Elastic Buckling Behavior of Beams
CE579 - Structural Stability and Design
ELASTIC BUCKLING OF BEAMS
• Going back to the original three second-order differential
equations:
( ) ( )
( ) ( )
0
0
0
0
,
( ) ( ( ) )
( ( ) ) ( ) ( ) 0
x BY TY BY BX TX BX
y BX TY BY BY TX BX
w T BX BX TX
BY BY TY TY BY TX BX
Therefore
z z
E I v P v P x M M M M M M
L L
z z
E I u P u P y M M M M M M
L L
z
E I G K K u M M M P y
L
z v u
v M M M P x M M M M
L L L
φ
φ
φ φ
 
′′+ − + − + = − + ÷
 
 ′′+ − − + − + = − + + ÷
 
′′′ ′ ′− + + − − + +
′− + + + − + − + =
1
2
3
(MTX+MBX) (MTY+MBY)
ELASTIC BUCKLING OF BEAMS
• Consider the case of a beam subjected to uniaxial bending only:
 because most steel structures have beams in uniaxial bending
 Beams under biaxial bending do not undergo elastic buckling
• P=0; MTY=MBY=0
• The three equations simplify to:
• Equation (1) is an uncoupled differential equation describing in-plane
bending behavior caused by MTX and MBX
( )
( )
( ) ( ) ( ) 0
x BX TX BX
y BX TX BX
w T BX BX TX TX BX
z
E I v M M M
L
z
E I u M M M
L
z u
E I G K K u M M M M M
L L
φ
φ φ
′′ = − +
′′− = +
 
′′′ ′ ′− + + − − + − + = ÷
 
1
2
3
(−φ)
ELASTIC BUCKLING OF BEAMS
• Equations (2) and (3) are coupled equations in u and φ – that
describe the lateral bending and torsional behavior of the beam. In
fact they define the lateral torsional buckling of the beam.
• The beam must satisfy all three equations (1, 2, and 3). Hence,
beam in-plane bending will occur UNTIL the lateral torsional
buckling moment is reached, when it will take over.
• Consider the case of uniform moment (Mo) causing compression in
the top flange. This will mean that
 -MBX = MTX = Mo
Uniform Moment Case
• For this case, the differential equations (2 and 3) will become:
( )
2
2 2
2 2 2 2
0 0
0
( ) 0
:
'
,
( ) ( )
2 2
y o
w T o
A
o
x
o
o o
xA
o
o o
x
E I u M
E I G K K u M
where
K Wagner s effect due to warping caused by torsion
K a dA
M
But y neglecting higher order terms
I
M
K y x x y y dA
I
M
K y x x xx y y yy dA
I
φ
φ φ
σ
σ
′′+ =
′′′ ′ ′− + + =
=
=
= ⇒
 ∴ = − + − 
 ∴ = + − + + − 
∫
∫
2 2 2 2 2
0 2 2
A
o
o o o
x A A A A A
M
K x y dA y x y dA x xy dA y y dA y y dA
I
 
 ∴ = + + − + −  
 
∫
∫ ∫ ∫ ∫ ∫
ELASTIC BUCKLING OF BEAMS
2 2
2 2
2 2
2
2
, 2
sec
o
o x
x A
A
o o
x
A
o x x o
x
x
M
K y x y dA y I
I
y x y dA
K M y
I
y x y dA
K M where y
I
is a new tional property
β β
β
 
 ∴ = + −  
 
  +  
∴ = − 
 
 
 + 
∴ = ⇒ = −
∫
∫
∫
( )
:
(2) 0
(3) ( ) 0
y o
w T o x o
The beam buckling differential equations become
E I u M
E I G K M u M
φ
φ β φ
′′+ =
′′′ ′ ′− + + =
ELASTIC BUCKLING OF BEAMS
2
2
2
2
1 2 2
1 2
(2)
(2) (3) :
( ) 0
sec : 0
0
,
0
o
y
iv o
w T o x
y
x
iv oT
w y w
oT
w y w
iv
M
Equation gives u
E I
Substituting u from Equation in gives
M
E I G K M
E I
For doubly symmetric tion
MG K
E I E I I
MG K
Let and
E I E I I
φ
φ β φ φ
β
φ φ φ
λ λ
φ λ φ λ φ
′′ = −
′′
′′− + − =
=
′′∴ − − =
= =
′′∴ − − = ⇒ . .becomes the combined d e of LTB
ELASTIC BUCKLING OF BEAMS
( )
1 1 2 2
4 2
1 2
4 2
1 2
2 2
1 1 2 1 2 12
2 2
1 1 2 1 1 2
1 2
1 2 3 4
0
0
4 4
,
2 2
4 4
,
2 2
, ,
z
z
z z i z i z
Assume solution is of the form e
e
i
Let and i
Above are the four roots for
C e C e C e C e
collect
λ
λ
α α α α
φ
λ λ λ λ
λ λ λ λ
λ λ λ λ λ λ
λ
λ λ λ λ λ λ
λ
λ α α
λ
φ − −
=
∴ − − =
∴ − − =
+ + + −
∴ = −
+ + + +
∴ = ± ±
∴ = ± ±
∴ = + + +
∴
1 1 2 1 3 2 4 2cosh( ) sinh( ) sin( ) cos( )
ing real and imaginary terms
G z G z G z G zφ α α α α∴ = + + +
ELASTIC BUCKLING OF BEAMS
• Assume simply supported boundary conditions for the beam:
1
2 2
1 2 2
1 1 2 2 3
2 2 2 2
41 1 1 1 2 2 2 2
(0) (0) ( ) ( ) 0
. .
1 0 0 1
0 0
0
cosh( ) sinh( ) sin( ) cos( )
cosh( ) sinh( ) sin( ) cos( )
L L
Solution for must satisfy all four b c
G
G
L L L L G
GL L L L
For buckl
φ φ φ φ
φ
α α
α α α α
α α α α α α α α
′′ ′′∴ = = = =
   
