Pan
Solution : First, replace N with its TheveninSolution : First, replace N with its Thevenin
equivalent circuit.equivalent circuit.
+-
RTH a
RL
b
VTH
i
4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem
7474C.T. PanC.T. Pan
2 2
2
2
L TH max
( )
0 ,
R =R ( )
2 4
TH
L
TH L
L
TH TH
L
L L
V
p i R R
R R
dp
Let
dR
V V
Then and P R
R R
= =
+
=
= =
4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem
7575C.T. PanC.T. Pan
(a) Find RL that results in maximum power transferred to RL.
(b) Find the corresponding maximum power delivered to RL ,
namely Pmax.
(c) Find the corresponding power delivered by the 360V
source, namely Ps and Pmax/Ps in percentage.
4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem
nExample 4.10.1
7676C.T. PanC.T. Pan
( )
2
m a x
1 5 0
: ( ) 3 6 0 3 0 0
1 8 0
1 5 0 3 0
2 5
1 8 0
3 0 0
( ) 2 5 9 0 0
5 0
T H
T H
S o l u ti o n a V V
R
b P W
= =
×
= =
 
= 
 
=
Ω
4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem
7777C.T. PanC.T. Pan
( )
( )
: a b
s
s s
m a x
s
300
Solution (c) V = 25 = 150V
50
- 360 - 150
i = = -7A
30
P = i 360 = -2520W (dissipated)
P 900
= = 35.71%
P 2520
×
4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem
C.T. PanC.T. Pan 7878
SummarySummary
nnObjective 7 : Understand and be able to useObjective 7 : Understand and be able to use
superposition theorem.superposition theorem.
nnObjective 8 : Understand and be able to useObjective 8 : Understand and be able to use
TheveninThevenin’’ss theorem.theorem.
nnObjective 9 : Understand and be able to useObjective 9 : Understand and be able to use
NortonNorton’’s theorem.s theorem.
C.T. PanC.T. Pan 7979
SummarySummary
nnObjective 10 : Understand and be able to useObjective 10 : Understand and be able to use
source transform technique.source transform technique.
nnObjective 11 : Know the condition for and beObjective 11 : Know the condition for and be
able to find the maximumable to find the maximum
power transfer.power transfer.
C.T. PanC.T. Pan 8080
SummarySummary
nn Problem : 4.60Problem : 4.60
4.644.64
4.684.68
4.774.77
4.864.86
4.914.91
nn Due within one week.Due within one week.

More Related Content

What's hot

Network Theory Part 1 questions and answers for interviews, campus placements...
Network Theory Part 1 questions and answers for interviews, campus placements...Network Theory Part 1 questions and answers for interviews, campus placements...
Network Theory Part 1 questions and answers for interviews, campus placements...
Prasant Kumar
 
Nortans Theorem
Nortans TheoremNortans Theorem
Nortans Theorem
stooty s
 
Network analysis and synthesis pdddfff
Network  analysis and synthesis pdddfffNetwork  analysis and synthesis pdddfff
Network analysis and synthesis pdddfff
Kshitij Singh
 
Mesh Current
Mesh CurrentMesh Current
Mesh Current
stooty s
 
Circuit theorem
Circuit theoremCircuit theorem
Circuit theorem
Monowar Hossain Munna
 
Thev norton eq
Thev norton eqThev norton eq
Thev norton eq
Hassaan Rahman
 
ECE203 Lecture 3,4
ECE203 Lecture 3,4 ECE203 Lecture 3,4
ECE203 Lecture 3,4
Jeya Prakash K
 
Elect principles 2 thevenin theorem
Elect principles 2   thevenin theoremElect principles 2   thevenin theorem
Elect principles 2 thevenin theorem
sdacey
 
Chapter#2
Chapter#2Chapter#2
Electrical circuits dc network theorem
Electrical circuits dc  network theoremElectrical circuits dc  network theorem
Electrical circuits dc network theorem
University of Potsdam
 
Superposition and norton Theorem
Superposition and norton TheoremSuperposition and norton Theorem
Superposition and norton Theorem
Mahmudul Alam
 
thevenin's theorem
thevenin's theoremthevenin's theorem
thevenin's theorem
Ashaduzzaman Kanon
 
Star delta
Star deltaStar delta
Star delta
avi1001
 
ECE203 Lecture 2
ECE203 Lecture 2ECE203 Lecture 2
ECE203 Lecture 2
Jeya Prakash K
 
Maximum power transfer theorem
Maximum power transfer theoremMaximum power transfer theorem
Maximum power transfer theorem
Prakash Poudel
 
Max+power+theorem
Max+power+theoremMax+power+theorem
Max+power+theorem
ADEL ASHYAP
 
Chap4
Chap4Chap4
NAS-Ch2-Network-Theorems
NAS-Ch2-Network-TheoremsNAS-Ch2-Network-Theorems
NAS-Ch2-Network-Theorems
Hussain K
 
Network theorems by adi
Network theorems by adiNetwork theorems by adi
Network theorems by adi
Prof. Dr. K. Adisesha
 
Basics of Electric circuit theory
Basics of Electric circuit theoryBasics of Electric circuit theory
Basics of Electric circuit theory
Mohsin Mulla
 

What's hot (20)

Network Theory Part 1 questions and answers for interviews, campus placements...
Network Theory Part 1 questions and answers for interviews, campus placements...Network Theory Part 1 questions and answers for interviews, campus placements...
Network Theory Part 1 questions and answers for interviews, campus placements...
 
Nortans Theorem
Nortans TheoremNortans Theorem
Nortans Theorem
 
Network analysis and synthesis pdddfff
Network  analysis and synthesis pdddfffNetwork  analysis and synthesis pdddfff
Network analysis and synthesis pdddfff
 
Mesh Current
Mesh CurrentMesh Current
Mesh Current
 
Circuit theorem
Circuit theoremCircuit theorem
Circuit theorem
 
Thev norton eq
Thev norton eqThev norton eq
Thev norton eq
 
ECE203 Lecture 3,4
ECE203 Lecture 3,4 ECE203 Lecture 3,4
ECE203 Lecture 3,4
 
Elect principles 2 thevenin theorem
Elect principles 2   thevenin theoremElect principles 2   thevenin theorem
Elect principles 2 thevenin theorem
 
Chapter#2
Chapter#2Chapter#2
Chapter#2
 
Electrical circuits dc network theorem
Electrical circuits dc  network theoremElectrical circuits dc  network theorem
Electrical circuits dc network theorem
 
Superposition and norton Theorem
Superposition and norton TheoremSuperposition and norton Theorem
Superposition and norton Theorem
 
thevenin's theorem
thevenin's theoremthevenin's theorem
thevenin's theorem
 
Star delta
Star deltaStar delta
Star delta
 
ECE203 Lecture 2
ECE203 Lecture 2ECE203 Lecture 2
ECE203 Lecture 2
 
Maximum power transfer theorem
Maximum power transfer theoremMaximum power transfer theorem
Maximum power transfer theorem
 
Max+power+theorem
Max+power+theoremMax+power+theorem
Max+power+theorem
 
Chap4
Chap4Chap4
Chap4
 
NAS-Ch2-Network-Theorems
NAS-Ch2-Network-TheoremsNAS-Ch2-Network-Theorems
NAS-Ch2-Network-Theorems
 
Network theorems by adi
Network theorems by adiNetwork theorems by adi
Network theorems by adi
 
Basics of Electric circuit theory
Basics of Electric circuit theoryBasics of Electric circuit theory
Basics of Electric circuit theory
 

Similar to bhandout

ATPG of reversible circuits
ATPG of reversible circuitsATPG of reversible circuits
ATPG of reversible circuits
Rahul Krishnamurthy
 
Assignmentl3 solutions
Assignmentl3 solutionsAssignmentl3 solutions
Assignmentl3 solutions
Om Prakash Bankolia
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
sami717280
 
1780 n 10577
1780 n 105771780 n 10577
1780 n 10577
Fatih Ocaklı
 
3742250677250MODULEIIMPTRT.pptx
3742250677250MODULEIIMPTRT.pptx3742250677250MODULEIIMPTRT.pptx
3742250677250MODULEIIMPTRT.pptx
JaishankarSNambiar1
 
node analysis.pptx
node analysis.pptxnode analysis.pptx
node analysis.pptx
ARCHISTUDIO1
 
Thevnin and norton
Thevnin and nortonThevnin and norton
Thevnin and norton
WaseemAbbas168
 
B.Sc. Sem II Network theorems
 B.Sc. Sem II Network theorems B.Sc. Sem II Network theorems
Concept of ac circuit for electrical engineering and this help to study about...
Concept of ac circuit for electrical engineering and this help to study about...Concept of ac circuit for electrical engineering and this help to study about...
Concept of ac circuit for electrical engineering and this help to study about...
saiyadippu
 
Parametrized Model Checking of Fault Tolerant Distributed Algorithms by Abstr...
Parametrized Model Checking of Fault Tolerant Distributed Algorithms by Abstr...Parametrized Model Checking of Fault Tolerant Distributed Algorithms by Abstr...
Parametrized Model Checking of Fault Tolerant Distributed Algorithms by Abstr...
Iosif Itkin
 
Some Results on Common Fixed Point Theorems in Hilbert Space
Some Results on Common Fixed Point Theorems in Hilbert SpaceSome Results on Common Fixed Point Theorems in Hilbert Space
Some Results on Common Fixed Point Theorems in Hilbert Space
BRNSS Publication Hub
 
5_AJMS_231_19_RA.pdf
5_AJMS_231_19_RA.pdf5_AJMS_231_19_RA.pdf
5_AJMS_231_19_RA.pdf
BRNSS Publication Hub
 
Parcial asincrona (2)
Parcial asincrona (2)Parcial asincrona (2)
Parcial asincrona (2)
WalterAntonioGuiller
 
Parcial asincrona
Parcial asincronaParcial asincrona
Parcial asincrona
WalterAntonioGuiller
 
Introduction
IntroductionIntroduction
Introduction
Yasir Hashmi
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
Rendy Robert
 
Lecture 05 superposition.pdf
Lecture 05 superposition.pdfLecture 05 superposition.pdf
Lecture 05 superposition.pdf
WanizaSiddiqui
 
Circuitanly
CircuitanlyCircuitanly
Circuitanly
Senthil Kumar
 
Analysis
AnalysisAnalysis
Class 12 physics part1
Class 12 physics part1Class 12 physics part1
Class 12 physics part1
Himanshu Bhandari
 

Similar to bhandout (20)

ATPG of reversible circuits
ATPG of reversible circuitsATPG of reversible circuits
ATPG of reversible circuits
 