   −  
 × = 
   
   − −   
( )2 2
1 2 1 2
2
2
sin :
det min 0
sinh( ) sinh( ) 0
:
sinh( ) 0
ing coefficient matrix must be gular
er ant of matrix
L L
Of these
only L
L n
α α α α
α
α π
∴ =
∴ + × × =
=
∴ =
ELASTIC BUCKLING OF BEAMS
( )
2
2
1 2 1
2
2
1 2 1 2
22 2 2
2
1 1 12 2 2
2
2 2
2 12 2
2 2 2
2 2 2 2
2 2
2
2 2
4
2
2
4
2 2 2
2
4 4
o T
y w w
T
o y w
w
n
L
L
L
L L L
L L
M G K
E I I L E I L
G K
M E I I
L E I L
π
α
λ λ λ π
π
λ λ λ
π π π
λ λ λ
λ
π π
λ λ
π π
λ
π π
∴ =
+ −
∴ =
∴ + − =
    
+ − + ÷  ÷ ÷
    ∴ = =
  
∴ = + ÷ ÷
  
  
∴ = = + ÷ ÷
  
  
∴ = + ÷ ÷
  
2 2
2 2
y w
o T
E I E I
M G K
L L
π π 
∴ = + ÷
 
Uniform Moment Case
• The critical moment for the uniform moment case is given by
the simple equations shown below.
• The AISC code massages these equations into different
forms, which just look different. Fundamentally the equations
are the same.
 The critical moment for a span with distance Lb between lateral -
torsional braces.
 Py is the column buckling load about the minor axis.
 Pφ is the column buckling load about the torsional z- axis.
Mcr
o
=
π2
EIy
L2
×
π2
EIw
L2
+GKT






Mcr
o
= Py ×Pφ ×ro
2
Non-uniform moment
• The only case for which the differential equations can be
solved analytically is the uniform moment.
• For almost all other cases, we will have to resort to numerical
methods to solve the differential equations.
• Of course, you can also solve the uniform moment case
using numerical methods
( )
( )
( ) ( ) ( ) 0
x BX TX BX
y BX TX BX
w T BX BX TX TX BX
z
E I v M M M
L
z
E I u M M M
L
z u
E I G K K u M M M M M
L L
φ
φ φ
′′ = − +
′′− = +
 