Assignmentl3 solutions
Assignmentl3 solutionsAssignmentl3 solutions
Assignmentl3 solutions
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
 
1780 n 10577
1780 n 105771780 n 10577
1780 n 10577
 
3742250677250MODULEIIMPTRT.pptx
3742250677250MODULEIIMPTRT.pptx3742250677250MODULEIIMPTRT.pptx
3742250677250MODULEIIMPTRT.pptx
 
node analysis.pptx
node analysis.pptxnode analysis.pptx
node analysis.pptx
 
Thevnin and norton
Thevnin and nortonThevnin and norton
Thevnin and norton
 
B.Sc. Sem II Network theorems
 B.Sc. Sem II Network theorems B.Sc. Sem II Network theorems
B.Sc. Sem II Network theorems
 
Concept of ac circuit for electrical engineering and this help to study about...
Concept of ac circuit for electrical engineering and this help to study about...Concept of ac circuit for electrical engineering and this help to study about...
Concept of ac circuit for electrical engineering and this help to study about...
 
Parametrized Model Checking of Fault Tolerant Distributed Algorithms by Abstr...
Parametrized Model Checking of Fault Tolerant Distributed Algorithms by Abstr...Parametrized Model Checking of Fault Tolerant Distributed Algorithms by Abstr...
Parametrized Model Checking of Fault Tolerant Distributed Algorithms by Abstr...
 
Some Results on Common Fixed Point Theorems in Hilbert Space
Some Results on Common Fixed Point Theorems in Hilbert SpaceSome Results on Common Fixed Point Theorems in Hilbert Space
Some Results on Common Fixed Point Theorems in Hilbert Space
 
5_AJMS_231_19_RA.pdf
5_AJMS_231_19_RA.pdf5_AJMS_231_19_RA.pdf
5_AJMS_231_19_RA.pdf
 
Parcial asincrona (2)
Parcial asincrona (2)Parcial asincrona (2)
Parcial asincrona (2)
 
Parcial asincrona
Parcial asincronaParcial asincrona
Parcial asincrona
 
Introduction
IntroductionIntroduction
Introduction
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
 
Lecture 05 superposition.pdf
Lecture 05 superposition.pdfLecture 05 superposition.pdf
Lecture 05 superposition.pdf
 
Circuitanly
CircuitanlyCircuitanly
Circuitanly
 
Analysis
AnalysisAnalysis
Analysis
 
Class 12 physics part1
Class 12 physics part1Class 12 physics part1
Class 12 physics part1
 

Recently uploaded

Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
Madhumitha Jayaram
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
anoopmanoharan2
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
Ratnakar Mikkili
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
drwaing
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
nooriasukmaningtyas
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
mamunhossenbd75
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
wisnuprabawa3
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
PuktoonEngr
 

Recently uploaded (20)

Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
 

bhandout

  • 1. 11C.T. PanC.T. Pan 11 CIRCUIT THEOREMS 22C.T. PanC.T. Pan 4.6 Superposition Theorem4.6 Superposition Theorem 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem 4.8 Norton4.8 Norton’’s Theorems Theorem 4.9 Source Transformation4.9 Source Transformation 4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem 22
  • 2. The relationship f (x) between cause x and effect yThe relationship f (x) between cause x and effect y is linear if fis linear if f ((˙˙)) is both additive and homogeneous.is both additive and homogeneous. definition of additive propertydefinition of additive property:: If f(xIf f(x11)=y)=y11 , f(x, f(x22)=y)=y22 then f(xthen f(x11+x+x22)=y)=y11+y+y22 definition of homogeneous propertydefinition of homogeneous property:: If f(x)=y andIf f(x)=y and αα is a real number then f(is a real number then f(ααx)=x)= ααyy 33C.T. PanC.T. Pan 33 4.6 Superposition Theorem4.6 Superposition Theorem ( )f g xx inputinput yy outputoutput 44C.T. PanC.T. Pan 44 4.6 Superposition Theorem4.6 Superposition Theorem nn Example 4.6.1Example 4.6.1 AssumeAssume II00 = 1 A= 1 A and use linearity to find the actualand use linearity to find the actual value ofvalue of II00 in the circuit in figin the circuit in figureure.. C.T. PanC.T. Pan 44
  • 3. 55C.T. PanC.T. Pan 55 4.6 Superposition Theorem4.6 Superposition Theorem 0 1 0 1 1 2 1 0 2 2 1 2 3 4 3 2 0 0 If 1A , then (3 5) 8V 2A , 3A 4 2 8 6 14V , 2A 7 5A 5A 1 5A , 3A 15A S S S I V I V I I I I V V V I I I I I I I A I I I = = + = = = = + = = + = + = = = = + = ⇒ = = → = = → =C.T. PanC.T. Pan 55 66C.T. PanC.T. Pan 66 4.6 Superposition Theorem4.6 Superposition Theorem For a linear circuit N consisting of n inputs , namelyFor a linear circuit N consisting of n inputs , namely uu11 , u, u22 ,, ………… , u, unn , then the output y can be calculated, then the output y can be calculated as the sum of its componentsas the sum of its components:: y = yy = y11 + y+ y22 ++ ………… + y+ ynn wherewhere yyii=f(u=f(uii) , i=1,2,) , i=1,2,…………,n,n C.T. PanC.T. Pan 66
  • 4. 77C.T. PanC.T. Pan 77 4.6 Superposition Theorem4.6 Superposition Theorem ProofProof:: Consider the nodal equation of the correspondingConsider the nodal equation of the corresponding circuit for the basic case as an examplecircuit for the basic case as an example ( ) 11 12 1 11 21 22 2 2 2 1 2 n s n s nn n nn ns G G G Ie G G G e I A eG G G I                =                L L LLL MM O M M L [ ] ( )sG e I B= LLLLLLLLLLLL Let GLet Gkk = [ G= [ Gk1k1 GGk2k2 …… GGknkn ]]TT Then [G] = [ GThen [G] = [ G11 GG22 …… GGnn ]]C.T. PanC.T. Pan 77 88C.T. PanC.T. Pan 88 4.6 Superposition Theorem4.6 Superposition Theorem LetLet det A =det A = △△ ≠≠ 00 11 12 13 1 1 21 22 23 2 2 31 32 33 1 3 a a a x b a a a x b a a a x b            =                 C.T. PanC.T. Pan 88 nn CramerCramer’’s Rule for solving Ax=bs Rule for solving Ax=b Take n=3 as an example.Take n=3 as an example.
  • 5. 99C.T. PanC.T. Pan 99 4.6 Superposition Theorem4.6 Superposition Theorem 1 12 13 2 22 23 3 32 33 1 11 1 13 21 2 23 31 3 33 2 11 12 1 21 22 2 31 32 3 3 det det det b a a b a a b a a x a b a a b a a b a x a a b a a b a a b x = ∆ = ∆ = ∆C.T. PanC.T. Pan 99 ThenThen 1010C.T. PanC.T. Pan 1010 4.6 Superposition Theorem4.6 Superposition Theorem Suppose that the kth nodal voltageSuppose that the kth nodal voltage eekk is to be found.is to be found. Then from CramerThen from Cramer’’s rule one hass rule one has [ ] [ ] Δ Δ 1 1 s n k n jk js j= 1 k k1 k2 kn det G G I G e = det G = I where det G e = e + e + + e    ∆ ∴ ∑ L L @ L L C.T. PanC.T. Pan 1010
  • 6. 1111C.T. PanC.T. Pan 1111 4.6 Superposition Theorem4.6 Superposition Theorem 1 1 Δ , Δ Δ , Δ 1k k1 s s nk kn ns ns where e I due to I only e I due to I only = = C.T. PanC.T. Pan 1111 1212C.T. PanC.T. Pan 1212 4.6 Superposition Theorem4.6 Superposition Theorem nn Example 4.6.2Example 4.6.2 2 ?Find e = Nodal EquationNodal Equation GG33+G+G55+G+G66--GG55--GG66 --GG55GG22+G+G44+G+G55--GG44 --GG66--GG44GG11+G+G44+G+G66 ee33 ee22 ee11 = II3S3S II2S2S II1S1S GG33+G+G55+G+G66--GG55--GG66 --GG55GG22+G+G44+G+G55--GG44 --GG66--GG44GG11+G+G44+G+G66 GG33+G+G55+G+G66--GG55--GG66 --GG55GG22+G+G44+G+G55--GG44 --GG66--GG44GG11+G+G44+G+G66 ee33 ee22 ee11 ee33 ee22 ee11 = II3S3S II2S2S II1S1S II3S3S II2S2S II1S1S C.T. PanC.T. Pan 1212
  • 7. 1313C.T. PanC.T. Pan 1313 4.6 Superposition Theorem4.6 Superposition Theorem By using CramerBy using Cramer’’s rules rule 1 4 6 1 6 4 2 5 6 3 3 5 6 2 3212 22 1 2 3 21 22 23 det S S S S S S G G G I G G I G G I G G G e I I I e e e + + −    − −   − + + = ∆ ∆∆ ∆ = + + ∆ ∆ ∆ = + + C.T. PanC.T. Pan 1313 1414C.T. PanC.T. Pan 1414 4.6 Superposition Theorem4.6 Superposition Theorem Where eWhere e2121 is due to Iis due to I1S1S onlyonly,,II2S2S==II3S3S==00 GG33+G+G55+G+G66--GG55--GG66 --GG55GG22+G+G44+G+G55--GG44 --GG66--GG44GG11+G+G44+G+G66 ee3131 ee2121 ee1111 = 00 00 II1S1S GG33+G+G55+G+G66--GG55--GG66 --GG55GG22+G+G44+G+G55--GG44 --GG66--GG44GG11+G+G44+G+G66 GG33+G+G55+G+G66--GG55--GG66 --GG55GG22+G+G44+G+G55--GG44 --GG66--GG44GG11+G+G44+G+G66 ee3131 ee2121 ee1111 ee3131 ee2121 ee1111 = 00 00 II1S1S 00 00 II1S1S C.T. PanC.T. Pan 1414