′′′ ′ ′− + + − − + − + = ÷
 
φ
What numerical method to use
• What we have is a problem where the governing differential equations are
known.
 The solution and some of its derivatives are known at the boundary.
 This is an ordinary differential equation and a boundary value
problem.
• We will solve it using the finite difference method.
 The FDM converts the differential equation into algebraic equations.
 Develop an FDM mesh or grid (as it is more correctly called) in the
structure.
 Write the algebraic form of the d.e. at each point within the grid.
 Write the algebraic form of the boundary conditions.
 Solve all the algebraic equations simultaneously.
Finite Difference Method
f(x+h)= f(x)+h ′f (x)+
h2
2!
′′f (x)+
h3
3!
′′′f (x)+
h4
4!
f iv
(x)+K
∴ ′f (x)=
f(x+h)− f(x)
h
+
h
2!
′′f (x)+
h2
3!
′′′f (x)+
h3
4!
f iv
(x)+K
∴ ′f (x)=
f(x+h)− f(x)
h
+O(h) ⇒Forwarddifferenceequation
h h
f(x)f(x-h)
f
x
f’(x)
Forward difference
Backward difference
Central difference
f(x+h)
Finite Difference Method
f (x+h) = f (x)+h ′f (x)+
h2
2!
′′f (x)+
h3
3!
′′′f (x)+
h4
4!
f iv
(x)+K
f (x−h) = f (x)−h ′f (x)+
h2
2!
′′f (x)−
h3
3!
′′′f (x)+
h4
4!
f iv
(x)+K
∴ ′f (x) =
f (x+h)− f (x−h)
2h
+
2h2
3!
′′′f (x)+K
∴ ′f (x) =
f (x+h)− f (x−h)
2h
+O(h2
) ⇒Central differenceequation
f(x−h)= f(x)−h ′f (x)+
h2
2!
′′f (x)−
h3
3!
′′′f (x)+
h4
4!
f iv
(x)+K
∴ ′f (x)=
f(x)− f(x−h)
h
+
h
2!
′′f (x)−
h2
3!
′′′f (x)+
h3
4!
f iv
(x)+K
∴ ′f (x)=
f(x)− f(x−h)
h
+O(h) ⇒Backwarddifferenceequation
Finite Difference Method
• The central difference equations are better than the forward
or backward difference because the error will be of the order
of h-square rather than h.
• Similar equations can be derived for higher order derivatives
of the function f(x).
• If the domain x is divided into several equal parts, each of
length h.
• At each of the ‘nodes’ or ‘section points’ or ‘domain points’
the differential equations are still valid.
1 2 3 i-2 i-1 i i+1 i+2 n
h
Finite Difference Method
• Central difference approximations for higher order
derivatives: Notation
y = f (x)
yi = f (x =i)
yi
′ = ′f (x =i)
yi
′′ = ′′f (x =i) and soonL
yi
′ =
1
2h
yi+1 − yi−1( )
yi
′′ =
1
h2
yi+1 −2yi + yi−1( )
yi
′′′ =
1
2h3
yi+2 −2yi+1 +2yi−1 − yi−2( )
yi
iv
=
1
h4
yi+2 −4yi+1 +6yi −4yi−1 + yi−2( )
FDM - Beam on Elastic Foundation
• Consider an interesting problemn --> beam on elastic
foundation
• Convert the problem into a finite difference problem.
Fixed end Pin support
x L
w(x)=w
K=elastic fdn.
EIyiv
+ky(x)=w(x)
1 2 3 4 5 6
h =0.2 l
EIyi
iv
+kyi=w
Discrete form of differential equation
FDM - Beam on Elastic Foundation
EIyi
iv
+kyi =w
∴
EI
h4
yi−2 −4yi−1+6yi −4yi+1+yi+2( )+kyi =w
write4equations fori=2,3,4,5
1 2 3 4 5 6
h =0.2 l
70
Need two imaginary nodes that lie within the boundary
Hmm…. These are needed to only solve the problem
They don’t mean anything.
FDM - Beam on Elastic Foundation
• Lets consider the boundary conditions:
At i =2:
625EI
L4
y0 −4y1 +6y2 −4y3 + y4( )+ky2 =w
At i =3:
625EI
L4
y1 −4y2 +6y3 −4y4 + y5( )+ky3 =w
At i =4:
625EI
L4
y2 −4y3 +6y4 −4y5 + y6( )+ky4 =w
At i =5:
625EI
L4
y3 −4y41 +6y5 −4y6 + y7( )+ky5 =w
1
6
(0) 0 0 (1)
( ) 0 0 (2)
( ) 0 (3)
(0) 0 (0) 0 (4)
y y
y L y
M L
yθ
= ⇒ =
= ⇒ =
=
′= ⇒ =
FDM - Beam on Elastic Foundation
( )
( )
1
6
6
6 5 6 72
7 5
1 2 0
2 0
(0) 0 0 (1)
( ) 0 0 (2)
( ) 0 (3)
( ) 0 0
1
2 0
(3 )
(0) 0 (0) 0 (4)
1
0
2
(4 )
y y
y L y
M L
EI y L y
y y y y
h
y y
y
y y y
h
y y
θ
= ⇒ =
= ⇒ =
=
′′ ′′∴ = ⇒ =
′′∴ = − + =
∴ = − +
′= ⇒ =
′∴ = − =
∴ = +
FDM - Beam on Elastic Foundation
• Substituting the boundary conditions:
Let a = kl4
/625EI
At i =2: 7y2 −4y3 + y4( )+
kL4
625EI
y2 =
wL4
625EI
At i = 3: −4y2 +6y3 −4y4 + y5( )+
kL4
625EI
y3 =
wL4
625EI
At i = 4: y2 −4y3 +6y4 −4y5( )+
kL4
625EI
y4 =
wL4
625EI
At i =5: y3 −4y1 +5y5( )+
kL4
625EI
y5 =
wL4
625EI
7+a −4 1 0
−4 6+a −4 1
1 −4 6+a −4
0 1 −4 5+a