  • 8. 1515C.T. PanC.T. Pan 1515 4.6 Superposition Theorem4.6 Superposition Theorem GG33+G+G55+G+G66--GG55--GG66 --GG55GG22+G+G44+G+G55--GG44 --GG66--GG44GG11+G+G44+G+G66 ee3131 ee2121 ee1111 = 00 00 II1S1S GG33+G+G55+G+G66--GG55--GG66 --GG55GG22+G+G44+G+G55--GG44 --GG66--GG44GG11+G+G44+G+G66 GG33+G+G55+G+G66--GG55--GG66 --GG55GG22+G+G44+G+G55--GG44 --GG66--GG44GG11+G+G44+G+G66 ee3131 ee2121 ee1111 ee3131 ee2121 ee1111 = 00 00 II1S1S 00 00 II1S1S 1 4 6 1 6 4 5 6 3 5 6 21 12 1 1 det 0 0 , S S S G G G I G G G G G G G e I due to I only + + −    − −   − + + ∴ = ∆ ∆ = ∆ C.T. PanC.T. Pan 1515 1616C.T. PanC.T. Pan 1616 4.6 Superposition Theorem4.6 Superposition Theorem SimilarlySimilarly 2 1 3 0 S S S Duo to I only I I= = 3 1 2 0 S S S Duo to I only I I= = C.T. PanC.T. Pan 1616
  • 9. 1717C.T. PanC.T. Pan 1717 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem In high school, one finds the equivalentIn high school, one finds the equivalent resistance of a two terminal resistive circuitresistance of a two terminal resistive circuit without sources.without sources. Now, we will find the equivalent circuit for twoNow, we will find the equivalent circuit for two terminal resistive circuit with sources.terminal resistive circuit with sources. C.T. PanC.T. Pan 1717 1818C.T. PanC.T. Pan 1818 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem TheveninThevenin’’s theorem states that a linear twos theorem states that a linear two--terminalterminal circuit can be replaced by an equivalent circuitcircuit can be replaced by an equivalent circuit consisting of a voltage source Vconsisting of a voltage source VTHTH in series with ain series with a resistor Rresistor RTHTH where Vwhere VTHTH is the open circuit voltage atis the open circuit voltage at the terminals and Rthe terminals and RTHTH is the input or equivalentis the input or equivalent resistance at the terminals when the independentresistance at the terminals when the independent sources are turned off .sources are turned off . C.T. PanC.T. Pan 1818
  • 10. 1919C.T. PanC.T. Pan 1919 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 1919 Linear two-terminal circuit Connected circuit + V - a b I 2020C.T. PanC.T. Pan 2020 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem Equivalent circuit: same voltageEquivalent circuit: same voltage--current relation at thecurrent relation at the terminals.terminals. VVTHTH = V= VOCOC : Open circuit voltage at a: Open circuit voltage at a--bb C.T. PanC.T. Pan 2020 VVTHTH = V= VOCOC
  • 11. 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 2121 RRTHTH = R= RININ : input resistance of the dead circuit: input resistance of the dead circuit Turn off all independent sourcesTurn off all independent sources RRTHTH = R= RININ CASE 1CASE 1 If the network has no dependent sources:If the network has no dependent sources: -- Turn off all independent source.Turn off all independent source. -- RRTHTH :: input resistance of the network lookinginput resistance of the network looking into ainto a--bb terminalsterminals 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 2222
  • 12. 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 2323 CASE 2CASE 2 If the network has dependent sourcesIf the network has dependent sources --Turn off all independent sources.Turn off all independent sources. --Apply a voltage source VApply a voltage source VOO at aat a--bb O TH O V R = I 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 2424 --Alternatively, apply a current source IAlternatively, apply a current source IOO at aat a--bb If RIf RTHTH < 0, the circuit is supplying power.< 0, the circuit is supplying power. O TH O V R = I
  • 13. Simplified circuitSimplified circuit Voltage dividerVoltage divider 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 2525 TH L TH L L L L L TH TH L V I = R +R R V = R I = V R +R Proof : Consider the following linear two terminal circuitProof : Consider the following linear two terminal circuit consisting of n+1 nodes and choose terminal b asconsisting of n+1 nodes and choose terminal b as datum node and terminal a as node n .datum node and terminal a as node n . L 11 1 1 1 2 2 1 s n s n n n n n s IV G G V I G G V I              =              K M O M M M L 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 2626
  • 14. Then nodal voltage VThen nodal voltage Vnn when awhen a--b terminals are openb terminals are open can be found by using Cramercan be found by using Cramer’’s rule .s rule . ( ) 1 1 A n n kn ks k V I = = ∆ ∆ ∑ L L L is the determinant of [G] matrixis the determinant of [G] matrix∆ Now connect an external resistance RNow connect an external resistance Roo to ato a--b terminals .b terminals . The new nodal voltages will be changed to eThe new nodal voltages will be changed to e11 , e, e22 ,, …… , e, enn respectively .respectively . is the corresponding cofactor of Gis the corresponding cofactor of Gknknku∆ 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 2727 ( ) 111 11 2 2 2 1 0 0 . . . . . . . . . B 1 n s n s n nn n ns o GG Ie G e I G G e I R +      +         =        +        K M M M M M L Nodal equationNodal equation 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 2828
  • 15. [ ] 1 1111 2 21 1 1 0 0 0 0 det det det 1 1 1 n n n nn n o o nn o G GG G G G G G G R R R +        +       = +        +       = ∆ + ∆ K K M M M M M L L Note thatNote that 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 2929 Hence , eHence , enn can be obtained as follows .can be obtained as follows . 11 1 1 1 1 det 1 1 1 1 1 s n n kn ks kn ks n ns k k o n n nn o TH nn nn o o o G I I I G I R e V R R R R R = =       ∆ ∆  ∆ = = = = ∆ +∆ + ∆ ∆ + ∆ + ∆ ∑ ∑ K M O M L wherewhere THR nn∆ ∆ @ 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 3030
  • 16. TH n o In other words , the linear circuit looking into terminals a-b can be replaced by an equivalent circuit consisting of a voltage source VTH in series with an equivalent resistance RTH , where VTH is the open circuit voltage Vn and . nn THR ∆ = ∆ 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 3131 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem Example 4.7.1Example 4.7.1 C.T. PanC.T. Pan 3232 1 4 Ω 1 6 Ω 1 2 Ω
  • 17. 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 3333 1 2 1 1 2 5 22 4 2 2 2 6 2 2 2 2 4 2 2 5 2 2 2 6 0 8 2 d et 6 4 8 5 6 4 8 x x x VV V V V V V V −+ −     =     − +      = + + −      =     − − +     −  ∆ = = − =  −  Example 4.7.1 (cont.)Example 4.7.1 (cont.) Find open circuit voltage VFind open circuit voltage V22 2 22 8 5 det 4 0 20 5 56 56 14 8 1 56 7 TH TH V V V R     − ∴ = = = = ∆ = = = Ω ∆ 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 3434 Example 4.7.1 (cont.)Example 4.7.1 (cont.) a b 5 14 V 1 7 Ω ∴∴ Ans.Ans.
  • 18. 10Ω 20Ω 10Ω By voltage divider principle :By voltage divider principle : open circuit voltage Vopen circuit voltage VTHTH=10V=10V Let independent source be zeroLet independent source be zero Example 4.7.2Example 4.7.2 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 3535 10 20 a b 10 RTH=5+20=25 Ω nn Find the TheveninFind the Thevenin’’ss equivalent circuit of the circuitequivalent circuit of the circuit shown below, to the left of the terminals ashown below, to the left of the terminals a--b. Thenb. Then find the current throughfind the current through RRLL == 6,6, 16,16, and 36and 36 ΩΩ.. Example 4.7.3Example 4.7.3 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 3636
  • 19. TH TH R : 32V voltage source short 2A current source open 4 12 R = 4 12 +1= 1 4 16 → → × + = ΩP 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 3737 Example 4.7.3 (cont.)Example 4.7.3 (cont.) RTH VTH VTH analysisanalysisMeshMesh ::THTHVV −−====−−++++−− AA22,,00))((1212443232 22221111 iiiiiiii AA55..0011 ==∴∴ii VV3030))00..2255..00((1212))((1212 2211THTH ==++==−−== iiiiVV 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 3838 Example 4.7.3 (cont.)Example 4.7.3 (cont.)
  • 20. ::getgetToTo LLii LLLL LL RRRRRR VV ii ++ == ++ == 44 3030 THTH THTH 66==LLRR AA331010//3030 ====LLII 1616==LLRR AA55..112020//3030 ====LLII 3636==LLRR AA7575..004040//3030 ====LLII →→ →→ →→ 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 3939 Example 4.7.3 (cont.)Example 4.7.3 (cont.) Find the TheveninFind the Thevenin’’ss equivalent of theequivalent of the followingfollowing circuitcircuit with terminals awith terminals a--b.b. 4040 Example 4.7.4Example 4.7.4 C.T. PanC.T. Pan 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 4040
  • 21. (independent + dependent source case)(independent + dependent source case) To find RTo find RTHTH from Fig.(a)from Fig.(a) independent sourceindependent source →→ 00 dependent sourcedependent source →→ unchangedunchanged ApplyApply 4141 1 1 , o o TH o o v v V R i i = = = Example 4.7.4 (cont.)Example 4.7.4 (cont.) C.T. PanC.T. Pan 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 4141 For loop 1 ,For loop 1 , 2 1 24 xi v i i− = = − 4242 ButBut 1 2 1 2-2 2( ) 0 =x xv i i or v i i+ − = − 1 23i i∴ = − C.T. PanC.T. Pan 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 4242 Example 4.7.4 (cont.)Example 4.7.4 (cont.)
  • 22. 4343 2 2 1 2 3 3 2 3 Loop 2 and 3: 4 2( ) 6( ) 0 6( ) 2 1 0 i i i i i i i i + − + − = − + + = Solving these equations givesSolving these equations gives C.T. PanC.T. PanC.T. PanC.T. Pan 4343 Example 4.7.4 (cont.)Example 4.7.4 (cont.) 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem 3 3 1 6 1 But 6 1 6 o TH o i A i i A V R i = − = − = ∴ = = Ω 51 =i ⇒=−+− 0)(22 23 iivx 23 iivx −= 4444C.T. PanC.T. PanC.T. PanC.T. Pan 4444 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem Example 4.7.4 (cont.)Example 4.7.4 (cont.) ⇒=+−+− 06)(2)(4 23212 iiiii 02412 312 =−− iii To find VTo find VTHTH from Fig.(b)from Fig.(b) Mesh analysisMesh analysis