y2
y3
y4
y5














=
1
1
1
1














wL4
625EI
FDM - Column Euler Buckling
P
w
x
L
Buckling problem: Find axial load
P for which the nontrivial
Solution exists.
OrdinaryDifferentialEquation
yiv
(x)+
P
EI
′′y(x)=
w
EI
Finite difference solution. Consider case
Where w=0, and there are 5 stations
P
x
0 1 2 3 4 5 6
h=0.25L
FDM - Euler Column Buckling
( ) ( )
( )
2 1 1 2 1 14 2
1
5
1
2 0
0 2
5
5
6 5 4
6 4
0
2, 3, 4
1 1
4 6 4 2 0
0 (1)
0 (2)
0
1
0
2
(3)
0
0
( 2 ) 0
(4)
iv
i i
i i i i i i i i
Finite difference method
P
y y
EI
At stations i
P
y y y y y y y y
h EI h
Boundary conditions
y
y
y
y y
h
y y
M
EI y
y y y
y y
− − + + − +
′′+ =
=
− + − + + • − + =
=
=
′ =
∴ − =
∴ =
=
′′∴ • =
∴ − + =
∴ = −
FDM - Column Euler Buckling
• Final Equations
1
h4
7y2 − 4y3 + y4( )+
P
EI
•
1
h2
(−2y2 + y3 ) = 0
1
h4
−4y2 + 6y3 − 4y4( )+
P
EI
•
1
h2
(y2 −2y3 + y4 ) = 0
1
h4
(y2 − 4y3 + 5y4 )+
P
EI
•
1
h2
(y3 −2y4 ) = 0
∴Matrix Form
7 −4 1
−4 6 −4
1 −4 5










y2
y3
y4










+
PL2
16EI
−2 1 0
1 −2 1
0 1 −2










y2
y3
y4










=
0
0
0










FDM - Euler Buckling Problem
• [A]{y}+λ[B]{y}={0}
 How to find P? Solve the eigenvalue problem.
• Standard Eigenvalue Problem
 [A]{y}=λ{y}
 Where, λ = eigenvalue and {y} = eigenvector
 Can be simplified to [A-λI]{y}={0}
 Nontrivial solution for {y} exists if and only if
| A-λI|=0
 One way to solve the problem is to obtain the characteristic
polynomial from expanding | A-λI|=0
 Solving the polynomial will give the value of λ
 Substitute the value of λ to get the eigenvector {y}
 This is not the best way to solve the problem, and will not work
for more than 4or 5th order polynomial
FDM - Euler Buckling Problem
• For solving Buckling Eigenvalue Problem
• [A]{y} + λ[B]{y}={0}
• [A+ λ B]{y}={0}
• Therefore, det |A+ λ B|=0 can be used to solve for λ
A =
7 −4 1
−4 6 −4
1 −4 5










B =
−2 1 0
1 −2 1
0 1 −2










and λ =
PL2
16EI
7−2λ −4 + λ 1
−4 + λ 6−2λ −4 + λ
1 −4 + λ 5−2λ
= 0
∴λ =1.11075
∴
PL2
16EI
=1.11075
∴Pcr =17.772
EI
L2
Exact solution is20.14
EI
L2
FDM - Euler Buckling Problem
• 11% error in solution from FDM
• {y}= {0.4184 1.0 0.8896}T
P
x
0 1 2 3 4 5 6
FDM Euler Buckling Problem
• Inverse Power Method: Numerical Technique to Find Least
Dominant Eigenvalue and its Eigenvector
 Based on an initial guess for eigenvector and iterations
• Algorithm
 1) Compute [E]=-[A]-1
[B]
 2) Assume initial eigenvector guess {y}0
 3) Set iteration counter i=0
 4) Solve for new eigenvector {y}i+1
=[E]{y}i
 5) Normalize new eigenvector {y}i+1
={y}i+1
/max(yj
i+1
)
 6) Calculate eigenvalue = 1/max(yj
i+1
)
 7) Evaluate convergence: λi+1
-λi
< tol
 8) If no convergence, then go to step 4
 9) If yes convergence, then λ= λi+1
and {y}= {y}i+1
Inverse Iteration Method
Different Boundary Conditions
Beams with Non-Uniform Loading
• Let Mo
cr
be the lateral-torsional buckling moment for the case
of uniform moment.
• If the applied moments are non-uniform (but varying linearly,
i.e., there are no loads along the length)
 Numerically solve the differential equation using FDM and the
Inverse Iteration process for eigenvalues
 Alternately, researchers have already done these numerical
solution for a variety of linear moment diagrams
 The results from the numerical analyses were used to develop
a simple equation that was calibrated to give reasonable
results.
Beams with Non-uniform Loading
• Salvadori in the 1970s developed the equation below based
on the regression analysis of numerical results with a simple
equation
 Mcr
= Cb Mo
cr
 Critical moment for non-uniform loading = Cb x critical moment
for uniform moment.
Beams with Non-uniform Loading
Beams with Non-uniform Loading
Beams with Non-Uniform Loading
• In case that the moment diagram is not linear over the length
of the beam, i.e., there are transverse loads producing a non-
linear moment diagram
 The value of Cb is a little more involved
Beams with non-simple end conditions
• Mo
cr
= (Py Pφ ro
2
)0.5
 PY with Kb
 Pφ with Kt
Beam Inelastic Buckling Behavior
• Uniform moment case
Beam Inelastic Buckling Behavior
• Non-uniform moment
Beam In-plane Behavior
• Section capacity Mp
• Section M-φ behavior
Beam Design Provisions
CHAPTER F in AISC Specifications