  • 23. vviiii ))((44ButBut xx2211 ..33//101022 ==∴∴ii VV202066 22THTH ====== iivvVV ococ ==−− C.T. PanC.T. Pan 4545C.T. PanC.T. Pan 4545 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem Example 4.7.4 (cont.)Example 4.7.4 (cont.) Determine the TheveninDetermine the Thevenin’’ss equivalent circuit :equivalent circuit : SolutionSolution:: (dependent source only)(dependent source only) Example 4.7.5Example 4.7.5 4646 0 , o TH TH o v V R i = = 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem 4646C.T. PanC.T. Pan 2 4 o o x x v i i i+ = + Nodal analysisNodal analysis
  • 24. 4747 ThusThus ButBut 4o TH o v R i = = − Ω 0 2 2 4 2 4 4 4 o o x o o o o o x o o v v i v v v v i i or v i − = = − = + = − + = − = − C.T. PanC.T. Pan 4.7 Thevenin4.7 Thevenin’’s Theorems Theorem C.T. PanC.T. Pan 4747 Example 4.7.5 (cont.)Example 4.7.5 (cont.) : Supplying Power !: Supplying Power ! nn NortonNorton’’s theorems theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source IN in parallel with a resistor RN where IN is the short-circuit current through the terminals and RN is the input or equivalent resistance at the terminals when the independent sources are turned off. 4848C.T. PanC.T. Pan 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 4848
  • 25. 4949C.T. PanC.T. Pan 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 4949 Linear two-terminal circuit a b (a) ProofProof:: By using Mesh Analysis as an exampleBy using Mesh Analysis as an example Assume the linear two terminal circuit isAssume the linear two terminal circuit is a planar circuit and there are n meshesa planar circuit and there are n meshes when a b terminals are short circuited.when a b terminals are short circuited. 5050C.T. PanC.T. Pan 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 5050
  • 26. [ ] 1111 1 2 2 1 1 1 1 =det Sn S n nn n ns n n kn ks k ik kn Mesh equation for case as an example VIR R I V R R I V Hence the short circuit cuurent I V where R = ……             =              = ∆ ∆ ∆ ∆ ∑ M M O M M M M LL knis the cofactor of R 5151C.T. PanC.T. Pan 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 5151 Now connect an external resistance RNow connect an external resistance Roo to a , bto a , b terminals , then all the mesh currents will beterminals , then all the mesh currents will be changed to Jchanged to J11, J, J22,, ‥‥ ‥‥ JJnn,,respectively.respectively. 1111 1 2 2 2 1 11 1 11 2 11 0 0 0 0 0 det det Sn n S nn nn o ns n n n on nn o VJR R R J V JR R R V Note that R R R R R RR R R …… +          +     =           +      …… +        +   = ∆ +         +    M O M MM M LL K M M M O O M M MM LLL o nnR= ∆ + ∆ 5252C.T. PanC.T. Pan 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 5252
  • 27. 11 1 1 1 1 det 1 1 s n kn ks n ns k n o nn o nn n kn ks k nn o R V V R V J R R V R = = …      ∆   = = ∆ + ∆ ∆ + ∆ ∆ ∆ = ∆ + ∆ ∑ ∑ M O M L Hence, one hasHence, one has 5353 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 5353 1 n nn o N n o N I R R I R R = ∆ + ∆ = + 5454 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 5454 ,N N n nn where R I I ∆ = = ∆
  • 28. Example 4.8.1 By using the above formulaExample 4.8.1 By using the above formula 4Ω 3Ω 3Ω 3Ω Find the short circuit current IFind the short circuit current I33 3+33+3--33--33 --333+3+43+3+4--33 --33--333+33+3 II33 II22 II11 = 00 00 10V10V C.T. PanC.T. Pan 5555 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 5555 3+33+3--33--33 --333+3+43+3+4--33 --33--333+33+3 II33 II22 II11 = 00 00 10V10V [ ] ( )3 33 det 360 27 27 27 90 54 54 108 6 3 10 1 10 390 65 det 3 10 0 39 108 108 108 18 3 3 0 108 36 60 9 17 ik N N R I A I R = − − − − − − = −    = − = = = =   − −  ∆ = = = Ω ∆ − 5656C.T. PanC.T. Pan Example 4.8.1 (cont.)Example 4.8.1 (cont.) 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 5656
  • 29. Example 4.8.2Example 4.8.2 Find the Norton equivalent circuit ofFind the Norton equivalent circuit of thethe followingfollowing circuitcircuit 5757 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 5757 5||(8 4 8) 20 5 5|| 20 4 25 NR = + + × = = = Ω 5858C.T. PanC.T. Pan Example 4.8.2 (cont.)Example 4.8.2 (cont.) 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 5858 To find RTo find RNN from Fig.(a)from Fig.(a)
  • 30. 5959C.T. PanC.T. Pan 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 5959 Example 4.8.2 (cont.)Example 4.8.2 (cont.) To find ITo find INN from Fig.(b)from Fig.(b) shortshort--circuit terminal a and bcircuit terminal a and b Mesh Analysis:Mesh Analysis: ii11 = 2A= 2A 20i20i22 -- 4i4i11 –– 12 = 012 = 0 ∴∴ ii22 = 1A = I= 1A = INN 2A 4Ω 8Ω 8Ω 5Ω 12V iSC =IN a b (b) i1 i2 TH N N TH V Alternative method for I : I = R voltagevoltagecircuitcircuitopenopen:: −−THTHVV bbaa andandterminalsterminalsacrossacross ::analysisanalysisMeshMesh 6060C.T. PanC.T. Pan 3 4 3 4 4 2 , 25 4 12 0 0.8 5 4oc TH i A i i i A v V i V = − − = ∴ = ∴ = = = 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 6060 Example 4.8.2 (cont.)Example 4.8.2 (cont.) 2A 4Ω 8Ω 8Ω 5Ω 12V VTH=vSC a b (b) i3 i4
  • 31. ,,HenceHence AA1144//44 ====== THTH THTH NN RR VV II 6161C.T. PanC.T. Pan 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 6161 Example 4.8.2 (cont.)Example 4.8.2 (cont.) nn Using NortonUsing Norton’’ss theorem, findtheorem, find RRNN andand IINN of theof the followingfollowing circuit.circuit. 6262C.T. PanC.T. Pan 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 6262 Example 4.8.3Example 4.8.3
  • 32. HenceHence ,, 6363C.T. PanC.T. Pan 1 0.2 5 5 o o v i A= = = 1 5 0.2 o N o v R i ∴ = = = Ω 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 6363 Example 4.8.3 (cont.)Example 4.8.3 (cont.) To find RTo find RNN from Fig.(a)from Fig.(a) 6464C.T. PanC.T. Pan 4.8 Norton4.8 Norton’’s Theorems Theorem C.T. PanC.T. Pan 6464 Example 4.8.3 (cont.)Example 4.8.3 (cont.) To find ITo find INN from Fig.(b)from Fig.(b) 10 2.5 4 10 2 5 10 = 2(2.5) 7 5 7 x N x N i A V I i A I A = = = + Ω + = ∴ =
  • 33. NvVs a b iR 6565C.T. PanC.T. Pan 6565 4.9 Source Transformation4.9 Source Transformation The current through resistor R can be obtainedThe current through resistor R can be obtained as follows :as follows : S S S V v V v v i I R R R R − = = − −@ 6666C.T. PanC.T. Pan 6666 4.9 Source Transformation4.9 Source Transformation From KCL, one can obtain the followingFrom KCL, one can obtain the following equivalent circuitequivalent circuit S S V where I R @
  • 34. 6767C.T. PanC.T. Pan 6767 4.9 Source Transformation4.9 Source Transformation The voltage across resistor R can be obtained asThe voltage across resistor R can be obtained as follows :follows : ( )S S Sv I i R I R iR V iR= − = − −@ 6868C.T. PanC.T. Pan 6868 4.9 Source Transformation4.9 Source Transformation From KVL, one can obtain the followingFrom KVL, one can obtain the following equivalent circuitequivalent circuit S Swhere V R I@
  • 35. 6969C.T. PanC.T. Pan 6969 4.9 Source Transformation4.9 Source Transformation Example 4.9.1Example 4.9.1 3Ω a b 10A 30V a b 3Ω 7070C.T. PanC.T. Pan 7070 4.9 Source Transformation4.9 Source Transformation Example 4.9.2Example 4.9.2 nn Find the TheveninFind the Thevenin’’s equivalents equivalent
  • 36. 7171C.T. PanC.T. Pan 7171 4.9 Source Transformation4.9 Source Transformation Example 4.9.2 (cont.)Example 4.9.2 (cont.) 4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem nn Problem : Given a linear resistive circuit NProblem : Given a linear resistive circuit N shown as above, find the value ofshown as above, find the value of RRLL that permits maximum powerthat permits maximum power delivery to Rdelivery to RL .L . 7272C.T. PanC.T. Pan a b RL
  • 37. 7373C.T. PanC.T. Pan Solution : First, replace N with its TheveninSolution : First, replace N with its Thevenin equivalent circuit.equivalent circuit. +- RTH a RL b VTH i 4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem 7474C.T. PanC.T. Pan 2 2 2 2 L TH max ( ) 0 , R =R ( ) 2 4 TH L TH L L TH TH L L L V p i R R R R dp Let dR V V Then and P R R R = = + = = = 4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem
  • 38. 7575C.T. PanC.T. Pan (a) Find RL that results in maximum power transferred to RL. (b) Find the corresponding maximum power delivered to RL , namely Pmax. (c) Find the corresponding power delivered by the 360V source, namely Ps and Pmax/Ps in percentage. 4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem nExample 4.10.1 7676C.T. PanC.T. Pan ( ) 2 m a x 1 5 0 : ( ) 3 6 0 3 0 0 1 8 0 1 5 0 3 0 2 5 1 8 0 3 0 0 ( ) 2 5 9 0 0 5 0 T H T H S o l u ti o n a V V R b P W = = × = =   =    = Ω 4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem
  • 39. 7777C.T. PanC.T. Pan ( ) ( ) : a b s s s m a x s 300 Solution (c) V = 25 = 150V 50 - 360 - 150 i = = -7A 30 P = i 360 = -2520W (dissipated) P 900 = = 35.71% P 2520 × 4.10 Maximum Power Transfer Theorem4.10 Maximum Power Transfer Theorem C.T. PanC.T. Pan 7878 SummarySummary nnObjective 7 : Understand and be able to useObjective 7 : Understand and be able to use superposition theorem.superposition theorem. nnObjective 8 : Understand and be able to useObjective 8 : Understand and be able to use TheveninThevenin’’ss theorem.theorem. nnObjective 9 : Understand and be able to useObjective 9 : Understand and be able to use NortonNorton’’s theorem.s theorem.
  • 40. C.T. PanC.T. Pan 7979 SummarySummary nnObjective 10 : Understand and be able to useObjective 10 : Understand and be able to use source transform technique.source transform technique. nnObjective 11 : Know the condition for and beObjective 11 : Know the condition for and be able to find the maximumable to find the maximum power transfer.power transfer. C.T. PanC.T. Pan 8080 SummarySummary nn Problem : 4.60Problem : 4.60 4.644.64 4.684.68 4.774.77 4.864.86 4.914.91 nn Due within one week.Due within one week.