Beam buckling

  • 1.
    Elastic Buckling Behaviorof Beams CE579 - Structural Stability and Design
  • 2.
    ELASTIC BUCKLING OFBEAMS • Going back to the original three second-order differential equations: ( ) ( ) ( ) ( ) 0 0 0 0 , ( ) ( ( ) ) ( ( ) ) ( ) ( ) 0 x BY TY BY BX TX BX y BX TY BY BY TX BX w T BX BX TX BY BY TY TY BY TX BX Therefore z z E I v P v P x M M M M M M L L z z E I u P u P y M M M M M M L L z E I G K K u M M M P y L z v u v M M M P x M M M M L L L φ φ φ φ   ′′+ − + − + = − + ÷    ′′+ − − + − + = − + + ÷   ′′′ ′ ′− + + − − + + ′− + + + − + − + = 1 2 3 (MTX+MBX) (MTY+MBY)
  • 3.
    ELASTIC BUCKLING OFBEAMS • Consider the case of a beam subjected to uniaxial bending only:  because most steel structures have beams in uniaxial bending  Beams under biaxial bending do not undergo elastic buckling • P=0; MTY=MBY=0 • The three equations simplify to: • Equation (1) is an uncoupled differential equation describing in-plane bending behavior caused by MTX and MBX ( ) ( ) ( ) ( ) ( ) 0 x BX TX BX y BX TX BX w T BX BX TX TX BX z E I v M M M L z E I u M M M L z u E I G K K u M M M M M L L φ φ φ ′′ = − + ′′− = +   ′′′ ′ ′− + + − − + − + = ÷   1 2 3 (−φ)
  • 4.
    ELASTIC BUCKLING OFBEAMS • Equations (2) and (3) are coupled equations in u and φ – that describe the lateral bending and torsional behavior of the beam. In fact they define the lateral torsional buckling of the beam. • The beam must satisfy all three equations (1, 2, and 3). Hence, beam in-plane bending will occur UNTIL the lateral torsional buckling moment is reached, when it will take over. • Consider the case of uniform moment (Mo) causing compression in the top flange. This will mean that  -MBX = MTX = Mo
  • 5.
    Uniform Moment Case •For this case, the differential equations (2 and 3) will become: ( ) 2 2 2 2 2 2 2 0 0 0 ( ) 0 : ' , ( ) ( ) 2 2 y o w T o A o x o o o xA o o o x E I u M E I G K K u M where K Wagner s effect due to warping caused by torsion K a dA M But y neglecting higher order terms I M K y x x y y dA I M K y x x xx y y yy dA I φ φ φ σ σ ′′+ = ′′′ ′ ′− + + = = = = ⇒  ∴ = − + −   ∴ = + − + + −  ∫ ∫ 2 2 2 2 2 0 2 2 A o o o o x A A A A A M K x y dA y x y dA x xy dA y y dA y y dA I    ∴ = + + − + −     ∫ ∫ ∫ ∫ ∫ ∫
  • 6.
    ELASTIC BUCKLING OFBEAMS 2 2 2 2 2 2 2 2 , 2 sec o o x x A A o o x A o x x o x x M K y x y dA y I I y x y dA K M y I y x y dA K M where y I is a new tional property β β β    ∴ = + −       +   ∴ = −       +  ∴ = ⇒ = − ∫ ∫ ∫ ( ) : (2) 0 (3) ( ) 0 y o w T o x o The beam buckling differential equations become E I u M E I G K M u M φ φ β φ ′′+ = ′′′ ′ ′− + + =
  • 7.
    ELASTIC BUCKLING OFBEAMS 2 2 2 2 1 2 2 1 2 (2) (2) (3) : ( ) 0 sec : 0 0 , 0 o y iv o w T o x y x iv oT w y w oT w y w iv M Equation gives u E I Substituting u from Equation in gives M E I G K M E I For doubly symmetric tion MG K E I E I I MG K Let and E I E I I φ φ β φ φ β φ φ φ λ λ φ λ φ λ φ ′′ = − ′′ ′′− + − = = ′′∴ − − = = = ′′∴ − − = ⇒ . .becomes the combined d e of LTB
  • 8.
    ELASTIC BUCKLING OFBEAMS ( ) 1 1 2 2 4 2 1 2 4 2 1 2 2 2 1 1 2 1 2 12 2 2 1 1 2 1 1 2 1 2 1 2 3 4 0 0 4 4 , 2 2 4 4 , 2 2 , , z z z z i z i z Assume solution is of the form e e i Let and i Above are the four roots for C e C e C e C e collect λ λ α α α α φ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ α α λ φ − − = ∴ − − = ∴ − − = + + + − ∴ = − + + + + ∴ = ± ± ∴ = ± ± ∴ = + + + ∴ 1 1 2 1 3 2 4 2cosh( ) sinh( ) sin( ) cos( ) ing real and imaginary terms G z G z G z G zφ α α α α∴ = + + +
  • 9.
    ELASTIC BUCKLING OFBEAMS • Assume simply supported boundary conditions for the beam: 1 2 2 1 2 2 1 1 2 2 3 2 2 2 2 41 1 1 1 2 2 2 2 (0) (0) ( ) ( ) 0 . . 1 0 0 1 0 0 0 cosh( ) sinh( ) sin( ) cos( ) cosh( ) sinh( ) sin( ) cos( ) L L Solution for must satisfy all four b c G G L L L L G GL L L L For buckl φ φ φ φ φ α α α α α α α α α α α α α α ′′ ′′∴ = = = =        −    × =         − −    ( )2 2 1 2 1 2 2 2 sin : det min 0 sinh( ) sinh( ) 0 : sinh( ) 0 ing coefficient matrix must be gular er ant of matrix L L Of these only L L n α α α α α α π ∴ = ∴ + × × = = ∴ =
  • 10.
    ELASTIC BUCKLING OFBEAMS ( ) 2 2 1 2 1 2 2 1 2 1 2 22 2 2 2 1 1 12 2 2 2 2 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 4 2 2 2 2 4 4 o T y w w T o y w w n L L L L L L L L M G K E I I L E I L G K M E I I L E I L π α λ λ λ π π λ λ λ π π π λ λ λ λ π π λ λ π π λ π π ∴ = + − ∴ = ∴ + − =      + − + ÷  ÷ ÷     ∴ = =    ∴ = + ÷ ÷       ∴ = = + ÷ ÷       ∴ = + ÷ ÷    2 2 2 2 y w o T E I E I M G K L L π π  ∴ = + ÷  
  • 11.
    Uniform Moment Case •The critical moment for the uniform moment case is given by the simple equations shown below. • The AISC code massages these equations into different forms, which just look different. Fundamentally the equations are the same.  The critical moment for a span with distance Lb between lateral - torsional braces.  Py is the column buckling load about the minor axis.  Pφ is the column buckling load about the torsional z- axis. Mcr o = π2 EIy L2 × π2 EIw L2 +GKT       Mcr o = Py ×Pφ ×ro 2
  • 12.
    Non-uniform moment • Theonly case for which the differential equations can be solved analytically is the uniform moment. • For almost all other cases, we will have to resort to numerical methods to solve the differential equations. • Of course, you can also solve the uniform moment case using numerical methods ( ) ( ) ( ) ( ) ( ) 0 x BX TX BX y BX TX BX w T BX BX TX TX BX z E I v M M M L z E I u M M M L z u E I G K K u M M M M M L L φ φ φ ′′ = − + ′′− = +   ′′′ ′ ′− + + − − + − + = ÷   φ
  • 13.
    What numerical methodto use • What we have is a problem where the governing differential equations are known.  The solution and some of its derivatives are known at the boundary.  This is an ordinary differential equation and a boundary value problem. • We will solve it using the finite difference method.  The FDM converts the differential equation into algebraic equations.  Develop an FDM mesh or grid (as it is more correctly called) in the structure.  Write the algebraic form of the d.e. at each point within the grid.  Write the algebraic form of the boundary conditions.  Solve all the algebraic equations simultaneously.
  • 14.
    Finite Difference Method f(x+h)=f(x)+h ′f (x)+ h2 2! ′′f (x)+ h3 3! ′′′f (x)+ h4 4! f iv (x)+K ∴ ′f (x)= f(x+h)− f(x) h + h 2! ′′f (x)+ h2 3! ′′′f (x)+ h3 4! f iv (x)+K ∴ ′f (x)= f(x+h)− f(x) h +O(h) ⇒Forwarddifferenceequation h h f(x)f(x-h) f x f’(x) Forward difference Backward difference Central difference f(x+h)
  • 15.
    Finite Difference Method f(x+h) = f (x)+h ′f (x)+ h2 2! ′′f (x)+ h3 3! ′′′f (x)+ h4 4! f iv (x)+K f (x−h) = f (x)−h ′f (x)+ h2 2! ′′f (x)− h3 3! ′′′f (x)+ h4 4! f iv (x)+K ∴ ′f (x) = f (x+h)− f (x−h) 2h + 2h2 3! ′′′f (x)+K ∴ ′f (x) = f (x+h)− f (x−h) 2h +O(h2 ) ⇒Central differenceequation f(x−h)= f(x)−h ′f (x)+ h2 2! ′′f (x)− h3 3! ′′′f (x)+ h4 4! f iv (x)+K ∴ ′f (x)= f(x)− f(x−h) h + h 2! ′′f (x)− h2 3! ′′′f (x)+ h3 4! f iv (x)+K ∴ ′f (x)= f(x)− f(x−h) h +O(h) ⇒Backwarddifferenceequation
  • 16.
    Finite Difference Method •The central difference equations are better than the forward or backward difference because the error will be of the order of h-square rather than h. • Similar equations can be derived for higher order derivatives of the function f(x). • If the domain x is divided into several equal parts, each of length h. • At each of the ‘nodes’ or ‘section points’ or ‘domain points’ the differential equations are still valid. 1 2 3 i-2 i-1 i i+1 i+2 n h
  • 17.
    Finite Difference Method •Central difference approximations for higher order derivatives: Notation y = f (x) yi = f (x =i) yi ′ = ′f (x =i) yi ′′ = ′′f (x =i) and soonL yi ′ = 1 2h yi+1 − yi−1( ) yi ′′ = 1 h2 yi+1 −2yi + yi−1( ) yi ′′′ = 1 2h3 yi+2 −2yi+1 +2yi−1 − yi−2( ) yi iv = 1 h4 yi+2 −4yi+1 +6yi −4yi−1 + yi−2( )
  • 18.
    FDM - Beamon Elastic Foundation • Consider an interesting problemn --> beam on elastic foundation • Convert the problem into a finite difference problem. Fixed end Pin support x L w(x)=w K=elastic fdn. EIyiv +ky(x)=w(x) 1 2 3 4 5 6 h =0.2 l EIyi iv +kyi=w Discrete form of differential equation
  • 19.
    FDM - Beamon Elastic Foundation EIyi iv +kyi =w ∴ EI h4 yi−2 −4yi−1+6yi −4yi+1+yi+2( )+kyi =w write4equations fori=2,3,4,5 1 2 3 4 5 6 h =0.2 l 70 Need two imaginary nodes that lie within the boundary Hmm…. These are needed to only solve the problem They don’t mean anything.
  • 20.
    FDM - Beamon Elastic Foundation • Lets consider the boundary conditions: At i =2: 625EI L4 y0 −4y1 +6y2 −4y3 + y4( )+ky2 =w At i =3: 625EI L4 y1 −4y2 +6y3 −4y4 + y5( )+ky3 =w At i =4: 625EI L4 y2 −4y3 +6y4 −4y5 + y6( )+ky4 =w At i =5: 625EI L4 y3 −4y41 +6y5 −4y6 + y7( )+ky5 =w 1 6 (0) 0 0 (1) ( ) 0 0 (2) ( ) 0 (3) (0) 0 (0) 0 (4) y y y L y M L yθ = ⇒ = = ⇒ = = ′= ⇒ =
  • 21.
    FDM - Beamon Elastic Foundation ( ) ( ) 1 6 6 6 5 6 72 7 5 1 2 0 2 0 (0) 0 0 (1) ( ) 0 0 (2) ( ) 0 (3) ( ) 0 0 1 2 0 (3 ) (0) 0 (0) 0 (4) 1 0 2 (4 ) y y y L y M L EI y L y y y y y h y y y y y y h y y θ = ⇒ = = ⇒ = = ′′ ′′∴ = ⇒ = ′′∴ = − + = ∴ = − + ′= ⇒ = ′∴ = − = ∴ = +
  • 22.
    FDM - Beamon Elastic Foundation • Substituting the boundary conditions: Let a = kl4 /625EI At i =2: 7y2 −4y3 + y4( )+ kL4 625EI y2 = wL4 625EI At i = 3: −4y2 +6y3 −4y4 + y5( )+ kL4 625EI y3 = wL4 625EI At i = 4: y2 −4y3 +6y4 −4y5( )+ kL4 625EI y4 = wL4 625EI At i =5: y3 −4y1 +5y5( )+ kL4 625EI y5 = wL4 625EI 7+a −4 1 0 −4 6+a −4 1 1 −4 6+a −4 0 1 −4 5+a             y2 y3 y4 y5               = 1 1 1 1               wL4 625EI
  • 23.
    FDM - ColumnEuler Buckling P w x L Buckling problem: Find axial load P for which the nontrivial Solution exists. OrdinaryDifferentialEquation yiv (x)+ P EI ′′y(x)= w EI Finite difference solution. Consider case Where w=0, and there are 5 stations P x 0 1 2 3 4 5 6 h=0.25L
  • 24.
    FDM - EulerColumn Buckling ( ) ( ) ( ) 2 1 1 2 1 14 2 1 5 1 2 0 0 2 5 5 6 5 4 6 4 0 2, 3, 4 1 1 4 6 4 2 0 0 (1) 0 (2) 0 1 0 2 (3) 0 0 ( 2 ) 0 (4) iv i i i i i i i i i i Finite difference method P y y EI At stations i P y y y y y y y y h EI h Boundary conditions y y y y y h y y M EI y y y y y y − − + + − + ′′+ = = − + − + + • − + = = = ′ = ∴ − = ∴ = = ′′∴ • = ∴ − + = ∴ = −
  • 25.
    FDM - ColumnEuler Buckling • Final Equations 1 h4 7y2 − 4y3 + y4( )+ P EI • 1 h2 (−2y2 + y3 ) = 0 1 h4 −4y2 + 6y3 − 4y4( )+ P EI • 1 h2 (y2 −2y3 + y4 ) = 0 1 h4 (y2 − 4y3 + 5y4 )+ P EI • 1 h2 (y3 −2y4 ) = 0 ∴Matrix Form 7 −4 1 −4 6 −4 1 −4 5           y2 y3 y4           + PL2 16EI −2 1 0 1 −2 1 0 1 −2           y2 y3 y4           = 0 0 0          
  • 26.
    FDM - EulerBuckling Problem • [A]{y}+λ[B]{y}={0}  How to find P? Solve the eigenvalue problem. • Standard Eigenvalue Problem  [A]{y}=λ{y}  Where, λ = eigenvalue and {y} = eigenvector  Can be simplified to [A-λI]{y}={0}  Nontrivial solution for {y} exists if and only if | A-λI|=0  One way to solve the problem is to obtain the characteristic polynomial from expanding | A-λI|=0  Solving the polynomial will give the value of λ  Substitute the value of λ to get the eigenvector {y}  This is not the best way to solve the problem, and will not work for more than 4or 5th order polynomial
  • 27.
    FDM - EulerBuckling Problem • For solving Buckling Eigenvalue Problem • [A]{y} + λ[B]{y}={0} • [A+ λ B]{y}={0} • Therefore, det |A+ λ B|=0 can be used to solve for λ A = 7 −4 1 −4 6 −4 1 −4 5           B = −2 1 0 1 −2 1 0 1 −2           and λ = PL2 16EI 7−2λ −4 + λ 1 −4 + λ 6−2λ −4 + λ 1 −4 + λ 5−2λ = 0 ∴λ =1.11075 ∴ PL2 16EI =1.11075 ∴Pcr =17.772 EI L2 Exact solution is20.14 EI L2
  • 28.
    FDM - EulerBuckling Problem • 11% error in solution from FDM • {y}= {0.4184 1.0 0.8896}T P x 0 1 2 3 4 5 6
  • 29.
    FDM Euler BucklingProblem • Inverse Power Method: Numerical Technique to Find Least Dominant Eigenvalue and its Eigenvector  Based on an initial guess for eigenvector and iterations • Algorithm  1) Compute [E]=-[A]-1 [B]  2) Assume initial eigenvector guess {y}0  3) Set iteration counter i=0  4) Solve for new eigenvector {y}i+1 =[E]{y}i  5) Normalize new eigenvector {y}i+1 ={y}i+1 /max(yj i+1 )  6) Calculate eigenvalue = 1/max(yj i+1 )  7) Evaluate convergence: λi+1 -λi < tol  8) If no convergence, then go to step 4  9) If yes convergence, then λ= λi+1 and {y}= {y}i+1
  • 30.
  • 35.
  • 36.
    Beams with Non-UniformLoading • Let Mo cr be the lateral-torsional buckling moment for the case of uniform moment. • If the applied moments are non-uniform (but varying linearly, i.e., there are no loads along the length)  Numerically solve the differential equation using FDM and the Inverse Iteration process for eigenvalues  Alternately, researchers have already done these numerical solution for a variety of linear moment diagrams  The results from the numerical analyses were used to develop a simple equation that was calibrated to give reasonable results.
  • 37.
    Beams with Non-uniformLoading • Salvadori in the 1970s developed the equation below based on the regression analysis of numerical results with a simple equation  Mcr = Cb Mo cr  Critical moment for non-uniform loading = Cb x critical moment for uniform moment.
  • 38.
  • 39.
  • 40.
    Beams with Non-UniformLoading • In case that the moment diagram is not linear over the length of the beam, i.e., there are transverse loads producing a non- linear moment diagram  The value of Cb is a little more involved
  • 41.
    Beams with non-simpleend conditions • Mo cr = (Py Pφ ro 2 )0.5  PY with Kb  Pφ with Kt
  • 42.
    Beam Inelastic BucklingBehavior • Uniform moment case
  • 43.
    Beam Inelastic BucklingBehavior • Non-uniform moment
  • 44.
    Beam In-plane Behavior •Section capacity Mp • Section M-φ behavior
  • 45.
    Beam Design Provisions CHAPTERF in AISC Specifications